
Applied
ComputationalComputational
Electromagnetics
SocietySociety
Journal
Special Issue onSpecial Issue on 
Hardware Accelerated 
Computational Techniques for 
Electromagnetic Simulations of 
C l P blComplex Problems

Guest Editors
Ozlem Kilic and
Atef Z. ElsherbeniAtef Z. Elsherbeni

April 2010
Vol. 25 No. 4
ISSN 1054 4887ISSN 1054-4887



GENERAL PURPOSE AND SCOPE: The Applied Computational Electromagnetics Society (ACES) 
Journal hereinafter known as the ACES Journal is devoted to the exchange of information in 
computational electromagnetics, to the advancement of the state-of-the art, and the promotion of related 
technical activities.  A primary objective of the information exchange is the elimination of the need to “re-
invent the wheel” to solve a previously-solved computational problem in electrical engineering, physics, or 
related fields of study.  The technical activities promoted by this publication include code validation, 
performance analysis, and input/output standardization; code or technique optimization and error 
minimization; innovations in solution technique or in data input/output; identification of new applications 
for electromagnetics modeling codes and techniques; integration of computational electromagnetics 
techniques with new computer architectures; and correlation of computational parameters with physical 
mechanisms. 
 
SUBMISSIONS: The ACES Journal welcomes original papers relating to applied computational 
electromagnetics.  Typical papers will represent the computational electromagnetics aspects of research in 
electrical engineering, physics, or related disciplines. However, papers which represent research in applied 
computational electromagnetics itself are equally acceptable. 
 
Manuscripts are to be submitted through the upload system of ACES web site http://aces.ee.olemiss.edu 
See “Information for Authors” on inside of back cover and at ACES web site. For additional information 
contact the Editor-in-Chief: 

Dr. Atef Elsherbeni 
 Department of Electrical Engineering 
 The University of Mississippi 
 University, MS 386377 USA 
 Phone:  662-915-5382 Fax: 662-915-7231 
 Email:  atef@olemiss.edu 
 
SUBSCRIPTIONS:  Members of the Applied Computational Electromagnetics Society who have paid 
their subscription fees are entitled to download any published journal article available at  
http://aces.ee.olemiss.edu, and have the option to receive the ACES Journal with a minimum of three 
issues per calendar year.  
 
Back issues, when available, are $15 each.  Subscriptions to ACES is available through the web site.  
Orders for back issues of the ACES Journal and changes of addresses should be sent directly to ACES: 
 
 Dr. Allen W. Glisson 
 302 Anderson Hall 
 Dept. of Electrical Engineering 
 Fax: 662-915-7231 

Email: aglisson@olemiss.edu 
 
Allow four week’s advance notice for change of address.  Claims for missing issues will not be honored 
because of insufficient notice or address change or loss in mail unless the ACES Treasurer is notified 
within 60 days for USA and Canadian subscribers or 90 days for subscribers in other countries, from the 
last day of the month of publication.  For information regarding reprints of individual papers or other 
materials, see “Information for Authors”. 
 
LIABILITY. Neither ACES, nor the ACES Journal editors, are responsible for any consequence of 
misinformation or claims, express or implied, in any published material in an ACES Journal issue.  This 
also applies to advertising, for which only camera-ready copies are accepted.  Authors are responsible for 
information contained in their papers.  If any material submitted for publication includes material which 
has already been published elsewhere, it is the author’s responsibility to obtain written permission to 
reproduce such material. 



 
APPLIED 
COMPUTATIONAL 
ELECTROMAGNETICS  
SOCIETY 
JOURNAL 
 
Special Issue on 
Hardware Accelerated Computational 
Techniques for Electromagnetic 
Simulations of Complex Problems 
 
Guest Editors 
Ozlem Kilic and Atef Z. Elsherbeni 
 
April 2010 
Vol. 25  No.42 
ISSN 1054-4887 

 
 
 
The ACES Journal is abstracted in INSPEC, in Engineering Index, DTIC, Science Citation Index Expanded, the 
Research Alert, and to Current Contents/Engineering, Computing & Technology. 
 
The first, fourth, and sixth illustrations on the front cover have been obtained from the Department of 
Electrical Engineering at the University of Mississippi. 
 
The third and fifth illustrations on the front cover have been obtained from Lawrence Livermore National 
Laboratory. 
 
The second illustration on the front cover has been obtained from FLUX2D software, CEDRAT S.S. 
France, MAGSOFT Corporation, New York. 



THE APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY 
http://aces.ee.olemiss.edu 

 
ACES JOURNAL EDITOR-IN-CHIEF 

 

Atef Elsherbeni 
University of Mississippi, EE Dept.  

University, MS 38677, USA 
 

ACES JOURNAL ASSOCIATE EDITORS-IN-CHIEF 
 

Sami Barmada 
University of Pisa. EE Dept. 

Pisa, Italy, 56126 
 

Fan Yang 
University of Mississippi, EE Dept. 

University, MS 38677, USA  
 

Mohamed Bakr 
McMaster University, ECE Dept. 
Hamilton, ON, L8S 4K1, Canada 

ACES JOURNAL EDITORIAL ASSISTANTS 
 

Matthew J. Inman 
University of Mississippi, EE Dept. 

University, MS 38677, USA 
 

Mohamed Al Sharkawy 
Arab Academy for Science and 

Technology, ECE Dept. 
Alexandria, Egypt 

Christina Bonnington 
University of Mississippi, EE Dept. 

University, MS 38677, USA 

 
ACES JOURNAL EMERITUS EDITORS-IN-CHIEF 

 

Duncan C. Baker 
EE Dept. U. of Pretoria 

0002 Pretoria, South Africa 
 

Robert M. Bevensee 
Box 812 

Alamo, CA 94507-0516, USA 
 

Allen Glisson 
University of Mississippi, EE Dept. 

University, MS 38677, USA 
 

Ahmed Kishk 
University of Mississippi, EE Dept. 

University, MS 38677, USA 
 

David E. Stein 
USAF Scientific Advisory Board 

Washington, DC 20330, USA 
 
 
 
 

 
ACES JOURNAL EMERITUS ASSOCIATE EDITORS-IN-CHIEF 

 

Alexander Yakovlev 
University of Mississippi, EE Dept.  

University, MS 38677, USA 
 

Erdem Topsakal 
Mississippi State University,  EE Dept. 

Mississippi State, MS 39762, USA 

 
 

APRIL 2010 REVIEWERS 
 

Mohamed Al-Sharkaway 
Sami Barmada 

J. Berenger 
Malgorzata Celuch 

Veysel Demir 
 
 
 

AbdelKader Hamid 
Matthew Inman 

Ozlem Kilic 
Jeremy Knopp 

Michiko Kuroda 
 
 
 

C. J. Reddy 
Levent Sevgi 
Alan Taflove 
John Volakis 



THE APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY 
 

JOURNAL 
 
 
 

Vol. 25 No. 4                                     April 2010 
TABLE OF CONTENTS 

 
 
“Overview of Reconfigurable Computing Platforms and Their Applications in 
Electromagnetics Applications” 
 O. Kilic and M. Huang……………………..…………….………………………………….283 
 
“Using GPUs for Accelerating Electromagnetic Simulations” 
 M. Ujaldon………………………………….…………………….........................................294 
 
“Compute Unified Device Architecture (CUDA) Based Finite-Difference Time-Domain 
(FDTD) Implementation” 
 V. Demir and A. Z. Elsherbeni………....………………………….......................................303 
 
“A Practical Look at GPU-Accelerated FDTD Performance” 
 M. Weldon, L. Maxwell, D. Cyca, M. Hughes, C. Whelan, and M. Okoniewski…………..315 
 
“A Stacking Scheme to Improve the Efficiency of Finite-Difference Time-Domain 
Solutions on Graphics Processing Units” 
 V. Demir…………………………………………...…...…..………………..........................323 
 
“Accelerating Multi GPU Based Discontinuous Galerkin FEM Computations for 
Electromagnetic Radio Frequency Problems” 
 N. Gödel, N. Nunn, T. Warburton, and M. Clemens…………………..................................331 
 
“CUDA Based LU Decomposition Solvers for CEM Applications” 
 M. J. Inman, A. Z. Elsherbeni, and C. J. Reddy……………………………….....................339 
 
“GPU Based TLM Algorithms in CUDA and OpenCL” 
 F. Rossi, C. McQuay, and P. So..……..……………..............................................................348 
 
“Fast CPU/GPU Pattern Evaluation of Irregular Arrays” 

A. Capozzoli, C. Curcio, G. D’Elia, A. Liseno, and P. Vinetti…...........................................355 
 

“A New Software and Hardware Parallelized Floating Random-Walk Algorithm for the 
Modified Helmholtz Equation Subject to Neumann and Mixed Boundary Conditions” 
 K. Chatterjee, M. Sandora, C. Mitchell, D. Stefan, D. Nummey, and J. Poggie……………373 
 
 



“An Efficient Parallel Multilevel Fast Multipole Algorithm for Large-scale Scattering 
Problems” 

Hu Fangjing, Nie Zaiping, and Hu Jun...................................................................................381 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2010, The Applied Computational Electromagnetics Society 



Overview of Reconfigurable Computing Platforms and Their
Applications in Electromagnetics Applications

Ozlem Kilic1, Miaoqing Huang2

1Department of Electrical Engineering and Computer Science
The Catholic University of America, Washington, DC 20064, USA

kilic@cua.edu

2Department of Computer Science and Computer Engineering
University of Arkansas, Fayetteville, AR 72701, USA

mqhuang@uark.edu

Abstract—This paper investigates the utilization of field pro-
grammable gate arrays (FPGAs) in the acceleration of numer-
ically intensive electromagnetics applications. We investigate
the speed improvement by employing FPGAs for two different
applications: (i) the optimization of a phased array antenna
pattern by amplitude control using the ant colony optimiza-
tion algorithm, (ii) implementation of the rigorous coupled
wave (RCW) analysis technique for the design of engineered
materials. The first application utilizes FPGAs as the only
processor; i.e., all functionalities of the algorithm reside on the
FPGA. The second one employs a hybrid hardware/software
approach where the FPGA serves as a coprocessor to the
CPU. The hybrid approach identifies the most numerically
intensive part of the RCW algorithm and implements it on
the FPGA. In both applications we demonstrate orders of
magnitude of improvement in speed proving that FPGAs
are highly flexible platforms suited well for the challenging
electromagnetics problems. An overview of available FPGA
platforms for scientific computing and how they compare are
also presented in the paper.

Index Terms—Field programmable gate array, Reconfigurable
computing, Electromagnetics applications, Rigorous coupled
wave analysis, Eigenvalue solver, Bio-inspired optimization,
Ant colony optimization (ACO), Phased array.

I. INTRODUCTION
The recent commercial and military applications for com-

munications, imaging and remote sensing demand high mobil-
ity and multi-functionality. For instance, military applications
require improved performance of their communication, radar
and tracking systems while reducing size, cost and radar
cross-section. Similarly, commercial communication devices
are expected to perform seamlessly on the move for both voice
and data exchange. In response, the research community has
been investigating the use of advanced and engineered electro-
magnetic materials. We have witnessed the emerging of new
classes of materials, such as meta-materials, photonic crystals,
and plasmonics, etc [1]–[5]. These are typically complex
heterogeneous mixtures of dielectric and metallic structures,

which require rigorous electromagnetic simulation tools for an
optimal design. Other applications involve smart antennas that
can steer a beam electronically. The combined performance
of the antenna with the beamformer can be a tedious task
to simulate as the structure can consist of fine features with
large overall dimensions, i.e., multiple wavelengths. However,
the computations for such complex materials are often very
cumbersome and time consuming. As a consequence, iterative
design of advanced materials and simulations of antenna
performance is often too slow to be of practical use.

There are many electromagnetic software packages that al-
low users to model complex 3-D structures. Many of these use
one of the full-wave solutions such as Finite Difference Time
Domain (FDTD) Method, Finite Element Method (FEM),
Method of Moments (MoM), or asymptotic techniques like
geometrical theory of diffraction (GTD), unified theory of
diffraction (UTD), etc. The full wave solutions are limited
to low-frequency applications or electrically small structures
since they involve discretization of the geometry and the
size of the problem becomes prohibitive for finer resolutions.
The asymptotic methods are based on the assumption that
the wavelength is much smaller than the finest part of the
geometry. However, many of the practical applications in-
volve modeling structures that possess fine details on large
surfaces. The finer details suit well for full-wave solutions
while the large surfaces are more appropriate for asymptotic
approaches. Some typical applications are antennas on vehicle
platforms, electrically large structures such as Rotman lens
beam-formers [6], advanced RF material such as electronic
band gap (EBG) and frequency selective surface (FSS) struc-
tures, and scattering properties of a medium with small and
large features with respect to the wavelength.

This paper investigates the utilization of field programmable
gate arrays (FPGAs) in the acceleration of numerically inten-
sive electromagnetics applications as described above. FPGAs
render themselves to parallel computing and can be cus-
tomized to optimally fit the problem at hand, creating a highly
efficient computing machine for the particular application.
With the advancement of semiconductor technology, FPGAs
have become mature enough to accommodate complicated
computations. Due to the intrinsic parallelism of hardware

283

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



Fig. 1. The internal architecture of an FPGA device.

implementation on FPGA devices, it is possible to achieve
several orders of magnitude performance speedup compared
with the corresponding implementation in software [7]. There-
fore, FPGA devices have been integrated into the traditional
workstations as co-processors. Generally, these workstations
with addition of FPGA co-processors are called reconfigurable
computers. As opposed to the specially designed ASICs, the
functionality of the co-processor can be switched in millisec-
onds by downloading different configuration files (so the name
“reconfigurable computing”) into the FPGA device so that it
can perform different types of operations.

The basic architecture of an FPGA device is shown in Fig. 1.
FPGAs contain programmable logic components called “logic
blocks”, and a hierarchy of reconfigurable interconnects that
allow the blocks to be “wired together”. Logic blocks can
be configured to perform complex combinational functions,
or merely simple logic functions like AND and XOR. In
most FPGAs, the logic blocks also include memory elements,
which may be simple flip-flops or more complete blocks of
memory. The I/O blocks surrounding the logic blocks provide
the interface to communicate with the outside world. The
two leading FPGA manufactures as of 2010 are Xilinx [8]
and Altera [9]. FPGA devices from both companies are quite
visible in reconfigurable computers as co-processors.

The rest of the paper is organized as follows. In Section II,
we provide an overview of the available FPGA based platforms
for scientific computing applications. Programming these de-
vices involve understanding of parallelized and pipelined com-
puting techniques. The details on how programming can be ap-
proached are provided in Section III, with a brief description of
the differences between the currently available platforms. We
discuss examples of electromagnetics applications and their
implementation on FPGAs in Section IV. Finally, Section V
concludes this work.

Vendor-Specific Service Logic

FPGA Device
Local Memory 

Bank 0

Local Memory 
Bank 1

Local Memory 
Bank n-1

Host
Memory Interconnect

Fig. 2. The general architecture of a reconfigurable computer.

 

Fig. 3. The execution model of a reconfigurable computer.

II. AVAILABLE RECONFIGURABLE
COMPUTERS FOR SCIENTIFIC

COMPUTING
Using FPGA devices as co-processors to microprocessors in

reconfigurable computers (RC) has been an industrial interest
and academic research topic for many years. Fig. 2 shows a
simplified architecture of a reconfigurable computer including
one FPGA and one microprocessor. The FPGA co-processor
is equipped with several local memory banks, usually SRAM,
acting as cache. An interconnect is used to transfer data
between the FPGA and the microprocessor. An application
implemented on reconfigurable computers is divided into two
parts. The main flow is executed on the microprocessor.
The computation intensive parts of the application can be
implemented on the FPGA device by taking advantage of
pipelining and parallelism, as shown in Fig. 3. FPGAs differ
from a single-core microprocessor in their ability to execute
thousands of operations concurrently. This is achieved by
programming the logic blocks in the device. A single-core
microprocessor, on the other hand, is only able to perform
one operation at a time.

The reconfigurable (or hybrid) computers can be divided
into two subcategories based on the different integration tech-
nology used. In the first subcategory, a PCI or PCI-Express
based FPGA expansion card is inserted into a conventional
workstation. In most cases, the FPGA card and the workstation
are from different vendors. For the second subcategory, the
same vendor will design both the FPGA board and the
workstation, and integrate them together using a proprietary
interconnect. Since these reconfigurable computers provide
more computing capacity than those in the first subcategory,
they are typically called high-performance reconfigurable com-
puters (HPRCs). In this paper, we will focus on the use
of HPRCs in the field of electromagnetics. Three example
systems discussed in this paper are Cray XD1 [10], SRC-6 [11]
and SGI RC100 [12].

284 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



192

FPGA
(XC4VLX200)

SRAM

SRAM
SRAM

SRAM SRAM

FPGA
(XC4VLX200)

SRAM

SRAM
SRAM

SRAM SRAM

Network
Interface
Controller

Network
Interface
Controller

FPGA
Loader

NUMAlink4

NUMAlink4

NUMAlink4

FPGA
(XC2VP50) SRAM

SRAM

SRAM

SRAM

HyperTransport

1.6 GB/s1.6 GB/s

FPGA
(XC2V6000)

FPGA
(XC2V6000)

Controller
(XC2V6000)

SRAM SRAM SRAM SRAM SRAM SRAM

3.2 GB/s

3.2 GB/s

Proprietary Interconnect

1.4 GB/s1.4 GB/s

(a) Cray XD1 (b) SRC-6 (c) SGI RC100

Fig. 4. The local architecture of the FPGA co-processor.

On the Cray XD1 platform, the FPGA co-processor resides
on the same board as the microprocessor. This layout is
different from the other two reconfigurable computers, which
consist of separate FPGA board and microprocessor board.
In spite of this difference, they share two similarities. (i)
Multiple local SRAM modules are directly connected to the
same FPGA device so that the hardware implementation can
access and process multiple data blocks simultaneously, as
shown in Fig. 4. On all three platforms, each memory access
port is 64-bit wide. However, on both Cray XD1 and SGI
RC100, the FPGA device has two separate read and write
ports for each memory bank. In other words, the user logic on
the FPGA device can read from and write to the same memory
bank concurrently. On the other hand, the user logic on the
SRC-6 platform has only one port for both reading from and
writing to the same memory bank. This single-port access will
degrade the performance for some applications. (ii) The FPGA
co-processor is connected to the microprocessor and the host
memory using high-speed interconnect in order to reduce the
transportation overhead. These interconnects generally provide
shorter latency and higher bandwidth for the data transfer
between the FPGA and the microprocessor.

For an application that needs to use multiple FPGA devices
at the same time in an RC system, different platforms deal
with it differently.

• The Cray XD1 is a cluster-based reconfigurable computer.
In other words, it may consist of dozens of FPGA co-
processors, each of which belongs to a separate worksta-
tion. As shown in Fig. 5(a), 6 workstations (i.e., nodes)
compose a chassis, which is the basic unit in a Cray XD1
system. If the user intends to use more than one FPGA
co-processor, it has to cross the boundary of the operating
system. One approach to use multiple FPGA devices in
a single application is to use MPI (Message Passing
Interface). Apparently, all the communication between
any two FPGA co-processors has to be handled explicitly
by software.

• The SRC-6 is a cluster-based platform as well. As
shown in Fig. 4(b), there are two FPGA devices in
one workstation. The user can program these two FPGA
devices simultaneously in one application. These two

FPGA devices can communicate to each other using the
dedicated 192-bit channel. Once the communication is
beyond the boundary of an operating system, MPI can
be used for data transfer among different systems.

• The SGI RC100 is different from the other two platforms.
On SGI RC100, different types of processing boards, i.e.,
microprocessor boards and FPGA boards, are connected
to a same network and are visible in one single operating
system, as shown in Fig. 5(c). However, as shown in
Fig. 4(c), there is no communication channel between
two FPGA devices on the same board. If the raw data
can be divided into independent pieces, each of which
is to be processed by one FPGA device, the user can
allocate multiple FPGA co-processors in one software
thread, and the co-processor driver will distribute the
data evenly across different FPGAs. On the other hand,
if the user wants to use multiple FPGAs and there
is communication among these FPGAs during the data
processing, a multiple-thread application is required to
deal with this scenario.

The implementation on the FPGA co-processor depends
on the available resources, e.g., the available logic blocks in
the FPGA device and the number of local memory banks.
One example in the electromagnetics domain is the matrix
multiplication, i.e., C = AB. Each element in C is the product
of a row in A and a column in B, i.e., ci,j =

∑M
k=1 aikbkj . If

matrix A and B are stored in two separate local memory banks
and the result matrix C is saved in another separate memory
bank, the user logic can read one pair of (aik, bkj) every
clock cycle assuming the multiplier and the accumulator are
both fully pipelined. Therefore, it would take approximately
M clock cycles to compute one element in matrix C no matter
how complex the multiplication and the accumulation are.

III. PROGRAMMING RECONFIGURABLE
COMPUTERS

An application implemented on a reconfigurable computer
consists of a hardware part and a software part as shown
in Fig. 3. The user needs to program both parts and then
integrate them together using vendor APIs (Application Pro-
gramming Interfaces). The typical programming language for

285KILIC, HUANG: OVERVIEW OF RECONFIGURABLE COMPUTING PLATFORMS



HyperTransport Interconnect

I/O
Contro-

ller

I/O
Contro-

ller
FPGA

μP μP

I/O
Contro-

ller

I/O
Contro-

ller
FPGA

μP μP

I/O
Contro-

ller

I/O
Contro-

ller
FPGA

μP μP

I/O
Contro-

ller

I/O
Contro-

ller
FPGA

μP μP

I/O
Contro-

ller

I/O
Contro-

ller
FPGA

μP μP

I/O
Contro-

ller

I/O
Contro-

ller
FPGA

μP μP
Node #4 Node #5 Node #6

Node #3Node #2Node #1

(a) A Cray XD1 chassis.

SRC Hi-Bar Switch

MAP
Memory
SNAP

μP
PCI-X

Memory
SNAP

μP
PCI-X

Gig-bit 
Ethernet

Etc.

FPGA FPGA

MAP

FPGA FPGA
μP μP

Node #1 Node #2

(b) An SRC-6 consisting of 2 nodes.

(c) SGI RC100 architecture.

Fig. 5. The architecture of three representative reconfigurable
computers.

the software part is the C language in most cases. The more
challenging part is the hardware part and it typically requires
some hardware design expertise to gain the full benefit of using
the FPGA co-processor.

It has been mentioned before that an FPGA co-processor is
capable of performing thousands of operations concurrently.
In order to achieve this concurrency, all the logic blocks in
one FPGA device have to be programmed into a specific
status by using a configuration file. Since the implementation
depends on the available hardware resources on the FPGA
device (e.g., memory, built-in multipliers, logic blocks), it
might be necessary at times to distribute the hardware part
into multiple FPGA configurations, each of which is called a
bitstream. At runtime, different configurations are downloaded
into the FPGA device following a pre-defined order in an
application.

There are two different approaches for the user to implement

// The block for source data reading
always @ (posedge clk) begin

if (reset) begin
mem_0_rd_cmd_vld <= 0;
mem_1_rd_cmd_vld <= 0;
mem_0_rd_addr <= 0;
mem_1_rd_addr <= 0;

end
else begin

if (mem_0_rd_addr == (MATRIX_RANK - 1)) begin
mem_0_rd_cmd_vld <= 0;
mem_1_rd_cmd_vld <= 0;
mem_0_rd_addr <= mem_0_rd_addr;
mem_1_rd_addr <= mem_1_rd_addr;

end
else begin

mem_0_rd_cmd_vld <= 1;
mem_1_rd_cmd_vld <= 1;
mem_0_rd_addr <= mem_0_rd_addr + 1;
mem_1_rd_addr <= mem_1_rd_addr + 1;

end
end

end

// The block for source data feeding
multiplier U1(.di1(mem_0_rd_data),.di2(mem_1_rd_data),

.di_vld(mem_0_rd_data_vld),.do(product),.do_vld(pro_vld));
accumulator U2(.di(product),.di_vld(pro_vld),

.do(ac),.do_vld(ac_vld));

// The block for result data writing
always @ (posedge clk) begin

if (reset) begin
mem_2_wr_cmd_vld <= 0;
mem_2_wr_addr <= 0;

end
else begin

mem_2_wr_cmd_vld <= ac_vld;
mem_2_wr_data <= ac;
if (mem_2_wr_cmd_vld) begin

mem_2_wr_addr <= mem_2_wr_addr + 1;
end
else begin

mem_2_wr_addr <= mem_2_wr_addr;
end

end
end

Fig. 6. Compute one element in matrix C using Verilog.

the functions running on the FPGA co-processor, i.e., hard-
ware description languages (HDLs) and high-level languages
(HLLs). The default languages to program the FPGA device
are HDLs, i.e., VHDL and Verilog HDL. In the meantime,
there are several HLLs available, e.g., Carte-C [11], Impulse
C [13], Handel-C [14], and Mitrion-C [15], bringing the ease
of use at the expense of efficiency.

If HDLs are used to design the bitstream, it will require
three parallel blocks to implement the matrix multiplication
example, as shown in Fig. 6.
• One block is to control the source data reading from two

memory banks saving matrix A and B. The functionality
of this block involves the generation of reading addresses
and reading commands.

• One block is to check the arrival of source data and feed
them into the multiplier and the accumulator.

• One block is to control the result data writing to another
memory bank for matrix C. The functionality of this
block involves the generation of writing addresses and
writing commands.

286 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



Fig. 7. Implement an application on SRC-6 using Carte-C.

/* Define three 2D arrays of 400x400 in three local *
* memory banks */
OBM_BANK_A_2D (A, double, 400, 400)
OBM_BANK_B_2D (B, double, 400, 400)
OBM_BANK_C_2D (C, double, 400, 400)
......
ac = 0;
for (k=0; k<400; k++) {

Multiplier(A[i][k], B[k][j], &product);
Accumulator(product, &ac);

}
C[i][j] = ac;

Fig. 8. Compute one element in matrix C using Carte-C.

On both Cray XD1 and SGI RC100 platforms, either VHDL
or Verilog can be used to generate the bitstream. In order
to reduce the complexity of communications with the local
memory, the vendor generally provides the service logic (as
shown in Fig. 2), which gives a simplified interface to access
the local memory as well as the interconnect.

On SRC-6, the vendor provides a high-level language, i.e.,
Carte-C, to implement the hardware part. Carte-C is a rich
subset of C, with non-standard extensions to control hardware
instantiation and parallelism. Each FPGA bitstream is defined
by a single Carte-C file, which is converted into HDL during
the compilation. For instance, in the case shown in Fig. 7, the
hardware part is distributed into two bitstreams, described in
two Carte-C files, i.e., cfg1.mc and cfg2.mc. A single Carte-
C file consists of multiple blocks, which are executed in
a sequence during the runtime. The Carte-C compiler will
maximize the parallelism within a single block to improve
the performance. It is difficult for the compiler to achieve
the maximum performance for complicated operations. In
this case a hand-written HDL module can be integrated into
the bitstream, leaving the main flow written in Carte-C. As
demonstrated in Fig. 7, two hardware modules are integrated
into the first bitstream file.

Fig. 8 shows a section of codes to compute one element
in the resultant matrix, in which Multiplier and Accumulator
are two pipelined HDL modules. If A, B and C are stored in
three separate memory banks, the Carte-C compiler is capable
of generating fully pipeline hardware codes for the maximum
performance.

Carte-C is a proprietary language used on the SRC-6
platform; i.e., it does not extend to other platforms. Other
HLLs can be used across different platforms. For example,
both Impulse C and Mitrion-C can be used to program Cray
XD1 and SGI RC100.

IV. DEVELOPING ELECTROMAGNETICS
APPLICATIONS ON RECONFIGURABLE

COMPUTERS
A. Background Information

Electromagnetics applications tend to be numerically in-
tensive, with most problems requiring memory intensive im-
plementations. Complex structures can be analyzed using
numerical methods by segmenting the structure into small
meshes. Often these meshes can be treated independently from
the rest of the geometry with the use of appropriate boundary
conditions. This allows analysis to be carried out in a parallel
fashion.

In terms of utilizing hardware acceleration in electromag-
netics applications, there is an increasing interest in the use
of general purpose graphics processing units [16], [17] mostly
due to their C-like implementation and relatively low cost.
The use of VLSIs has also been suggested in [18] and
[19]. However, the FPGA implementation of electromagnetics
algorithms has been very scarce due to the hardware ex-
pertise required on these platforms. One area of numerical
electromagnetics that has been investigated for the FPGA
implementation is the FDTD algorithm [20]–[23]. FDTD
expresses Maxwell’s equations in difference form and renders
itself to parallel implementation as each cell can be handled
separately from the others. A three dimensional FDTD model
on hardware has been reported in [24], where an FPGA-based
accelerator has been used in conjunction with a host PC and a
CAD interface. This algorithm has been applied to the analysis
of a Rotman lens in [25].

In the following sections we demonstrate the FPGA imple-
mentation of two applications: (i) optimization of a linear array
antenna pattern using the ant colony optimization technique,
(ii) implementation of the rigorous coupled wave analysis
algorithm. The first implementation utilizes the FPGA as the
sole processor with the CPU functionality being to call the
FPGA and retrieve the final result. The second implementation
uses a hybrid hardware/software approach where only the most
numerically intensive components of the algorithm resides on
the FPGA.

B. Ant Colony Optimization (ACO) Implementation
The utilization of FPGAs in the field of electromagnetics

was recently investigated by applying the ant colony optimiza-
tion (ACO) method in the design of phased array antennas
for multiple beam satellite communication systems [26]. In
this application, the amplitudes of the array elements were
optimized to reduce the co-channel interference in a multiple
beam satellite communication system. Potential gains in the
speed of the calculations in the order of 10,000 has been
demonstrated for the particular application. A brief overview
of the problem solved and how the FPGA was utilized is
discussed in this section.

1) ACO Algorithm: The ACO is a nature inspired optimiza-
tion algorithm that utilizes heuristic search principles carried
out simultaneously by agents and their collective intelligence.

287KILIC, HUANG: OVERVIEW OF RECONFIGURABLE COMPUTING PLATFORMS



0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Parameter 1 Parameter 2 Parameter N

Fig. 9. Path Definition in ACO.

Generate 
“random” path

Calculate the 
cost function

Update the total 
pheromone amount

Update the probability 
for each bit

Determine 
the best path 
found so far

Check for 
convergence

YESNO

STOP

FOR EACH ANT:

p0, p1

Fig. 10. Implementation of ACO on CPU - Recursive for
each ant.

The ACO mimics the behavior of ants in their search for the
shortest path between their nest and the food. Despite being
nearly blind, ants demonstrate the capability to establish the
shortest path between their nest and food. They achieve this
by depositing a chemical substance called pheromone on their
paths, which is used later on by other ants in their search
process. During this process, the most traveled path is marked
with the highest level of pheromone. This positive feedback
behavior allows more ants to choose the path with the most
pheromone amount [27]. The random search is iteratively
applied by the ants until one of the chosen paths satisfies the
required convergence criteria. The intelligence is introduced
to the random search process via the cost function, which
measures how far off an ant is from the desired solution. Since
each solution is represented by a path in ACO, the optimization
space is discretized into binary strings where a path is defined
by the choice of 1 or 0 for the bit value at each bit position
as shown in Fig. 9 [28].

Each path represents a possible solution and a number of
ants sample the solution space at each iteration. Once all
ants decide on their paths, the cost function is computed
for each path. The cost is a measure of how satisfactory a
solution is, with low cost values implying a “better” solution.
The pheromone amount to be laid on each path is inversely
proportional to the cost value associated with the path. The
probability of a zero for each bit position is then calculated
for all the ant paths as a function of the total pheromone levels
on the path as follows:

p0 =
τ0

τ0 + τ1
(1)

where τ0 and τ1 correspond to the total pheromone levels
accumulated at the bit position of interest for bit value of zero
and one, respectively. The probability for bit value of one is
then calculated as 1− p0 for each bit. A block diagram of the
algorithm is shown in Fig. 10, where each ant is processed
iteratively on a typical software implementation.

2) Application - Linear Array Optimization: The ACO
algorithm is used to optimize the radiation from a linear array.

Ant 
#j

Ant # 
j+1Ant # 

j+2Ant # 
j+3

Ant 
# M

Ant # 
j+4

FPGA

Iteration # k

CPU

YES

// //

//
Pipeline…

Parallelize…

Fig. 11. Implementation of ACO on FPGA - parallelized and
pipelined.

Nulls are placed at certain positions to reduce potential inter-
ference in a multiple beam satellite communication system.
To achieve the desired radiation, the amplitudes of the array
elements are optimized.

This implementation is unique in the sense that the FPGA
has been utilized as the sole processer for the entire implemen-
tation. This avoids any overhead of communication between
the microprocessor and the FPGA, and uses the FPGA to its
full potential. The CPU is only used to call the FPGA and
retrieve the results for processing. In short, an ACO machine
has been implemented with this application. While this enables
the ultimate parallelization and pipelining of the algorithm,
there are limitations due to the problem size that can be
handled by the particular FPGA at hand. The implementation
was carried out on the SGI Altix 450 platform utilizing the
Xilinx Virtex4LX200 FPGAs as demonstrated in Fig. 11.

Paths are produced using 8 bits for each optimization param-
eter (i.e., the amplitudes of the array elements), 40 parameters
in each ant path (i.e., the number of array elements), 40 ant
paths per iteration (i.e., 40 ants carry search for a solution
simultaneously in each iteration), and as many iterations as it
takes to converge, with an upper limit set by the user. With this
implementation, increasing the number of bits per parameter
will increase the FPGA resource requirement for this function,
but will not increase the processing time. The number of nulls
that can be achieved is also run in parallel, i.e., has no impact
on the processing time as long as there are sufficient FPGA
resources. We were able to carry out 8 bits and three nulls in
parallel at a clock rate of 100 MHz for the optimization of a
40 element array on the Altix platform.

As observed in Fig. 11, there are three major sections in the
algorithm: Path Generation, Cost Calculation and Pheromone
Update. The details of the implementation of these sections
on FPGA is given in [26].

As a test, only three null positions were required to be
below -30 dB. When the algorithm was run on a standard
PC (CPU: Intel Pentium M, 3 GHz and RAM: 1 GB) using
Matlab, the time per a single iteration took about 0.47 seconds.
The same algorithm when implemented on C and run on the
same platform ran about 53.4 times faster than the Matlab
version, roughly at 8.8 milliseconds per iteration. The VHDL
implementation on the Altix 450 system performed at 31.3

288 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



microseconds for runs after the bit loading was completed,
resulting in a factor of 15,160 in speed compared with the
Matlab implementation.

C. Rigorous Coupled Wave Analysis Implementation
The previous application was small enough to be imple-

mented fully on FPGA utilizing the platform to its full poten-
tial and achieving very promising acceleration. The ACO im-
plementation was fully optimized to achieve this kind of accel-
eration. However, increasing the number of nulls or number of
bits per variable are not feasible as the algorithm would cease
to fit on the FPGA. The problems in electromagnetics are often
complex, and require flexibility in the range of the parameters.
The second application is one such example. The Rigorous
Coupled Wave (RCW) algorithm applies to diffraction prob-
lems from multiple layers with periodic gratings. It is based on
an extension of enhanced transmittance matrix approach [29]
and adopts Lalanne’s improved eigenvalue formalism [30]. A
detailed discussion on the RCW algorithm can be found in
these references. It has been used effectively in the design of
engineered materials, such as antireflective surfaces [31]–[33].
We provide a brief overview in this section in order to describe
our motivations for the hardware implementation.

The stacked multiple layer in RCW algorithm can consist of
any number of gratings. However, all gratings must be periodic
with the same periodicity along a given direction on the plane.
The periodicity results in a spatially periodic permittivity (and
inverse permittivity) within each layer and can be represented
as a Fourier series expansion, as follows.

εl(x, y) =
∑
g,h

εl,gh exp
(
j

2πgx
Λx

+ j
2πhy
Λy

)
(2a)

ε−1
l (x, y) =

∑
g,h

Al,gh exp
(
j

2πgx
Λx

+ j
2πhy
Λy

)
(2b)

where εl,gh and Al,gh are the Fourier coefficients for the lth
layer in the stack for the permittivity and inverse permittivity
respectively. The electric field inside the layers can similarly
be expressed as a Fourier series in terms of spatial harmonics.
Maxwell’s equations for the layered structure can be written
in terms of the tangential components of the electric and
magnetic fields, resulting in a coupled equation set in (3),
where Sl represents the amplitudes of the spatial harmonics
of the electric field in the lth layer, with subscripts x and
y denoting the directions of periodicity in the plane of the
stack. The parameters B and D in (3b) are matrices given as
B = kxε

−1
l kx − I and D = kyε

−1
l ky − I .

Thus, the coupled wave equation can be solved by finding
the eigenvalues of the matrix Ωl, which is a function of the
stack properties. The rank of this matrix is M ×N , where M
and N are the number of spatial harmonics retained along the
two dimensions of periodicity in the plane of stacked layers.
Ideally an infinite number of them are needed for an exact
solution but truncation with minimal error is possible. Despite
this truncation, the rank can be in the order of magnitude
of 400 or more for a typical application of AR surface

Algorithm 1: Hessenberg Reduction
Input: A square complex matrix A with rank n
Output: The reduced Hessenberg matrix H
for k=0 to n− 3 do1.1

vk = House(Ak+1:n−1,k); /*Step 1: See Alg. 2*/1.2

Ak+1:n−1,k:n−1 =1.3
Ak+1:n−1,k:n−1 − 2vk(v∗kAk+1:n−1,k:n−1); /*Step 2:
PkAk+1:n−1,k:n−1, Pk = I − 2vkv∗k*/

A0:n−1,k+1:n−1 =1.4
A0:n−1,k+1:n−1 − 2(A0:n−1,k+1:n−1vk)v∗k ; /*Step 3:
A0:n−1,k+1:n−1Pk*/

Algorithm 2: House(x)
Input: A complex vector x
Output: The Householder vector v
α = −eiϕ‖x‖; /*ϕ is the argument of x1*/2.1

u = x− αe1 = x+ eiϕ‖x‖e1; /*e1 = [1, 0, ..., 0]T */2.2

v = u
‖u‖ ;2.3

design. Hence, the most numerically intensive component of
the RCWA algorithm is this eigenvalue computation.

1) QR Eigenvalue Algorithm: Given a square matrix A ∈
Cn×n, an eigenvalue λ and its associated eigenvector v are, by
definition, a pair obeying the relation Av = λv. Equivalently,
(A − λI)v = 0 (where I is the identity matrix), implying
det(A − λI) = 0. This determinant can be expanded into a
polynomial in λ, known as the characteristic polynomial of
A. One common method for determining the eigenvalues of a
small matrix is by finding the roots of its characteristic poly-
nomial. However, a general polynomial of order n > 4 cannot
be solved by a finite sequence of arithmetic operations and
radicals. Therefore, many numerical iterative algorithms have
been proposed [34] to solve the eigenvalue problem of high-
rank square matrices, such as Power Method, Inverse Iteration,
Jacobi Method, etc. Among these, the shifted Hessenberg QR
algorithm [35]–[37] is accepted as a practical solution adopted
in most applications to deal with general square matrices.

There are two phases in the practical QR algorithm, as
described in (4). In the first phase, the original matrix A is re-
duced to the upper Hessenberg form H using the Householder
transformation [38]. The second phase involves applying the
implicit QR iteration with shifts on the unreduced Hessenberg
matrix H until it converges to a triangular matrix, i.e., the
Schur form S. The eigenvalues of a triangular matrix are listed
on the diagonal, i.e., the ⊗s in (4), and the eigenvalue problem
is solved once this form is achieved.

2) Implementation on SGI RC100 Reconfigurable Com-
puter: The RCW algorithm in the most general sense creates
a square matrix with complex values. Both real and imaginary
parts of a matrix entry are represented in double precision (64-
bit) floating-point format. In the hardware implementation of
QR eigenvalue algorithm on FPGA device, we combine the
two physical local memory banks into a 128-bit wide logical
memory bank so that each memory entry can store one com-

289KILIC, HUANG: OVERVIEW OF RECONFIGURABLE COMPUTING PLATFORMS



[
∂2Sl,y/∂z

′2

∂2Sl,x/∂z
′2

]
= Ωl

[
Sl,y

Sl,x

]
(3a)

Ωl =
[

k2
x +D[αεl + (1− α)A−1

l ] ky{ε−1
l kx[αA−1

l + (1− α)εl]− kx}
kx{ε−1

l ky[αεl + (1− α)A−1
l ]− ky} k2

y +B[αA−1
l + (1− α)εl]

]
(3b)


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×


A

Phase 1−−−−→


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×


Hessenberg H

Phase 2−−−−→


⊗ × × × ×
0 ⊗ × × ×
0 0 ⊗ × ×
0 0 0 ⊗ ×
0 0 0 0 ⊗


Triangular S

(4)

Table 1. Calculation breakdown of iteration k in Hessenberg reduction.
Step Sub-step Calculation Number of clock cycles for computation∗

1

1.1 ‖x‖, ‖x1‖ n− k − 1

3k2 − 9nk + 6n2 − 3n− 2

1.2 x1 r + ‖x‖ cos ϕ, x1 i + ‖x‖ sin ϕ 1
1.3 ‖u‖ n− k − 1
1.4 u/‖u‖ n− k − 1
2.1 m = v∗kAk+1:n−1,k:n−1 (n− k)(n− k − 1)

2 2.2 N = vkm (n− k)(n− k − 1)
2.3 Ak+1:n−1,k:n−1 − 2N (n− k)(n− k − 1)
3.1 m′ = A0:n−1,k+1:n−1vk n(n− k − 1)

3 3.2 N ′ = m′v∗k n(n− k − 1)
3.3 A0:n−1,k+1:n−1 − 2N ′ n(n− k − 1)

∗Ignoring all latencies.

plete matrix entry. Therefore, the real part and the imaginary
part of a complex variable can be accessed simultaneously.

As described earlier, there are two phases in the QR
algorithm. These phases are implemented in two separate
FPGA configurations. The first phase, Hessenberg reduction, is
carried out by applying the Householder reflection for n − 2
iterations (see Alg. 1), where n is the rank of the original
matrix A. Each iteration comprises three steps, as shown in
Table 1. Each step further includes multiple sub-steps. In our
hardware design, Steps 1, 2 and 3 comprise 4, 3 and 3 sub-
steps, respectively. All iterations, the steps in each iteration,
and the sub-steps within every step have to be carried out
sequentially due to the data dependency among them. The
advantage of hardware implementation comes from the parallel
processing within each sub-step. For example, Sub-step 1.1
involves multiplication, addition, accumulation and square root
operation to calculate the norm of a vector. If all the basic
operators, e.g., multipliers and adders, are fully pipelined, it
will take roughly n−k−1 clock cycles to finish this sub-step
(if we ignore all potential latencies). By putting everything
together, the total number of clock cycles required to reduce a
matrix of rank n to its Hessenberg form can thus be computed
as:

n−3∑
k=0

(3k2 − 9nk + 6n2 − 3n− 2) =
5
2
n3 − 9

2
n− 11. (5)

The second phase of the QR algorithm is to convert the
upper Hessenberg matrix to its upper triangular form, which

Algorithm 3: Francis QR Step (hardware part)
Input: A square complex matrix H with rank n
Output: Matrix H
for k=0:n− 5 do3.1

vk = House(Hk+1:k+3,k);3.2

Hk+1:k+3,k:n−1 =3.3

Hk+1:k+3,k:n−1 − 2vk(v∗kHk+1:k+3,k:n−1);
H0:k+4,k+1:k+3 =3.4

H0:k+4,k+1:k+3 − 2(H0:k+4,k+1:k+3vk)v∗k;

is implemented as a hardware/software co-design (see pp. 359
in [39] for a detailed description of the algorithm). The main
step of the second phase is the Francis QR Step, in which the
most computation demanding part is implemented in hardware
as a separate FPGA configuration. Its functionality is shown
in Alg. 3. By comparing Alg. 1 and Alg. 3, it can be found
that Alg. 3 is a shrunk version of Alg. 1. In other words, the
implementation of both algorithms will share the majority of
their logic such as the floating-point operators and the control
flow. Some small modifications are required to reduce the
scope of the computation in Alg. 1 to match the functionality
of Alg. 3. In general, the computation in the Francis QR Step
is significantly less than the computation in the Hessenberg
reduction phase.

3) Results: The hardware implementation of Hessenberg
reduction occupies 56,520 (63%) slices on the target FPGA
device and runs at 100 MHz. The basic operators, i.e., mul-

290 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



Table 2. Performance improvement of Hessenberg reduction.
Matrix Computation Time (s) Speedup Matrix Computation Time (s) Speedup Matrix Computation Time (s) SpeedupRank Hardware∗ Software Rank Hardware∗ Software Rank Hardware∗ Software

20 0.007 0.062 9.4 180 0.161 428.911 2663.3 340 1.019 5476.617 5375.0
40 0.008 1.020 123.4 200 0.217 654.289 3013.0 360 1.206 6964.269 5773.9
60 0.013 5.209 410.2 220 0.285 957.911 3355.5 380 1.415 8696.029 6144.3
80 0.021 16.553 789.6 240 0.367 1358.445 3696.9 400 1.647 10717.100 6505.7

100 0.034 40.516 1184.9 260 0.464 1870.955 4035.2 420 1.904 13055.131 6858.1
120 0.054 84.318 1574.2 280 0.576 2516.849 4371.2 440 2.185 15750.099 7207.7
140 0.080 156.366 1944.8 300 0.705 3318.075 4707.9 460 2.493 18859.268 7563.6
160 0.116 267.548 2309.5 320 0.852 4293.784 5038.9 480 2.829 22393.864 7914.8

∗Including data transportation time and data processing time.

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0

4 0 0 0

8 0 0 0

1 2 0 0 0

1 6 0 0 0

2 0 0 0 0

2 4 0 0 0

Co
mp

uta
tio

n T
im

e (
s)

M a t r i x  R a n k

 S o f t w a r e
 H a r d w a r e

Fig. 12. Computation time of Hessenberg reduction.

tipliers, adders, subtractor, dividers and square rooters, are
generated using CORE Generator, which is a tool included
in the Xilinx ISE package. The rank of the object matrix is
passed to hardware design as a parameter through a register.
Before the FPGA starts processing, the original matrix as well
as its rank are transferred from host memory to FPGA local
memory. After the processing is finished, the upper Hessenberg
matrix is transferred back to host memory. We tested matrices
of different ranks and collected their corresponding hardware
computation times, as listed in Table 2 and Fig. 12. The
hardware computation time consists of both data transportation
time and data processing time. It is found that the measured
time matches the estimation using (5) in all cases.

For a comparison of acceleration over a pure software based
implementation, we coded the Hessenberg reduction phase in
C++ and ran it on a PC with Itanium 2 using a 1.6 GHz micro-
processor. The speedup between is in the order of thousands
(as shown in Fig. 12), which is mainly due to two factors. (i)
The hardware implementation is fully pipelined, which means
that multiple operations can be processed concurrently. On the
other hand, the microprocessor has to process these operations
in a sequential means. (ii) FPGA devices are equipped with
large amount of directly accessible local memory, e.g., 40
MB on Altix RASC RC100. The local memory of FPGA
devices can be compared to the L1/L2 cache of micropro-
cessors, which are much smaller in terms of capacity. As
we can see from Alg. 1, the Hessenberg reduction operation
spans on all the matrix, along both columns and rows. Since
the local memory of the FPGA device is quite large, it is
able to accommodate the whole matrix. On the other hand,

the Hessenberg reduction operation on the microprocessor is
accompanied by frequent data swapping among the L1 cache,
the L2 cache and the main memory, which contributes a lot
of overhead in the software implementation.

The hardware implementation of Alg. 3 takes almost the
same resources (i.e., 56,327 (63%) slices) on the FPGA device
and runs at the same frequency. The interface to the second
bitstream is the same as the first one. We applied the same
type of comparison between the hardware implementation and
the software version on the Francis QR Step. For a 480×480
matrix, the computation time is 0.450 s for software and
0.063 s for hardware, respectively. In other words, the hard-
ware implementation is able to outperform the corresponding
software version by 7.2 folds for those matrices we are
interested. The comparatively small performance improvement
is mainly due to the dramatic reduction of computation in
Alg. 3. For example, the computation in line 3.4 in Alg. 3
only involves 3k + 15 matrix elements. The corresponding
line (i.e., line 1.4) in Alg. 1 involves O(n2) matrix elements.
Therefore, the advantage of a deep pipeline is more evident
in the hardware implementation for Hessenberg reduction.

V. CONCLUSIONS
The potential use of FPGAs in electromagnetics has

been demonstrated in the context of two applications: (i)
the optimization of a linear array using the ant colony
optimization (ii) implementation of rigorous coupled wave
analysis method. The first application renders itself to
parellel computing as the ant colony optimization is based
on sampling of the optimization space simultaneously by a
set of “ants”. Like in many other heuristic search algorithms,
the simultaneous search is independent of each other in each
iteration while the agents gather collective intelligence. The
problem investigated was small enough to fit fully on a single
FPGA, enabling remarkable speed improvement (in the order
of 15,000). This application demonstrated the ultimate power
of FPGAs when the platform and problem are a perfect
fit. The second application involved a more challenging
task, where the FPGA was utilized as a co-processor to the
CPU, mainly carrying out the most numerically intensive
part of the algorithm. The task was the computation of
eigenvalues of a complex matrix with rank of 400 or more.
We have used the QR eigen value algorithm and implemented

291KILIC, HUANG: OVERVIEW OF RECONFIGURABLE COMPUTING PLATFORMS



the Hessenberg reduction and Francis QR methods on the
FPGA. We have observed speed improvement in the order
of thousands, with increased efficiency as the matrix rank
increases. While FPGAs are finding their way slowly in the
scientific computing area due to the challenges in being able
to implement code using hardware description languages,
their potential in providing reconfigurable parallelism make
them an attractive platform.

ACKNOWLEDGMENT
The authors would like to thank Charles Conner for the

software implementation of Hessenberg reduction and the
integration of the FPGA bitstreams into the QR algorithm.

REFERENCES
[1] J. Witzens, M. Lonc̆ar, and A. Scherer, “Self-collimation

in planar photonic crystals,” IEEE J. Sel. Topics Quantum
Electron., vol. 8, no. 6, pp. 1246–1257, Nov. 2002.

[2] S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopou-
los, “Demonstration of highly efficient waveguiding in a
photonic crystal slab at the 1.5-µm wavelength,” Optics
Letters, vol. 25, no. 17, pp. 1297–1299, Sep. 2000.

[3] M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Taka-
hashi, and I. Yokohama, “Extremely large group-velocity
dispersion of line-defect waveguides in photonic crystal
slabs,” Physical Review Letters, vol. 87, no. 25, pp.
253 902–1–253 902–4, Dec. 2001.

[4] M. Lonc̆ar, D. Nedeljkovic, T. Doll, J. Vuc̆ković,
A. Scherer, and T. P. Pearsall, “Waveguiding in pla-
nar photonic crystals,” Applied Physics Letters, vol. 77,
no. 13, pp. 1937–1939, Sep. 2000.

[5] S. John, “Strong localization of photons in certain dis-
ordered dielectric superlattices,” Physical Review Letters,
vol. 58, no. 23, pp. 2486–2489, Jun. 1987.

[6] O. Kilic and R. Dahlstrom, “Rotman lens beam formers
for army multifunction RF antenna applications,” in Proc.
IEEE AP-S International Symposium and USNC/URSI
National Radio Science Meeting, vol. 2B, pp. 43–46, Jul.
2005.

[7] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj,
V. Kindratenko, and D. Buell, “The promise of high-
performance reconfigurable computing,” IEEE Computer,
vol. 41, no. 2, pp. 78–85, Feb. 2008.

[8] http://www.xilinx.com.
[9] http://www.altera.com.
[10] Cray XD1TMFPGA Development (S-6400-14), Cray Inc.,

May 2006.
[11] SRC CarteTMC Programming Environment v2.2 Guide

(SRC-007-18), SRC Computers, Inc., Aug. 2006.
[12] Reconfigurable Application-Specific Computing User’s

Guide (007-4718-007), Silicon Graphics, Inc., Jan. 2008.
[13] Impulse C – http://www.impulsec.com, Impulse Acceler-

ated Technologies, Inc., 2009.

[14] Handel-C Language Reference Manual, Agility Design
Solutions Inc., 2007.

[15] Mitrion C – http://www.mitrionics.com, Mitrionics AB,
2009.

[16] M. J. Inman and A. Z. Elsherbeni, “Programming video
cards for computational electromagnetics applications,”
IEEE Antennas Propag. Mag., vol. 47, no. 6, pp. 71–78,
Dec. 2005.

[17] N. Takada, T. Takizawa, Z. Gong, N. Masuda, T. Ito, and
T. Shimobaba, “Fast computation of 2-D finite-difference
time-domain method using graphics processing unit with
unified shader,” IEICE Trans. Inf. Syst., vol. J91-D, no. 10,
pp. 2562–2564, 2008.

[18] J. R. Marek, M. A. Mehalic, J. Andrew, and J. Terzuoli,
“A dedicated VLSI architecture for Finite-Difference
Time Domain calculations,” in Proc. 8th ACES Confer-
ence, 1992.

[19] P. Placidi, L. Verducci, G. Matrella, L. Roselli, and
P. Ciampolini, “A custom VLSI architecture for the
solution of FDTD equations,” IEICE Transactions on
Electronics, vol. E85-C, no. 3, pp. 572–577, Mar. 2002.

[20] L. Verducci, P. Placidi, G. Matrella, L. Roselli, F. Ali-
menti, P. Ciampolini, and A. Scorzoni, “A feasibility study
about a custom hardware iplementation of the FDTD
algorithm,” in Proc. the 27th General Assembly of the
URSI, 2002.

[21] J. P. Durbano, Hardware implementation of a 1-
dimensional Finite-Difference Time-Domain algorithm
for the analysis of electromagnetic propagation.
M.E.E.Thesis, Department of Electrical and Computer
Engineering, University of Delaware, Newark, USA,
2002.

[22] J. P. Durbano, F. E. Ortiz, J. R. Humphrey, D. W.
Prather, and M. S. Mirotznik, “Implementation of three-
dimensional FPGA-based FDTD solvers: An architec-
tural overview,” in Proc. 11th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines
(FCCM03), pp. 269–270, Apr. 2003.

[23] R. N. Schneider, L. E. Turner, and M. M. Okoniewski,
“Application of FPGA technology to accelerate the
Finite-Difference Time-Domain (FDTD) method,” in
Proc. the 10th ACM International Symposium on Field-
Programmable Gate Arrays, pp. 97–105, 2002.

[24] J. P. Durbano, J. R. Humphrey, F. E. Ortiz, P. F. Curt,
D. W. Prather, and M. S. Mirotznik, “Hardware accel-
eration of the 3D finite-difference time-domain method,”
in Proc. IEEE AP-S International Symposium and US-
NC/URSI National Radio Science Meeting, pp. 77–80,
Jun. 2004.

[25] O. Kilic, M. S. Mirotznik, and J. P. Durbano, “Applica-
tion of FPGA based FDTD simulators to Rotman lenses,”
in Proc. 22nd ACES Conference, 2006.

[26] O. Kilic, “FPGA accelerated phased array design using
the ant colony optimization,” to appear in ACES Journal.

[27] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant
system: Optimization by a colony of cooperating agents,”

292 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



IEEE Trans. Syst., Man, Cybern. B, vol. 26, no. 1, pp.
29–41, Feb. 1996.

[28] T. Hiroyasu, M. Miki, Y. Ono, and Y. Minami, “Ant
colony for continuous functions,” The Science and En-
gineering Review of Doshisha University, 2000.

[29] M. G. Moharam, D. A. Pommet, E. B. Grann, and
T. K. Gaylord, “Stable implementation of the rigourous
coupled-wave analysis for surface relief gratings: en-
hanced transmittance matrix approach,” Journal of the
Optical Society of America A, vol. 12, no. 5, pp. 1077–
1086, 1995.

[30] P. Lalanne, “Improved formulation of the coupled-wave
method for two-dimensional gratings,” Journal of the
Optical Society of America A, vol. 14, no. 7, pp. 1592–
1598, 1997.

[31] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-
wave analysis of planar-grating diffraction,” Journal of the
Optical Society of America, vol. 71, no. 7, pp. 811–818,
Jul. 1981.

[32] J. M. Jarem, “Rigorous coupled wave analysis of radi-
ally and azimuthally-inhomogeneous,elliptical, cylindrical
systems,” Progress In Electromagnetics Research, PIER
34, pp. 181–237, 2001.

[33] W. Lee and F. L. Degertekin, “Rigorous coupled-wave
analysis of multilayered grating structures,” Journal of
Lightwave Technology, vol. 22, no. 10, pp. 2359–2363,
Oct. 2004.

[34] J. W. Demmel, Applied Numerical Linear Algebra.
Philadelphia, PA: Society for Industrical and Applied
Mathematics (siam), 1997.

[35] J. G. F. Francis, “The QR transformation, I,” The Com-
puter Journal, vol. 4, no. 3, pp. 265–271, 1961.

[36] ——, “The QR transformation, II,” The Computer Jour-
nal, vol. 4, no. 4, pp. 332–345, 1962.

[37] V. N. Kublanovskaya, “On some algorithms for the
solution of the complete eigenvalue problem,” USSR
Computational Mathematics and Mathematical Physics,
vol. 1, no. 3, pp. 637–657, 1963.

[38] A. S. Householder, “Unitary triangularization of a non-
symmetric matrix,” Journal of the ACM, vol. 5, no. 4, pp.
339–342, Oct. 1958.

[39] G. H. Golub and C. F. V. Loan, Matrix Computations (3rd
edition). Baltimore, MD: The John Hopkins University
Press, 1996.

Ozlem Kilic graduated from The George Washing-
ton University (1996) with a D.Sc. degree in Electri-
cal Engineering. She is presently an Assistant Pro-
fessor in the Department of Electrical Engineering
and Computer Science at The Catholic University
of America. Before joining CUA, she worked at
the U.S. Army Research Laboratories, Adelphi, MD
and COMSAT Laboratories, Clarksburg, MD. Her
research areas include computational electromagnet-
ics, hardware accelerated programming for scientific
computing, antennas and propagation, and radiation

and scattering problems from random media.

Miaoqing Huang is an Assistant Professor in the
Department of Computer Science and Computer
Engineering at University of Arkansas. His research
interests include reconfigurable computing, high-
performance computing architectures, cryptography,
computer arithmetic, and cache design in Solid-State
Drives. Huang received a B.S. degree in electronics
and information systems from Fudan University,
China in 1998, and a Ph.D. degree in computer en-
gineering from The George Washington University
in 2009, respectively. He is a member of IEEE.

293KILIC, HUANG: OVERVIEW OF RECONFIGURABLE COMPUTING PLATFORMS



Using GPUs for Accelerating Electromagnetic Simulations 
 
 

Manuel Ujaldon 
 

Department of Computer Architecture 
University of Malaga, Malaga 29071, Spain  

ujaldon@uma.es 
 
  

Abstract-  The computational power and memory 
bandwidth of graphics processing units (GPUs) 
have turned them into attractive platforms for 
general-purpose applications at significant speed 
gains versus their CPU counterparts [1]. In 
addition, an increasing number of today's state-of-
the-art supercomputers include commodity GPUs 
to bring us unprecedented levels of performance in 
terms of raw GFLOPS and GFLOPS/cost. Inspired 
by the latest trends and developments in GPUs, we 
propose a new paradigm for implementing on 
GPUs some of the major aspects of 
electromagnetic simulations, a domain 
traditionally used as a benchmark to run codes in 
some of the most expensive and powerful 
supercomputers worldwide. After reviewing 
related achievements and ongoing projects, we 
provide a guideline to exploit SIMD parallelism 
and high memory bandwidth using the CUDA 
programming model and hardware architecture 
offered by Nvidia graphics cards at an affordable 
cost. As a result, performance gains of several 
orders of magnitude can be attained versus thread-
level methods like pthreads used to run those 
simulations on emerging multicore architectures  
  
Index Terms -  Graphics processors, electro-
magnetic simulations, CUDA, GPGPU. 
 

I. INTRODUCTION 
 

Graphics processors are usually characterized 
by parallelism, pipelining and bandwidth. After 
completing a steady transition from mainframes to 
workstations to PC cards, Graphics Processing 
Units (GPUs) emerge nowadays like a solid and 
compelling alternative to traditional computing, 
delivering extremely high floating point 
performance for those applications which can be 

arranged to fit and exploit the inherent parallelism 
and high memory bandwidth [2]. The newest 
versions of programmable graphics processing 
units (GPUs) have consistently demonstrated an 
outstanding performance in many applications 
beyond graphics, including data mining [3,4], 
computer vision [5], signal and image processing 
and segmentation [6,7,8], numerical methods [9], 
and assorted simulations [10,11,12]. 

This fact has attracted many other researchers 
and encouraged the use of GPUs in a broader 
range of applications, where developers will need 
to leverage this technology with new programming 
models which ease the developer's task of writing 
programs to run efficiently on GPUs. Nvidia and 
ATI/AMD, manufacturers of the popular GeForce 
and Radeon sagas of graphics cards, have released 
software components which provide simpler 
access to GPU computing power than that realized 
by treating the GPU as a traditional graphics 
processor. CUDA (Compute Unified Device 
Architecture) [13] is Nvidia's solution as a simple 
block-based API for programming; AMD's 
alternative is called Stream Computing and 
includes technologies such as the Brook+ compiler 
[14] and the Compute Abstraction Layer, both of 
which allow the developer to work in a high-level 
language which abstracts away GPUs' specifics. 
Those companies have also developed hardware 
products aimed specifically at the General Purpose 
GPU (GPGPU) computing market: The Tesla 
products [15] are from Nvidia, and Firestream [16] 
is AMD's product line. 

Between Stream Computing and CUDA, we 
chose the latter to program the GPU for being 
more popular and providing more mechanisms to 
optimize general-purpose applications which do 
not entirely fit into the more traditional graphics 
processing paradigm. More recently, Apple's 
OpenCL framework [17] emerges as an attempt to 

294

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



unify those two models with a superset of features, 
but since it is closer to CUDA and inherits most of 
its mechanisms, we are confident on an eventual 
portability for the methods described throughout 
this paper without loss of generality. 

Novel scientific applications are good 
candidates to take the opportunity offered by 
CUDA and counterparts (see Fig. 1), and 
electromagnetic simulations is clearly one of them 
for three primary reasons:  
1. This field has traditionally proven to be of great 
success for GPUs during its evolution towards 
high-performance general-purpose computing.  
2. The increasing complexity of recent electro-
magnetic algorithms has made simulation part of 
the workflow in both academia and industry to be 
very computationally demanding.  
3. Traditional architectures reveal themselves as 
inefficient solutions for this class of applications. 

Electromagnetic simulations are memory 
intensive applications containing assorted access 
patterns where memory optimizations play a 
primary role. Fortunately, CUDA provides a set of 
powerful low-level mechanisms for controlling the 
use of memory and the behavior of its hierarchy. 
This affects performance severely at the expense 
of a considerable programming effort, which we 
describe throughout this paper.  

The rest of the paper is organized as follows. 
Section II reviews the most recent results obtained 
by GPUs on electromagnetic simulations. Section 
III focuses on the specifics of the GPU 
programming with CUDA, and Section IV 
describes optimization strategies particularly 
oriented to simulation codes. Section V concludes. 
 
II. THE GPU ON ELECTROMAGNETIC 

SIMULATIONS 
 
A. Related Work 

Over the past few decades, the increase of 
overall computing power coupled with the 
maturation of many electromagnetic algorithms 
has produced a blooming on the simulation side. 
Many explorations focused on 2D first, were later 
extended to 3D, and even were modeled as so-
called 2.5D problems. 

In response to that evolution, a number of 
approaches to hardware acceleration of electro-
magnetic simulations have been investigated in the 

past five years. Those approaches can be classified 
into two main categories: 
1. Stand-alone computing devices like ASICS, 
which represent the highest achievable 
acceleration but quickly becomes too expensive 
due to the massive hardware required. 
2. Co-processors with their own memory and 
connected to a host PC via an input/output bus or 
socket interface. Within this category, we may 
find Field Programmable Gate Arrays (FPGAs) 
[18] and Graphics Processing Units (GPUs) [19]. 

GPUs stand out in a unique way from all these 
innovative solutions because they are produced as 
commodity processors and their floating point 
performance has significantly outpaced that of any 
other processor. In addition, GPUs have become 
easier to program, which allows developers to 
effectively exploit their computational power. 

Modern GPUs have been at the leading edge 
of increasing chip-level parallelism over the past 
five years. Scaling from 8 to 240 processors in the 
most popular saga of Nvidia GPUs, they have 
completed a steady transition from multi-core to 
many-core processors. The high degree of 
parallelism achieved, combined with their wide 
availability and affordable budget, has ultimately 
confirmed GPUs as a popular platform among 
universities and students to run computationally 
expensive simulations [1]. 

More recently, several companies that supply 
leading edge electromagnetic simulation software 
have joined this movement to ease code transition 
to the GPU for all kind of users belonging to this 
area regardless of their programming skills. Some 
illustrative examples are Acceleware and CST, 
which have announced a new GPU-based solution 
for accelerating lengthy electromagnetic design 
simulations, reporting performance gains of up to 
40% compared to previous products [20,21]. This 
software uses CUDA, a programming interface 
particularly designed to solve complex 
computational general-purpose problems, which 
we describe later in Section III. Large corporations 
and research institutions have also been able to tap 
into clusters of GPUs for large scale simulations 
[22], enabling a step forward in performance while 
maintaining a limited budget. This way, the GPU 
technology aspires to have a tremendous impact 
on engineering electromagnetic education, as 
universities and research centers worldwide will 
be able to simulate realistic problems with 

295UJALDON: USING GPUS FOR ACCELERATING ELECROMAGNETIC SIMULATIONS



affordable GPU-based hardware platforms, which 
will also be available to students on their own 
personal computers. 

Successful implementations of electro-
magnetic algorithms on GPUs can be seen as the 
key for the integration of simulators into design 
and optimization tools [23]. The GPU power may 
be combined here with the development of 
behavioral models and multi-grid, graded mesh 
and multi-resolution techniques for boosting the 
performance of electromagnetic simulations. 

 

 
 

Fig. 1. An overview of general purpose 
applications evaluated by GPU 
performance according to two major 
features: Amount of parallelism 
extracted (on X axis) and memory 
bandwidth exploitation (on Y axis). 

 
B. Characterization 

The GPU has been extensively used in 
scientific computing over the past five years, but 
the degree of success has been different depending 
on algorithm features and how they meet GPU 
hardware idiosyncrasies. Nvidia [13,24] has 
reported a list of illustrative examples. Just to 
mention a few involving simulations, we have: 
molecular dynamics (36x), fluid dynamics (17x), 
multi-fluid (50x), astrophysics (100x), multi-body 
mechanical (13x), financial (149x), oil and gas 
(18x), DNA and liquids (18x), and interactive 
visualization of volumes (146x). 

In general, expectations for a particular 
algorithm to reach certain levels of speedup factor 
when running on GPUs depend on a number of 
features which conform a list of requirements to be 
fulfilled. From less to more important, we have: 
1. Small local data requirements (memory and 
registers). 

2. Stream computing (non-recursive algorithms). 
3. Arithmetic intensity (high data reuse). 
4. Bandwidth (fast data movement). 
5. Data parallelism (data independency). 

The two key factors are analyzed in Fig. 1, 
where some of the most popular applications are 
placed in conjunction with electromagnetic 
simulations to quantify the memory bandwidth and 
data parallelism each algorithm can benefit from. 
This gives us an estimation about how successfully 
each code can run on GPU platforms. 

 
C. Upsides 

Simulations usually consists of a mixture of 
fundamentally serial control logic and inherently 
parallel computation. Furthermore, those 
computations are often data-parallel in nature, 
which matches the programming model that CUDA 
adopts (see Section III-B), basically a sequential 
control thread capable of launching a series of 
parallel kernels. This makes it relatively easy to 
parallelize an application's individual components 
as kernels, rather than requiring a wholesale 
rewriting of the entire application. 

In our case of a typical electromagnetic 
simulation, the same executable is invoked multiple 
times on each parallel processor by a job-queuing 
algorithm and the results are then reassembled. This 
constitutes an embarrassingly parallel computing 
model, as it does not require much internode 
communication or global data sharing. 
Electromagnetic computations are in fact very close 
to graphics processing in this respect: Million of 
operations can be performed in parallel exhibiting a 
speed which can reach up to two orders of 
magnitude when compared to the computational 
power shown on typical quad-core CPUs. 

On the other hand, simulations often deal with a 
large amount of data, which are responsible for the 
realism and accuracy of the simulated physics. 
GPUs reach data bandwidth with video memory 
around ten times higher than CPUs with main 
memory, and because of the way data is transferred, 
regular access patterns in the code behave better 
when running on GPUs. 

A third issue is also worth mentioning: 
Arithmetic intensity. Electromagnetic simulations 
usually require the computation of complex 
mathematical formulas, which are efficiently 
mapped to the GPU platform due to the presence of 

296 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



those units devoted to a typical graphics rendering. 
Moreover, newer generations of GPUs like GeForce 
Series 8 include internally a powerful co-processor 
devoted to the computational physics required in 
many realistic animation and effects. Such co-
processor, called PhysX [25], was originally 
invented by Ageia, whose design was inspired in 
those we found in GPUs for building arithmetic 
units and massively parallelism. 

Finally, we leave on the CPU those parts of our 
simulation that do not have high arithmetic intensity 
or do not expose substantial amounts of data or  
thread-level parallelism. This way, that tough part 
of our application remains unchanged and can 
benefit from overlapping computations on a bi-
processor CPU-GPU platform. 
 
D. Downsides 

For the GPU to succeed as the favourite 
platform to run electromagnetic simulations in the 
future, we still envision two main challenges in the 
horizon: Accuracy and memory capacity. 
Accuracy. The lack of 32-bit floating-point 
precision was a major drawback in many 
application areas during the first half of this decade. 
Starting in 2008 with the GT 200 series from 
Nvidia, the situation has reversed and all major 
GPU vendors now offer 64-bit massively parallel 
hardware which will further enhance modelling and 
simulation capabilities. For example, the Tesla 
T10P GPU from Nvidia provides full IEEE 
rounding, fused multiply-add, and denormalized 
number support for double precision.  
      The problem arises when you look at execution 
times, since in most cases performance drops from 
five to ten times when you migrate your algorithm 
from single to double precision. This is mainly due 
to the reduced degree of parallelism we can exploit 
in the architecture, as usually the ratio of single to 
double precision floating-point arithmetic units 
available in a typical GPU is four to one or even 
eight to one. In the past, the primary argument for 
not to overcome this lack was that classical 
rendering did not require such enhancement. With 
the recent movements towards general-purpose 
GPU-like architectures,  double precision floating-
point will be offered at a much lighter performance 
penalty as more applications demand it. 
 
 

E. Memory size 
    Some of the large scale simulations are not 
necessary complicated in nature, but they require a 
large amount of memory space. For example, 
modelling of the near electromagnetic fields around 
antennas fall into this category, and more in general, 
field and signal analysis for high-speed electronic 
circuits and systems has become increasingly 
difficult due to the complexity of new electronic 
devices. GPU memory has progressed at a higher 
speed rate than the CPU counterpart over the last 
decade, and GDDR5, the video memory currently 
available, keeps consistently two generations ahead 
versus CPU DDR3 memory placed on the 
mainboard. But when it comes to capacity, the 
reduced form factor (size) of the graphics card in 
conjunction with its wider bus width versus the 
GPU, introduce serious routing problems which 
prevent video memory capacity from growing at the 
same rate. We believe that the solution to this 
problem lies more in the software layer, particularly 
in programmer's hands, who has to be able to 
partition data efficiently and ultimately perform 
computations through a blocking strategy to 
overcome memory constraints. 
 

III. CUDA 
 

The Compute Unified Device Architecture 
(CUDA) [13] is a programming interface and set 
of supported hardware to enable general-purpose 
computation on Nvidia GPUs. 

The CUDA programming interface is ANSI C 
extended by several keywords and constructs 
which derive into a set of C language library 
functions as a specific compiler generates the 
executable code for the GPU in conjunction with 
the counterpart version running on the CPU acting 
as a host.  

Since CUDA is particularly designed for 
generic computing, it can leverage special 
hardware features not visible to more traditional 
graphics-based GPU programming, such as small 
cache memories, explicit massive parallelism and 
lightweight context switch between threads. 
 
A. Hardware Platforms 

All the latest Nvidia developments on graphics 
hardware are compliant with CUDA: For low-end 
users and gamers, we have the GeForce series 
starting from its 8th generation; for high-end users 

297UJALDON: USING GPUS FOR ACCELERATING ELECROMAGNETIC SIMULATIONS



and professionals, the Quadro FX 5600/4600 
series; for general-purpose computing, the Tesla 
boards. Focusing on Tesla, the C870 is an 
homogeneous CMP endowed with 128 cores and 
1.5 GB of video memory to deliver a theoretical 
peak performance of 518 GFLOPS (single 
precision), a peak on-board memory bandwidth of 
76.8 GB/s and a peak main memory bandwidth of 
4 GB/s under its PCI-express x16 interface. 

 

 
Fig. 2. The CUDA hardware interface. 

 
B. Execution Modes 

The G80 parallel architecture is a SIMD 
(Single Instruction Multiple Data) processor 
endowed with 128 cores. Cores are organized into 
16 multiprocessors, each having a large set of 
8192 registers, a 16 KB shared memory very close  
to registers in speed (both 32 bits wide), and 
constants and texture caches of a few kilobytes. 
Each multiprocessor can run a variable number of 
threads, and the local resources are divided among 
them. In any given cycle, each core in a 
multiprocessor executes the same instruction on 
different data based on its threadID, and 
communication between multiprocessors is 
performed through global memory (see Fig. 3). 

Future architectures from Nvidia will support 
the same CUDA executables, but they will be run 
faster in order to include more multiprocessors per 
die, or more cores, registers or shared memory per 
multiprocessor. For example, the GT200 
architecture contains 30 multiprocessors for a total 
of 240 cores, while registers and shared memory 
per multiprocessor remain the same. 

The CUDA programming model guides the 
programmer to expose fine-grained parallelism as 

required by massively multi-threaded GPUs, while 
at the same time providing scalability across the 
broad spectrum of physical parallelism available in 
the range of GPU devices. 

 

 
Fig. 3. The CUDA programming model.  

 
C. Memory Spaces 
      The CPU host and the GPU device maintain 
their own DRAM and address space, referred to as 
host memory and device memory (on-board 
memory). The latter can be of three different 
types. From inner to outer, we have constant 
memory, texture memory and global memory. 
They all can be read from or written to by the host 
and are persistent through the life of the 
application. Texture memory is the more versatile 
one, offering different addressing modes as well as 
data filtering for some specific data formats. 
Global memory is the actual on-board video 
memory, usually exceeding 1 GB of capacity and 
embracing GDDR3/GDDR5 technology. Constant 
memory has regular size of 64 KB and latency 
time close to a register set. Texture memory is 
cached to a few kilobytes. Global and constant 
memories are not cached at all. 
 
D. Programming Elements 
      There are some important elements involved in 
the conception of a CUDA program that are key 
for understanding the programming model as well 
as the optimizations we have carried out during the 
implementation phase. We describe them below 
and Fig. 3 summarizes their relations. 
      A program is decomposed into blocks running 
in parallel. Assembled by the developer, a block is 

298 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



a group of threads that is mapped to a single 
multiprocessor, where they can share 16 KB of 
memory (see Fig. 2). All the threads in blocks 
concurrently assigned to a single multi-processor 
divide the multiprocessor's resources equally 
amongst themselves. The data is also divided 
amongst all of the threads in SIMD fashion 
explicitly managed by the developer. 
      A warp is a collection of 32 threads that can 
physically run concurrently on all of the 
multiprocessors. The size of the warp is less than 
the total number of cores due to memory access 
limitations. The developer has the freedom to 
determine the number of threads to be executed, 
but if there are more threads than the warp size, 
they are time-shared on the actual hardware 
resources. This can be advantageous, since time-
sharing the ALU resources amongst multiple 
threads can overlap the memory latencies when 
fetching ALU operands. 
      A kernel is a code function compiled to the 
instruction set of the device, downloaded on it and 
executed by all of its threads. Threads run on 
different processors of the multiprocessors sharing 
the same executable and global address space, 
though they may not follow the same path of 
execution, since conditional execution of different 
operations on each multiprocessor can be achieved 
based on a unique threadID. Threads also work 
independently on different data according to the 
SIMD model described in Section III-B. A kernel 
is organized into a grid as a set of thread blocks. 
      A grid is a collection of all blocks in a single 
execution, explicitly defined by the application 
developer, which is assigned to a multiprocessor. 
The parameters invoking a kernel function call 
define the sizes and dimensions of the thread 
blocks in the grid thus generated, and the way 
hardware groups threads in warps affects 
performance, so it must be accounted for.  
      A thread block is a batch of threads executed 
on a single multiprocessor. They can cooperate 
together by efficiently sharing data through its 
shared memory, and synchronize their execution 
to coordinate memory accesses using the 
__syncthreads() primitive. Synchronization across 
thread blocks can only be safely accomplished by 
terminating a kernel. Each thread block has its 
own threadID, which is the number of the thread 
within a 1D, 2D or 3D array of arbitrary size. The 
use of multidimensional identifiers helps to 

simplify memory addressing when processing 
multidimensional data. Threads placed in different 
blocks from the same grid cannot communicate, 
and threads belonging to the same block must all 
share the 8K registers and 16 KB of shared 
memory on a given multiprocessor. This tradeoff 
between parallelism and thread resources must be 
wisely solved by the programmer to maximize 
performance on a certain architecture given its 
limitations. 
At the highest level, a program is decomposed into 
kernels mapped to the hardware by a grid 
composed of blocks of threads scheduled in warps.  
No inter-block communication or specific 
schedule-ordering mechanism for blocks or 
threads is provided, which guarantees each thread 
block to run on any multiprocessor, even from 
different devices, at any time.  
The number of blocks in a thread block is limited 
to 512. Therefore, blocks of equal dimension and 
size that execute the same kernel can be batched 
together into a grid of thread blocks. This comes at 
the expense of reduced thread cooperation, 
because threads in different thread blocks from the 
same grid cannot communicate and synchronize 
with each other. Again, each block is identified by 
its blockID, which is the number of the block 
within a 1D or 2D array of arbitrary size for the 
sake of a simpler addressing to memory. 
Kernel threads are extremely lightweight, i.e.  
creation overhead and context switching between 
threads and/or kernels is negligible. 

 
IV. OPTIMIZATIONS 

Once that major hardware and software 
limitations have been introduced, it becomes clear 
that managing those limits is critical when 
optimizing applications. Programmers still have a 
great degree of freedom, though side effects may 
occur when deploying strategies to avoid one 
limit, causing other limits to be hit. 

We consider two basic pillars when 
optimizing an application to run on CUDA GPUs: 
First, organize threads in blocks to maximize 
parallelism, enhance hardware occupancy and 
avoid memory banks conflicts. Second, access to 
shared memory wisely to maximize arithmetic 
intensity and reduce global memory usage. We 
address each of these issues separately now. 

 
 

299UJALDON: USING GPUS FOR ACCELERATING ELECROMAGNETIC SIMULATIONS



A. Threads Deployment 
Each multiprocessor contains 8192 registers 

which will be split evenly among all the threads of 
the blocks assigned to that multiprocessor. Hence, 
the number of registers needed in the computation 
will affect the number of threads which can be 
executed simultaneously, and the management of 
registers becomes important as a limiting factor 
for the amount of parallelism we can exploit. 

The CUDA documentation suggests a block to 
contain between 128 and 256 threads to maximize 
execution efficiency. A tool developed by Nvidia, 
the CUDA Occupancy Calculator, may also be 
used as guidance to attain this goal. For example, 
when a kernel instance consumes 16 registers, 
only 512 threads can be assigned to a single 
multiprocessor. This can be achieved by using one 
block with 512 threads, two blocks of 256 threads, 
and so on.  

We followed an iterative process to achieve 
the lowest execution time: First, the initial 
implementation was compiled using the CUDA 
compiler and a special -cubin flag that outputs the 
hardware resources (memory and registers) 
consumed by the kernel. Using these values in 
conjunction with the CUDA Occupancy 
Calculator, we were able to analytically determine 
the number of threads and blocks that were needed 
to use a multiprocessor with maximum efficiency. 

 
B. Memory Usage 

Even though video memory delivers a 
magnificent bandwidth, it is still a frequent 
candidate to hold the bottleneck when running the 
application because of its poor latency (around 
400 times slower compared to shared memory) 
and the high floating-point computation 
performance of the GPU. Attention must be paid 
to how the threads access the 16 banks of shared 
memory, since only when the data resides in 
different banks can all of the available ALU 
bandwidth truly be used. 

Each bank only supports one memory access 
at a time; simultaneous memory bank accesses are 
serialized, stalling the rest of the multiprocessor's 
running threads until their operands arrive. The 
use of shared memory is explicit within a thread, 
which allows the developer to solve bank conflicts 
wisely. Although such optimization may represent 
a daunting effort, sometimes can be very 
rewarding: Execution times may decrease by as 

much as 10x for vector operations and latency 
hiding may increase by up to 2.5x. 

Another critical issue related to memory 
performance is data coalescing. A coalesced 
access involves a contiguous region of global 
memory where the starting address must be a 
multiple of region size and the kth thread in a half-
warp must access the kth element in a block being 
read. This way, the hardware can serve completely 
two coalesced accesses per clock cycle, 
maximizing memory bandwidth, bus usage and 
throughput. It is programmer's responsibility to 
organize memory accesses in such a way, though 
CUDA has relaxed the conditions to be fulfilled 
for coalescing in their latest versions (from 
Compute Capabilities 1.2 on). 

 
V. CONCLUDING REMARKS 

We have presented the CUDA programming 
model and hardware interface as a very 
compelling alternative for high-performance 
computing when applied to electromagnetic 
simulations. Particular features of these 
simulations are identified and a number of 
techniques and optimizations are introduced to 
wrench the full performance out of the GPU 
resources for a large class of important scientific 
applications, even unveiling opportunities for 
further innovation. 

GPUs are highly scalable and become more 
valuable for general-purpose computing. We 
envision electromagnetic simulations as one of the 
most exciting fields able to benefit from GPUs in 
the future of this emerging architecture. 
Additionally, new tools like CUDA and OpenCL 
may assist non-computer scientists with a 
friendlier interface for adapting these applications 
to GPUs. This computational power may then be 
multiplied on a cluster of GPUs to enhance 
parallelism and provide even faster responses to 
electromagnetic simulations at a very low cost. 

Alternatively, we may think of a CPU-GPU 
hybrid system where an application can be 
decomposed into two parts to take advantage of 
the benefits of this bi-processor platform, and the 
programming models must evolve to include 
programming heterogeneous manycore systems 
including both CPUs and GPUs. 

GPUs will continue to adapt to the usage 
patterns of both graphics and general-purpose 
programmers, with a focus on additional processor 

300 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



cores, number of threads and memory bandwidth 
available for electromagnetic simulations. In 
addition, the programming models must evolve to 
include programming heterogeneous manycore 
systems including both CPUs and GPUs. 

 
REFERENCES 

 
[1] GPGPU, “General-purpose computation 

using graphics hardware”, 
http://www.gpgpu.org, 2009. 

[2] J. D. Owens, D. Luebke, N. Govindaraju, M. 
Harris, J. Kruger, A. E. Lefohn, and T. J. 
Purcell, “A survey of general-purpose 
computation on graphics hardware,” Journal 
of Computer Graphics Forum, vol. 26, pp. 
21–51, 2007. 

[3] S. Guha, S. Krisnan, and S. 
Venkatasubramanian, “Data visualization 
and mining using the GPU,” Tutorial at 11th 
ACM Intl. Conference on Knowledge 
Discovery and Data Mining, 2005. 

[4] N. K. Govindaraju, B. LLoyd, W. Wang, M. 
Lin, and D. Manocha, “Fast Computation of 
Database Operations Using Graphics 
Processors,” ACM SIGMOD International 
Conference on Management of Data, pp. 
215–226, 2004. 

[5] R. Yang and M. Pollefeys, “A Versatile 
Stereo Implementation on Commodity 
Graphics Hardware”, Real Time Imaging, 
vol. 11, no. 1, pp. 7–18, February 2005. 

[6] T. Sumanaweera and D. Liu, “Medical 
Image Reconstruction with the FFT,” GPU 
Gems, March 2004. 

[7] I. Viola, A. Kanitsar, and M. E. Groller, 
“Hardware Based Nonlinear Filtering and 
Segmentation Using High-Level Shading 
Languages,” IEEE Visualization, pp. 309–
316, October 2003. 

[8] M. Hadwiger, C. Langer, H. Scharsach, and 
K. Buhler, “State of the art report on GPU-
based segmentation,” VRVis Research 
Center, Tech. Rep. TR-VRVIS-2004-17, 
2004. 

[9] W. Wu and P. Heng, “A hybrid condensed 
finite element model with GPU acceleration 
for interactive 3D soft tissue cutting: 
Research articles”, Computer Animation and 
Virtual Worlds, vol. 15, no. 3-4, pp. 219–
227, 2004. 

[10] M. Harris, “Fast Fluid Dynamics Simulation 
on the GPU,” GPU Gems, 2004. 

[11] P. Sander, N. Tartachuk, and J. L. Mitchell, 
“Explicit Early-Z Culling for Efficient Fluid 
Flow Simulation and Rendering”,  ATI 
Research Journal Technical Report, August 
2004. 

[12] Y. Zhao, Y. Han, Z. Fan, F. Qiu, Y. Kuo, 
Kaufman, and K. A., Mueller, “Visual 
simulation of heat shimmering and mirage,” 
IEEE Trans. on Visualization and Computer 
Graphics, vol. 13, no. 1, pp. 179–189, 2007. 

[13] CUDA, “Home page maintained by Nvidia” 
http://developer.nvidia.com/object/cuda.html. 

[14] Brook+, “Web Page maintained by AMD”, 
http://ati.amd.com/technology/streamcomputi
ng/AMD-Brookplus.pdf, 2009. 

[15] “Nvidia Tesla GPU computing solutions for 
HPC” http://www.nvidia.com/object/tesla_ 
computing_ solutions.html, 2009. 

[16] Firestream, “AMD Stream Computing”, 
http://ati.amd.com/technology/streamcomputi
ng. 

[17] T. K. Group, “The OpenCL Core API 
Specification, Headers and Documentation,” 
http://www.khronos.org/registry/cl, 2009. 

[18] E. Kelmelis, J. Durbano, P. Curt, and J. 
Zhang, “Field-programmable gate array 
accelerates FDTD calculations,” Laser Focus 
World, September 2006. 

[19] S.E. Krakiwsky, L.E. Turner, M.M. 
Okoniewski“, Acceleration of finite-
difference time-domain (FDTD) using 
graphics processing units (GPU),” IEEE 
MTT- S Int. Conference, June 2004. 

[20] http://www.acceleware.com/em 
[21] http://www.cst.com/  
[22] T. Hartley, U. Catalyurek, A. Ruiz, M. 

Ujaldon, F. Igual, and R. Mayo“, 
“Biomedical Image Analysis on a 
Cooperative Cluster of GPUs and 
Multicores,” 22nd ACM Intl. Conf. on 
Supercomputing, 2008. 

[23] P. So, “EM-based simulation tools for signal 
and systems analysis”, International 
Symposium on Signals, Systems and 
Electronics, August 2007. 

[24] M. Harris, “Manycore parallel computing 
with CUDA”, Keynote Session at the 22nd 
ACM Intl. Conference on Supercomputing, 
June 2008. 

301UJALDON: USING GPUS FOR ACCELERATING ELECROMAGNETIC SIMULATIONS



[25] Ageia, “The PhysX co-processor”, 
http://www.nvidia.com/object/nvidia_physx.
html. 

[26] T. R. Halffill, “Parallel Processing with 
CUDA”, MicroProcessor Report Online, 
January 2008.  

[27]  Nvidia Compute Unified Device 
Architecture (CUDA) Programming Guide 
v. 1.1, Nov. 2007. 

[28]  Nvidia CUDA CUBLAS Library v. 1.1, Sep. 
2007. 

[29]  Nvidia CUDA CUFFT Library v. 1.1, Oct. 
2007. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Manuel Ujaldon received 
his B.S. degree in 
Computer Science from the 
Univ. of Granada (Spain, 
1991) and his M.S. and 
Ph.D. degrees in Computer 
Science from the Univ. of 
Malaga (Spain, 1993 and 
1996). During 1994 and 
1995 he was a Research 
Assistant in the Computer 

Architecture Dept. at the University of Malaga, 
where he became Assistant Professor in 1996 and 
Associate Professor in 1999. 
     Dr. Ujaldon was a predoctoral and postdoctoral 
researcher at the Computer Science Dept. of the 
University of Maryland (USA, 1994, 1996/97) and 
Biomedical Informatics Department of the Ohio 
State University (USA, 2003-08). 
     He has published 8 books on computer 
architecture and more than 50 papers in 
international peer-reviewed journals and 
conferences. His research interest includes 
streaming architectures as well as compiler and 
software development for running general-purpose 
scientific applications on GPUs.  

302 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



 Abstract— Recent developments in the design of 
graphics processing units (GPUs) have made it 
possible to use these devices as alternatives to 
central processor units (CPUs) and perform high 
performance scientific computing on them. 
Though several implementations of finite-
difference time-domain (FDTD) method have been 
reported, the unavailability of high level languages 
to program graphics cards had been a major 
obstacle for scientists and engineers who would 
want to develop codes for graphics cards. 
Relatively recently, compute unified device 
architecture (CUDA) development environment 
has been introduced by NVIDIA and made GPU 
computing much easier. 
 This paper presents an implementation of FDTD 
method based on CUDA. Two thread-to-cell 
mapping algorithms are presented. The details of 
the implementation are provided and strategies to 
improve the performance of the FDTD simulations 
are discussed.  
 
Index Terms—FDTD methods, parallel 
architectures, graphics processing unit (GPU) 
programming, Compute Unified Device 
Architecture (CUDA), hardware accelerated 
computing. 
 

I. INTRODUCTION 
Recent developments in the design of graphics 

processing units (GPUs) have been occurring at a 
much greater pace than with central processor 
units (CPUs) and very powerful processing units 
have been designed solely for the processing of  

computer graphics. For instance, the current 
generation of GPU based NVIDIA® Tesla™ 
C1060 Computing Processors are running at 
approximately 1.3 GHz with a 512 bit data and 
memory bandwidth of 102 GB/sec. While GPU 
clock speed seems slow compared to modern 3.8 
GHz Pentium CPU’s or 3.0 GHz Core Duo’s, 
parallelism provided by the graphics cards enables 
better efficiency in computations. Due to this 
potential in faster computations, the GPUs have 
received the attention of the scientific computing 
community. Initially these cards were designed for 
computer graphics and floating precision 
arithmetic has been sufficient for such 
applications. Due to the demand of higher 
precision arithmetic from the scientific 
community, the vendors have started to develop 
graphics cards that support double precision 
arithmetic as well, introducing a new generation of 
graphical computation cards. 

The computational electromagnetics community 
as well has started to utilize the computational 
power of graphics cards, and in particular, several 
implementations of finite-difference time-domain 
(FDTD) [1]-[3] method have been reported [4]-
[24]. Initially the GPUs were not designed for 
general purpose programming and high level 
programming languages were not conveniently 
available; programmers were required to learn the 
intricacies of specialized low-level hardware 
languages. For instance, the FDTD 
implementations in [4], [5] and [11] are based on 
OpenGL. As a result of the need for high level 
languages a new subset language for C titled 
“Brook” has been introduced for general 

Veysel Demir1 and Atef Z. Elsherbeni2 
 

1Department of Electrical Engineering 
Northern Illinois University, DeKalb, IL 60115, USA 

demir@ceet.niu.edu 

2Department of Electrical Engineering 
The University of Mississippi, University, MS 38677, USA 

atef@olemiss.edu 

Compute Unified Device Architecture (CUDA) Based Finite-
Difference Time-Domain (FDTD) Implementation 

303

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



programming environments [25]. This subset 
negates the need for detailed low-level 
programming knowledge by introducing a few, 
relatively simple, commands in the C language. 
Brook is used as the programming language in [7]-
[10], [14]-[15] and [24]. Moreover, use of High 
Level Shader Language (HLSL) is reported in 
[16].  

Relatively recently, the introduction of the 
Compute Unified Device Architecture (CUDA) 
[26] development environment from NVIDIA 
made GPU computing much easier. CUDA is a 
general purpose parallel computing architecture. 
To program the CUDA architecture, developers 
can use C, which can then be run at great 
performance on a CUDA enabled processor. The 
CUDA architecture and its associated software 
provide a small set of extensions to standard 
programming languages, like C, that enable a 
straightforward implementation of parallel 
algorithms. With CUDA and C for CUDA, 
programmers can focus on the task of 
parallelization of the algorithms rather than 
spending time on their implementation. The CPU 
and GPU are treated as separate devices that have 
their own memory spaces. This configuration also 
allows simultaneous computation on both the CPU 
and GPU without contention for memory 
resources. CUDA-enabled GPUs have hundreds of 
cores that can collectively run thousands of 
computing threads [27]. 

CUDA has been reported as the programming 
environment for implementation of FDTD in [17]-
[18] and [20]-[22]. In [21] the use of CUDA for 
two-dimensional FDTD is presented, and its use 
for three-dimensional FDTD implementations is 
proposed. The importance of coalesced memory 
access and efficient use of shared memory is 
addressed without sufficient details. Another two-
dimensional FDTD implementation using CUDA 
has been reported in [22] and use of convolution 
perfectly matched layer (CPML) [28] boundaries 
is discussed, however no implementation details 
are provided. Some methods to improve the 
efficiency of FDTD using CUDA are presented in 
[20], which can be used as guidelines while 
programming FDTD using CUDA. The 
discussions are based on FDTD updating equations 
in its simplest form: updating equations consider 
only dielectric objects in the computation domain, 

the cell sizes are equal in x, y, and z directions, 
thus the updating equations include a single 
updating coefficient. The efficient use of shared 
memory is discussed; however the presented 
methods limit the number of threads per thread 
block to a fixed size. The coalesced memory 
access, which is a necessary condition for 
efficiency on CUDA, is inherently satisfied with 
the given examples; however its importance has 
never been mentioned.   

In this current contribution a more 
comprehensive discussion of CUDA 
implementation of FDTD is provided. The FDTD 
updating equations assume more general material 
media and different cell sizes. Strategies to 
improve the efficiency are discussed, and their 
application to unified FDTD updating equations, 
as presented in [3], is presented.  

Section II summarizes an overview of concepts 
in CUDA. Section III presents the FDTD equations 
that are considered for CUDA implementation, 
while Section IV introduces two algorithms of 
implementation. Section V reports the 
performances achieved in computation speed by 
these implementations.   

II. COMPUTE UNIFIED DEVICE 

ARCHITECTURE 
In this section, a brief description of some 

concepts in CUDA is summarized from [29] in 
order to prepare the reader for the discussions that 
follow. Then, general guidelines to improve the 
efficiency of CUDA programs, as they apply to 
FDTD method, are summarized based on [29] and 
[30]. Application of these guidelines to improve 
the efficiency of an FDTD implementation is 
discussed in the subsequent sections. 

 
A. CUDA Concepts 

A programmable graphics processor unit is 
essentially a highly parallel, multithreaded, many 
core processor. The GPU is especially well-suited 
to address problems that can be expressed as data-
parallel computations – the same program is 
executed on many data elements in parallel. FDTD 
is such an algorithm in which the same 
computation is performed on all field components 
in the cells of a computation domain.  

304 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



CUDA is a general purpose parallel computing 
architecture with a new parallel programming 
model and instruction set architecture. C for 
CUDA extends C by allowing the programmer to 
define C functions, called kernels, that, when 
called, are executed N times in parallel by N 
different CUDA threads, as opposed to only once 
like regular C functions. Each of the threads that 
execute a kernel is given a unique thread ID that is 
accessible within the kernel through the built-in 
threadIdx variable. For convenience, 
threadIdx is a 3-component vector, so that 
threads can be identified using a one-dimensional, 
two-dimensional, or three-dimensional thread 
index, forming a one-dimensional, two-
dimensional, or three-dimensional thread block. A 
kernel function can be executed by multiple 
equally-shaped thread blocks, so that the total 
number of threads is equal to the number of 
threads per block times the number of blocks. 
These multiple blocks are organized into a one-
dimensional or two-dimensional grid of thread 
blocks. Each block within the grid can be 
identified by a one-dimensional or two-
dimensional index accessible within the kernel 
through the built-in blockIdx variable. The 
dimension of the thread block is accessible within 
the kernel through the built-in blockDim 
variable.  

CUDA threads may access data from multiple 
memory spaces during their execution. Each thread 
has a private local memory and a shared memory 
visible to all threads of the block and with the 
same lifetime as the block. Finally, all threads 
have access to the same global memory. Global 
memory is the main memory space on the device 
to store the application data. However, data access 
to global memory is very small and that 
inefficiency becomes the main bottleneck in the 
execution of a kernel. On the other hand the shared 
memory is much faster to access but the size of the 
shared memory is very limited. However, though 
very limited in size, the shared memory can 
provide the means for data reuse and improve the 
efficiency of a kernel. Constant and texture 
memory spaces are two additional read-only 
memory spaces, limited in size, accessible by all 
threads during the lifetime of the application. The 

kernels execute on a GPU that is referred to as 
device and the rest of the C program executes on a 
CPU that is referred to as host. 

 
B. Performance Optimization Strategies 

Recommendations for optimization and the list 
of best practices for programming with CUDA are 
explained in [30]. While not all of these 
recommendations are applicable to the case of 
FDTD; the following list of recommendations is 
used to optimize our FDTD implementation:   
R1) structure the algorithm in a way that exposes 

as much data parallelism as possible. Once the 
parallelism of the algorithm has been exposed, 
it needs to be mapped to the hardware as 
efficiently as possible.  

R2) ensure global memory accesses are coalesced 
whenever possible.  

R3) minimize the use of global memory. Prefer 
shared memory access where possible.  

R4) use shared memory to avoid redundant 
transfers from global memory.  

R5) hide latency arising from register 
dependencies, maintain at least 25 percent 
occupancy on devices with CUDA compute 
capability 1.1 and lower, and 18.75 percent 
occupancy on later devices.  

R6) use a multiple of 32 threads for the number of 
threads per block as this provides optimal 
computing efficiency and facilitates 
coalescing. 

 
Fig. 1. An FDTD problem space composed of cells 

[3]. 

305DEMIR, ELSHERBENI: CUDA BASED FINITE-DIFERENCE TIME-DOMAIN IMPLEMENTATION



III. THE FDTD FORMULATION 
The FDTD formulation considered for CUDA 

implementation is based on updating equations for 
general anisotropic material properties including 
arbitrary permittivity, permeability and electric 
and magnetic conductivity parameter values [3]. 
The FDTD problem domain is a rectangular 
domain composed of cells, referred to as Yee cells 
[1], as illustrated in Fig. 1. The problem space size 
is Nx Ny Nz× × , where Nx , Ny , and Nz  are 
number of cells in x, y, and z directions, 
respectively. Field components are defined at 
discrete positions on a Yee cell as shown in Fig. 2. 
The formulation in consideration assumes different 
cell sizes in x, y, and z directions in a rectangular 
grid. Thus, for instance, the equation that updates 
x-component of the magnetic field is given in [3] 
as  

( ) ( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1 1
2 2, , , , , ,

, , , , 1 , ,

, , , 1, , ,

n n

x hxh x

n n
hxey y y

n n
hxez z z

H i j k C i j k H i j k

C i j k E i j k E i j k

C i j k E i j k E i j k

+ −
=

+ + −

+ + −

, (1) 

where
1
2 ( , , )

n

xH i j k
+

is the x component of magnetic 
field in a Yee cell, shown in Fig. 2, indexed with 
( , , )i j k , and n

yE  and n
zE  are the electric field 

components. The superscripts indicate the time 
instants at which the fields are evaluated: i.e. 
superscript n indicates the field at time n t∆ , where 

t∆ is the duration of time step. hxhC , hxeyC , hxezC  are 
the coefficients used to update xH . Similarly, 
there are two other updating equations that update 

yH and zH , and moreover, there are three other 
updating equations that update electric field 
components xE , yE , and zE . A reference example 
for the update of magnetic field components when 
using the FORTRAN programming language is 
shown in Listing 1.  As shown, all field and 
coefficient parameters in this listing are three-
dimensional arrays.   
 
subroutine update_magnetic_fields 
! nx, ny, nz: number of cells in x, y, z 
directions 
 
Hx =  Chxh  *  Hx & 

+ Chxey * (Ey(:,:,2:nz+1) - Ey(:,:,1:nz)) &       
+ Chxez * (Ez(:,2:ny+1,:) - Ez(:,1:ny,:));  

                           
Hy =  Chyh  *  Hy &  

+ Chyez * (Ez(2:nx+1,:,:) - Ez(1:nx,:,:)) & 
+ Chyex * (Ex(:,:,2:nz+1) - Ex(:,:,1:nz));  

                        
Hz =  Chzh  *  Hz & 

+ Chzex * (Ex(:,2:ny+1,:) - Ex(:,1:ny,:)) & 
+ Chzey * (Ey(2:nx+1,:,:) - Ey(1:nx,:,:));  

 
end subroutine update_magnetic_fields 

 Listing 1. Fortran code to update magnetic field 
components. 

 

 
Fig. 2. Yee cell: the basic building block of an 

FDTD problem space [3]. 

IV. FDTD USING CUDA 
In our implementation, the allocation of all field 

components and the initialization of coefficient 
arrays for the FDTD problem space are coded in 
FORTAN and executed on the CPU (host). Then 
these arrays are transferred to the global memory 
of GPU and they are ready to use by the kernels 
coded in CUDA and run on GPU (device). It 
should be noted that while the arrays in 
FORTRAN are three-dimensional, these same 
arrays are stored in device (GPU) global memory 
as one-dimensional arrays and elements of these 
arrays are accessed in kernel functions in a linear 
fashion. Thus, as will be shown later, a three-
dimensional to one-dimensional index mapping is 
employed. 

This section describes our procedure for 
developing CUDA kernels.  

 
A. Achieving Parallelism 

At every time iteration of the FDTD loop new 
values of three magnetic field components are 

306 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



recalculated at every cell simultaneously using the 
past values of electric field components. Similarly, 
electric field components can be updated 
simultaneously in a separate function. Since the 
calculations for each cell can be performed 
independent from the other cells, a CUDA 
algorithm can be developed by assigning each cell 
calculation to a separate thread, and the highest 
level of parallelism can be achieved to satisfy the 
recommendation R1 that is discussed in Section II.  

In CUDA, a number of threads form a thread 
block, and a number of thread blocks form a grid. 
The maximum number of threads in a block can be 
512, where these threads can be arranged to form a 
one-dimensional, two-dimensional or three-
dimensional block. Thus a subsection of three-
dimensional problem space can be naturally 
mapped to a three-dimensional thread block. 
However, a grid (of thread blocks) can be 
composed of blocks arranged in a one-dimensional 
fashion or a two-dimensional fashion. Hence, the 
entire three-dimensional FDTD domain cannot be 
naturally mapped to a one-dimensional or two-
dimensional grid. Therefore, an alternative 
mapping between threads and FDTD domain shall 
be considered.  

In this contribution, two different approaches 
between cells and threads are presented and their 
performance comparisons are provided.  
 

 
              Fig. 3. Mapping of threads to cells of an FDTD 

domain using the xyz-mapping. 
 

In the first mapping, a thread block is 
constructed as a one-dimensional array, as shown 
on the first two lines in Listing 2, which is a piece 
of code that defines the grid and block sizes. The 

threads in this array are mapped to cells in an x-y 
plane cut of the FDTD domain. The grid of the 
thread blocks is constructed as two-dimensional as 
shown on the third and fourth lines in Listing 2. 
Then, the x dimension of the grid is mapped to x-y 
plane, and y dimension of the grid is mapped to z-
dimension of the FDTD domain. Figure 3 
illustrates the mapping of threads to an FDTD 
domain. This mapping approach ensures one-to-
one mapping between threads and cells, thus the 
highest level of parallelization is achieved. This 
mapping will be referred to as xyz-mapping in the 
following sections. 

 
block_dim_x = number_of_threads; 
block_dim_y = 1;  
n_blocks_y = nz; 
n_blocks_x = (nx*ny)/number_of_threads  

+ ((nx*ny)%number_of_threads == 0 ? 0 : 1); 

 
Listing 2. CUDA code to define block and grid 

sizes. 

 
Fig. 4. Mapping of threads to cells of an FDTD 

domain using the xy-mapping. 
 
 The second mapping is partly the same as the 
first one: a thread block is constructed as a one-
dimensional array, as shown on the first two lines 
in Listing 2, and the threads in this array are 
mapped to cells in an x-y plane cut of the FDTD 
domain as illustrated in Fig. 4. In the kernel 
function, each thread is mapped to a cell; thread 
index is mapped to i and j. Then, each thread 
traverses in the z direction in a for loop by 
incrementing k index of the cells. Field values are 
updated for each k, thus the entire FDTD domain 
is covered. As will be illustrated later, this 

307DEMIR, ELSHERBENI: CUDA BASED FINITE-DIFERENCE TIME-DOMAIN IMPLEMENTATION



algorithm helps for global memory reuse, which 
improves efficiency. For the second mapping the 
above Listing 2 code will be modified for one line 
as  
n_blocks_y = 1; 
 

 This mapping will be referred to as xy-mapping 
in the following sections. 

 
B. Coalesced Global Memory Access 

Memory instructions include any instruction that 
reads from or writes to shared, local or global 
memory. When accessing local or global memory, 
there are, 400 to 600 clock cycles of memory 
latency. Much of this global memory latency can 
be hidden by the thread scheduler if there are 
sufficient independent arithmetic instructions that 
can be issued while waiting for the global memory 
access to complete [29]. Unfortunately in FDTD 
updates the operations are dominated by memory 
accesses rather than arithmetic instruction. Hence, 
the memory access inefficiency is the bottle neck 
for the efficiency of FDTD on GPU. Global 
memory bandwidth is used most efficiently when 
the simultaneous memory accesses by threads in a 
half-warp (during the execution of a single read or 
write instruction) can be coalesced into a single 
memory transaction of 32, 64, or 128 bytes [29].  
 

 
Fig. 5. An FDTD problem space padded with 

additional cells to ensure coalesced 
memory operations. 

 
The three-dimensional field and coefficient 

arrays in FORTRAN are treated as one-
dimensional arrays in kernel functions. It should 
be noted that the first array index varies most 
rapidly in FORTRAN multi-dimensional arrays. 

As shown in Listing 1, i index varies most rapidly, 
and then j. This ordering is retained after the 
arrays are transferred to GPU. If the size of the 
three-dimensional arrays, thus the size of the 
FDTD domain in number of cells, in the x and y 
directions is a multiple of 16, then the coalesced 
memory access is ensured. In general an FDTD 
domain size would be an arbitrary number. In 
order to achieve coalesced memory access, the 
FDTD domain is extended by padded cells such 
that the number of cells in x and y directions is an 
integer multiple of 16 as in Fig 5. Although, these 
padded cells increase the amount of memory need 
to be used to store array, it improves the efficiency 
of the kernel function tremendously. Thus the 
recommendation R2 is satisfied. The modified size 
of the FDTD domain becomes Nxx Nyy Nz× × , 
where Nxx , Nyy , and Nz  are number of cells in x, 
y, and z directions, respectively.  

Since the size of the FDTD domain has changed, 
calculation of the number of blocks in Listing 2 
need to be slightly modified as  
n_blocks_x = (nxx*nyy)/ number_of_threads))  

+ ((nxx*nyy)%number_of_threads == 0 ? 0 : 1); 

   
C. Use of Shared Memory 

Because it is on-chip, the access to shared 
memory is much faster than the local and global 
memory. Parameters that reside in the shared 
memory space of a thread block have the lifetime 
of the block, and are accessible from all the 
threads within the block [29]. Therefore if a data 
block on global memory is going to be used 
frequently in a kernel, it is better to load the data 
to shared memory and reuse the data from the 
shared memory.  

Shared memory is especially useful when 
threads need to access to unaligned data. For 
instance, examining Listing 1 reveals that in order 
to calculate ( ), ,yH i j k , a thread mapped to the cell 

( ), ,i j k  needs xE and zE in ( ), ,i j k as well as xE  in 

( ), , 1i j k +  and zE in ( )1, ,i j k+ . In the kernel code 
the index of a thread is calculated as  
ci = blockIdx.x * blockDim.x + threadIdx.x; 
This thread is mapped to a cell with i and j indices 
as  
j  = ci/nxx; 
i  = ci - j*nxx; 

308 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



A cell with indices (i+1, j, k) can be accessed by 
ci+1, a cell with indices (i, j+1, k) can be 
accessed by ci+nxx, and a cell with indices (i, j, 
k+1) can be accessed by ci+nxx*nyy. Access to 
(i, j+1, k) and (i, j, k+1) are coalesced, however 
(i+1, j, k) is not. If an access to a field component 
at a neighboring cell in the x direction is needed, 
i.e. ( )1, ,zE i j k+  while calculating ( ), ,yH i j k and 

( )1, ,yE i j k+  while calculating ( ), ,zH i j k , then 
shared memory can be used to load the data block 
mapped by the thread block, and then the 
neighboring field value is accessed from the 
shared memory. At this point one needs to use the 
CUDA function __syncthreads() to ensure 
that all threads in the block are synchronized; thus 
all necessary data is loaded to the shared memory 
before it is used by the neighboring threads.  

As discussed above, uncoalesced memory 
accesses can be eliminated by using shared 
memory. However, a problem arises when 
accessing the neighboring cells’ data through 
shared memory. While loading the shared memory, 
each thread copies one element from the global 
memory to the shared memory. If the thread on the 
boundary of the thread block needs to access the 
data in the neighboring cell, this data will not be 
available since it has not been loaded to the shared 
memory. One way to overcome this problem is to 
load another set of data, which includes the 
neighboring cell’s data, to shared memory. In the 
presented implementation the size of the data 
allocation in the shared memory is extended by 16, 
and some of the threads in the thread block are 
used only to copy data from global memory to this 
extended section in the shared memory. Then, for 
instance, the piece of code that calls the kernel 
function to update magnetic field components 
would be as in Listing 3. 
 The kernel function that updates magnetic field 
components based on xyz-mapping is shown in 
Listing 4. 
 
threads = dim3(block_dim_x, block_dim_y, 1); 
grid    = dim3( n_blocks_x,  n_blocks_y, 1); 
 
shared_mem_size = 
2*sizeof(float)*number_of_threads; 
     
update_magnetic_fields_on_kernel 

<<<grid, threads, shared_memory_size>>> 

(nxx, nyy, nx, ny, nz,  
  Ex,  Ey,  Ez,    Hx, Hy, Hz,  
  Chxh,Chyh,Chzh,  Chxey,  
  Chxez,    Chyez, Chyex,  Chzex, Chzey); 
 
Listing 3. CUDA code to call kernel function for 
magnetic field updates. 
 
 
__global__ void 
update_magnetic_fields_on_kernel(int nxx, int 
nyy, int nz, float *Ex, float *Ey, float *Ez, 
float *Hx, float *Hy, float *Hz, float *Chxh, 
float *Chyh, float *Chzh, float *Chxey, float 
*Chxez, float *Chyez, float *Chyex, float 
*Chzex, float *Chzey) 
{ 
 extern __shared__ float sEyz[]; 
 float *sEy = (float*) sEyz; 
 float *sEz = (float*) &sEy[blockDim.x+16]; 
 
 // ci: cell index 
 // si: index in shared memory array 
 
 int ci = blockIdx.x * blockDim.x + 
threadIdx.x; 
 int j  = ci/nxx; 
 int i  = ci - j*nxx; 
 int si = threadIdx.x;  
 int sip1 = si+1; 
 int nxxyy = nxx*nyy; 
 int cizp; 
 int ciyp; 
 float ex; 
 
 ci = ci + blockIdx.y*nxxyy; 
 
 if (j < ny)  
  { 
   cizp = ci+nxxyy; 
   ciyp = ci+nxx; 
   ex = Ex[ci]; 
   sEz[si] = Ez[ci]; 
   sEy[si] = Ey[ci]; 
   if (threadIdx.x<16) 
   { 

sEz[blockDim.x+threadIdx.x] = 
Ez[ci+blockDim.x]; 
sEy[blockDim.x+threadIdx.x] = 
Ey[ci+blockDim.x]; 
} 

   __syncthreads(); 
 
   Hx[ci] = Chxh[ci] *  Hx[ci] 
      + Chxey[ci] * (Ey[cizp]-Ey[ci])  
      + Chxez[ci] * (Ez[ciyp]-sEz[si]);  
 
   Hy[ci] = Chyh[ci] *  Hy[ci] 

+ Chyez[ci] * (sEz[sip1]-sEz[si])  
      + Chyex[ci] * ( Ex[cizp]-ex);      
 
   Hz[ci] = Chzh[ci] *  Hz[ci] 
      + Chzex[ci] * (Ex[ciyp]-ex)   
      + Chzey[ci] * (sEy[sip1]-sEy[si]);  
 } 
} 

 
Listing 4. CUDA code to update magnetic field 
components based on xyz-mapping. 
 
 

309DEMIR, ELSHERBENI: CUDA BASED FINITE-DIFERENCE TIME-DOMAIN IMPLEMENTATION



D. Data Reuse 
As discussed above, the global memory access 

affects the performance of a CUDA program 
significantly. Therefore, data transfers from and to 
the global memory should be avoided as much as 
possible. It may even be better to recalculate some 
data instead of recalling the data from global 
memory. If some data is already transferred from 
the global memory and it is available, it is better to 
use it as many times as possible. As can be 
observed from Listing 1, such data reuse is 
possible in an FDTD algorithm: while calculating 

( ), ,xH i j k  and ( ), ,yH i j k , ( ), , 1yE i j k + and 

( ), , 1xE i j k +  are used and the values of these 
components are ready in the registers of the thread. 
If one increments the k index by one, these values 
will be reused to calculate ( ), , 1xH i j k +  and 

( ), , 1yH i j k + . Therefore, a kernel function can be 
constructed based on the xy-mapping in which 
each thread traverses in the z direction in a for 
loop by incrementing k index of the cells. A kernel 
function based on xy-mapping can be coded as 
shown in Listing 5. 
 
__global__ void 
update_magnetic_fields_on_kernel(int nxx, int 
nyy, int nx, int ny, int nz,  float *Ex, float 
*Ey, float *Ez, float *Hx, float *Hy, float 
*Hz, float *Chxh, float *Chyh, float *Chzh, 
float *Chxey, float *Chxez, float *Chyez, float 
*Chyex, float *Chzex, float *Chzey) 
{ 
 extern __shared__ float sEyz[]; 
 float *sEy = (float*) sEyz; 
 float *sEz = (float*) &sEy[blockDim.x+16]; 
 
 int ci = blockIdx.x * blockDim.x + 
threadIdx.x; 
 int j  = ci/nxx; 
 int i  = ci - j*nxx; 
 int si = threadIdx.x;  
 int sip1 = si+1; 

int nxxyy = nxx*nyy; 
 int cizp; 
 int cipnxx; 
 float ey, eyzp; 
 float ex, exzp; 
 
 if (j < ny)  
 { 
  ey = Ey[ci]; 
  ex = Ex[ci]; 
  for (int k=0;k<nz;k++) 
  { 
   cizp   = ci + nxxyy; 
   exzp   = Ex[cizp]; 
   eyzp   = Ey[cizp]; 
   sEz[si]  = Ez[ci]; 
   if (threadIdx.x<16) 
   { 

sEz[blockDim.x+threadIdx.x] = 
Ez[ci+blockDim.x]; 

   } 
   __syncthreads(); 
 
   Hx[ci] = Chxh[ci]*Hx[ci] 
      + Chxey[ci]*(eyzp-ey)  
      + Chxez[ci]*(Ez[ci+nxx]-sEz[si]);  
 
   Hy[ci] = Chyh[ci] * Hy[ci] 
      + Chyez[ci] * (sEz[sip1]-sEz[si])  
      + Chyex[ci] * (exzp-ex);      
 
   sEy[si] = ey; 
   if (threadIdx.x<16) 
   { 

sEy[blockDim.x+threadIdx.x] = 
Ey[ci+blockDim.x]; 

   } 
   __syncthreads(); 
   Hz[ci] = Chzh[ci] * Hz[ci] 
      + Chzex[ci] * (Ex[ci+nxx]-ex)   
      + Chzey[ci] * (sEy[sip1]-sEy[si]);  
 
   ci = cizp; 
   ey = eyzp;  
   ex = exzp; 
  } 
 } 
} 

 
Listing 5. CUDA code to update magnetic field 

components based on xy-mapping. 
 
 At this point it should be noted that although the 
electric field updating equations are the same in 
form as the magnetic field updating equations, the 
implementation of kernels for electric field 
updates will be slightly different than those shown 
in Listings 4 and 5. The indices of the electric and 
magnetic field components adjacent to the FDTD 
domain boundaries and need to be updated are 
different as discussed in [3], and this difference 
need to be accounted for in the kernel 
implementations. Thus the implementations and 
also the performances of these kernels are slightly 
different.  
 
E. Optimization of Number of Threads 
 As pointed out in recommendations R5 and R6, 
occupancy of the microprocessors and number of 
threads in a block are two other important 
parameters that affect the performance of a CUDA 
program. Number of threads and occupancy are 
tightly connected. It is possible to set the number 
of threads as a desired value while it may not be 
possible to control the occupancy; it is a function 
of number of threads, number of registers used in 
the kernel, amount of shared memory used by the 

310 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



kernel, compute capability of the device, etc. A 
good practice is to optimize the number of threads 
while keeping the occupancy a reasonable value.  

In order to determine optimum number of 
threads CUDA Visual Profiler is used: the kernel 
functions that update the electric and magnetic 
field components are run using different values of 
number of threads per block for both the xyz-
mapping and xy-mapping algorithms, and the cpu 
times are recorded as they are captured by the 
CUDA Visual Profiler. For this test, an FDTD 
domain with size of 8 million cells 
(200 200 200)× ×  is used. The result of the 
parameter sweep is shown in Fig. 6. It is found that 
for the magnetic field updates using xy-mapping 
algorithm performs the best with 512 threads per 
block, while electric field updates performs best 
with 128 threads per block. For the xyz-mapping 
both electric and magnetic field updates perform 
the best with 64 threads per block. These numbers 
are used in the subsequent performance analysis 
tests. From the figure it can be noticed that xy-
mapping algorithm is faster than the xyz-mapping 
algorithm.  

One can notice in Fig. 6 that, the cpu time is not 
shown for 448 and 512 number of threads for the 
electric field kernel using the xy-mapping. The 
number of registers for this kernel is 37 and 
occupancy becomes zero for large number of 
threads. Hence, the kernel cannot be run with 448 
or 512 threads per block. 

 

 
 

Fig. 6. CPU time versus number of threads per 
block.  

V. PERFORMANCE ANALYSIS 

The performance of the developed CUDA code 
for a general FDTD method as described before is 
examined as a function of problem size for both 
the xy-mapping and xyz-mapping algorithms. The 
analysis is performed on an NVIDIA® Tesla™ 
C1060 Computing Processor installed on a 64 bit 
Windows XP computer. This card has 240 
streaming processor cores operating at 1.3 GHz. 
Size of a cubic FDTD problem domain has been 
swept and the number of million cells per second 
(NMCPS) processed is calculated as a measure of 
the performance of the CUDA program. Number 
of million cells is calculated as [20]    

        610steps

s

n Nx Ny Nz
NMCPS

t
−× × ×

= × ,     (2) 

where stepsn is the number of time steps the program 
has been run and st is the total time of program run 
in seconds. The result of the analysis is shown in 
Fig. 7. It can be observed that the xy-mapping 
algorithm processes about 450 million cells per 
second on the average while xyz-mapping 
algorithm processes 400 million cells per second.  

 

 
Fig. 7. Algorithm speed versus problem size. 

VI. CONCLUSION 
A CUDA implementation of FDTD method is 

presented in this contribution. The FDTD 
formulation considered is for general dielectric 
media and conductive media and does not assume 
the same cell sizes in x, y, and z directions. Two 
thread-to-cell mapping algorithms are discussed 
and it is shown that the so referred to as xy-

311DEMIR, ELSHERBENI: CUDA BASED FINITE-DIFERENCE TIME-DOMAIN IMPLEMENTATION



mapping algorithm is better in terms of 
performance.   

It should also be noted that each cell in the 
FDTD problem space can have a different 
material. If a limited number of materials are 
considered, the presented codes can be revised 
based on material indexed FDTD formulation, thus 
GPU constant memory space, which is faster than 
the global memory, can be utilized and a faster 
CUDA implementation for these FDTD 
formulations can be achieved.    

REFERENCES 
[1] K. S. Yee, “Numerical Solution of Inital 

Boundary Value Problems Involving 
Maxwell's Equations in Isotropic Media,” 
IEEE Transactions on Antennas and 
Propagation, vol. 14, pp. 302–307, May 
1966. 

[2] A. Taflove and S. C. Hagness, Computational 
Electrodynamics: The Finite-Difference 
Time-Domain Method, 3rd edition, Artech 
House, 2005. 

[3] A. Elsherbeni and V. Demir, “The Finite 
Difference Time Domain Method for 
Electromagnetics: With MATLAB 
Simulations,” SciTech Publishing, 2009. 

[4] S. E. Krakiwsky, L. E. Turner, and M. M. 
Okoniewski, “Graphics Processor Unit (GPU) 
Acceleration of Finite-Difference Time-
Domain (FDTD) Algorithm,” Proc. 2004 
International Symposium on Circuits and 
Systems, vol. 5, pp. V-265–V-268, May 2004. 

[5] S. E. Krakiwsky, L. E. Turner, and M. M. 
Okoniewski, “Acceleration of Finite-
Difference Time-Domain (FDTD) Using 
Graphics Processor Units (GPU),” 2004 IEEE 
MTT-S International Microwave Symposium 
Digest, vol. 2, pp. 1033–1036, June 2004.  

[6] R. Schneider, S. Krakiwsky, L. Turner, and 
M. Okoniewski, “Advances in Hardware 
Acceleration for FDTD,” Ch. 20 in 
Computational Electrodynamics: The Finite-
Difference Time-Domain Method,  3rd 
edition, Artech House, 2005. 

[7] M. J. Inman, A. Z. Elsherbeni, and C. E. 
Smith “GPU Programming for FDTD 
Calculations,” The Applied Computational 

Electromagnetics Society (ACES) Conference, 
2005. 

[8] M. J. Inman and A. Z. Elsherbeni, 
“Programming Video Cards for 
Computational Electromagnetics 
Applications,” IEEE Antennas and 
Propagation Magazine, vol. 47, no. 6, pp. 71–
78, Dec. 2005. 

[9] M. J. Inman and A. Z. Elsherbeni, 
“Acceleration of Field Computations Using 
Graphical Processing Units,” The Twelfth 
Biennial IEEE Conference on 
Electromagnetic Field Computation CEFC 
2006, April 30 - May 3, 2006. 

[10] M. J. Inman, A. Z. Elsherbeni, J. G. Maloney, 
and B. N. Baker, “Practical Implementation of 
a CPML Absorbing Boundary for GPU 
Accelerated FDTD Technique,” The 23rd 
Annual Review of Progress in Applied 
Computational Electromagnetics Society, 19-
23 March 2007. 

[11] S. Adams, J. Payne, and R. Boppana, “Finite 
Difference Time Domain (FDTD) 
Simulations Using Graphics Processors,” 
Proceedings of the 2007 DoD High 
Performance Computing Modernization 
Program Users Group (HPCMP) Conference, 
pp. 334–338, 2007. 

[12] D. K. Price, J. R. Humphrey, and E. J. 
Kelmelis, “GPU-based Accelerated 2D and 
3D FDTD Solvers,” in Physics and 
Simulation of Optoelectronic Devices XV, of 
Proceedings of SPIE, vol. 6468, Jan. 2007.  

[13] D. K. Price, J. R. Humphrey, and E. J. 
Kelmelis, “Accelerated Simulators for Nano-
Photonic Devices,” International Conference 
on Numerical Simulation of Optoelectronic 
Devices 2007, pp. 103–104, Sept. 2007. 

[14] M. Inman, A. Elsherbeni, J. Maloney, and B. 
Baker, “Practical Implementation of a CPML 
Absorbing Boundary for GPU Accelerated 
FDTD Technique,” Applied Computational 
Electromagnetics Society Journal, vol. 23, no. 
1, pp. 16–22, 2008. 

[15] M. J. Inman and A. Z. Elsherbeni, 
“Optimization and parameter exploration 
using GPU based FDTD solvers,” IEEE MTT-
S International Microwave Symposium 
Digest, pp. 149-152, June 2008. 

312 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



[16] N. Takada, N. Masuda, T. Tanaka, Y. Abe, 
and T. Ito, “A GPU Implementation of the 2-
D Finite-Difference Time-Domain Code 
Using High Level Shader Language,” Applied 
Computational Electromagnetics Society 
Journal, vol. 23, no. 4, pp. 309–316, 2008. 

[17] A. Valcarce, G. de la Roche, and J. Zhang, “A 
GPU Approach to FDTD for Radio Coverage 
Prediction,” Proceedings of the 11th IEEE 
Singapore International Conference on 
Communication Systems (ICCS '08), pp. 
1585–1590, Nov. 2008.  

[18] P. Sypek and M. Michal, “Optimization of a 
FDTD Code for Graphical Processing Units,” 
17th International Conference on Microwaves, 
Radar and Wireless Communications 
(MIKON), pp. 1–3, May 2008. 

[19] A. Balevic, L. Rockstroh, A. Tausendfreund, 
S. Patzelt, G. Goch, and S. Simon, 
“Accelerating Simulations of Light Scattering 
Based on Finite-Difference Time-Domain 
Method with General Purpose GPUs,” 
Proceedings of the 2008 11th IEEE 
International Conference on Computational 
Science and Engineering, pp. 327–334, 2008.  

[20] P. Sypek, A. Dziekonski, and M. Mrozowski, 
“How to Render FDTD Computations More 
Effective Using a Graphics Accelerator,” 
IEEE Transactions on Magnetics, vol. 45, no. 
3, pp. 1324–1327, 2009. 

[21] N. Takada, T. Shimobaba, N. Masuda, and T. 
Ito, “High-speed FDTD Simulation Algorithm 
for GPU with Compute Unified Device 
Architecture,” IEEE International Symposium 
on Antennas & Propagation & USNC/URSI 
National Radio Science Meeting,. 4, 2009. 

[22] A. Valcarce, G. De La Roche, A. Jüttner, D. 
López-Pérez, and J. Zhang, “Applying FDTD 
to the coverage prediction of WiMAX 
femtocells,” EURASIP Journal on Wireless 
Communications and Networking, Feb. 2009. 

[23] C. Ong, M. Weldon, D. Cyca, and M. 
Okoniewski, “Acceleration of Large-Scale 
FDTD Simulations on High Performance 
GPU Clusters,” 2009 IEEE International 
Symposium on Antennas & Propagation & 
USNC/URSI National Radio Science Meeting, 
2009. 

 

[24] M. J. Inman, A. Elsherbeni, and V. Demir, 
“Graphics Processing Unit Acceleration of 
Finite Difference Time Domain”, Ch. 12 in 
The Finite Difference Time Domain Method 
for Electromagnetics (with MATLAB 
Simulations), SciTech Publishing, 2009. 

[25] I. Buck, Brook Spec v0.2, Stanford Univ. 
Press, 2003. 

[26] NVIDIA CUDA ZONE, 
http://www.nvidia.com/object/cuda_home.ht
ml. 

[27] CUDA 2.1 Quickstart Guide, 
http://www.nvidia.com/object/cuda_develop.
html.  

[28] J. A. Roden and S. Gedney, “Convolution 
PML (CPML): An Efficient FDTD 
Implementation of the CFS-PML for 
Arbitrary Media,” Microwave and Optical 
Technology Letters, vol. 27, no. 5, pp. 334–
339, 2000. 

[29] CUDA 2.1 Programming Guide, 
http://www.nvidia.com/object/cuda_develop.
html. 

[30] CUDA Best Practices Guide, 
http://www.nvidia.com/object/cuda_develop.
html. 

 
Veysel Demir is an Assistant 
Professor at The Department of 
Electrical Engineering, Northern 
Illinois University. He received 
his B.Sc. degree in electrical 
engineering from Middle East 
Technical University, Ankara, 
Turkey, in 1997. He studied at 

Syracuse University, New York, where he received 
both a M.Sc. and Ph.D. in electrical engineering in 
2002 and 2004, respectively. During his graduate 
studies, he worked as research assistant for Sonnet 
Software, Inc., Liverpool, New York.  He worked 
as a visiting research scholar in the Department of 
Electrical Engineering at the University of 
Mississippi from 2004 to 2007. He joined 
Northern Illinois University in August 2007. His 
research interests include numerical analysis 
techniques as well as microwave and 
radiofrequency (RF) circuit analysis and design.  
 

313DEMIR, ELSHERBENI: CUDA BASED FINITE-DIFERENCE TIME-DOMAIN IMPLEMENTATION



Dr. Demir is a member of IEEE and ACES and 
has coauthored more than 20 technical journal and 
conference papers. He is the coauthor of the books 
Electromagnetic Scattering Using the Iterative 
Multiregion Technique (Morgan & Claypool, 
2007) and The Finite Difference Time Domain 
Method for Electromagnetics with MATLAB 
Simulations (Scitech 2009). 
 

Atef Z. Elsherbeni is a 
Professor of Electrical 
Engineering and Associate 
Dean for Research and 
Graduate Programs, the 
Director of The School of 
Engineering CAD Lab, and 
the Associate Director of The 

Center for Applied Electromagnetic Systems 
Research (CAESR) at The University of 
Mississippi.  In 2004 he was appointed as an 
adjunct Professor, at The Department of Electrical 
Engineering and Computer Science of the L.C. 
Smith College of Engineering and Computer 
Science at Syracuse University. On 2009 he was 
selected as Finland Distinguished Professor by the 
Academy of Finland and Tekes.  

Dr. Elsherbeni has conducted research dealing 
with scattering and diffraction by dielectric and 
metal objects, finite difference time domain 
analysis of passive and active microwave devices 
including planar transmission lines, field 
visualization and software development for EM 
education, interactions of electromagnetic waves 
with human body, sensors development for 
monitoring soil moisture, airports noise levels, air 
quality including haze and humidity, reflector and 
printed antennas and antenna arrays for radars, 
UAV, and personal communication systems, 
antennas for wideband applications, antenna and 
material properties measurements, and hardware 
and software acceleration of computational 
techniques for electromagentics.    

Dr. Elsherbeni is the co-author of the book “The 
Finite Difference Time Domain Method for 
Electromagnetics With MATLAB Simulations”, 
SciTech 2009, the book “Antenna Design and 
Visualization Using Matlab”, SciTech, 2006, the 
book “MATLAB Simulations for Radar Systems 
Design”, CRC Press, 2003, the book 

“Electromagnetic Scattering Using the Iterative 
Multiregion Technique”,  Morgan & Claypool, 
2007, the book “Electromagnetics and Antenna 
Optimization using Taguchi's Method”, Morgan & 
Claypool, 2007, and the main author of the 
chapters “Handheld Antennas” and  “The Finite 
Difference Time Domain Technique for Microstrip 
Antennas” in Handbook of Antennas in Wireless 
Communications, CRC Press, 2001.   

Dr. Elsherbeni is a Fellow member of the 
Institute of Electrical and Electronics Engineers 
(IEEE) and a Fellow member of The Applied 
Computational Electromagnetics Society (ACES). 
He is the Editor-in-Chief for ACES Journal and an 
Associate Editor to the Radio Science Journal. 

314 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



A Practical Look at GPU-Accelerated FDTD Performance 
 

Mike Weldon1, Logan Maxwell1, Dan Cyca1, Matt Hughes1,  
Conrad Whelan1, Michal Okoniewski1,2 

 

1 Acceleware Corp. 1600 – 37th St. SW, Calgary, AB T3C 3P1, Canada 
logan.maxwell@acceleware.com, mike.weldon@acceleware.com  

 

2 Department of Electrical and Computer Engineering 
University of Calgary, Calgary, Alberta T2N 1N4, Canada 
 

 
 

Abstract─ This paper outlines several key features 
and conditions that impact the performance of 
FDTD on GPUs.  It includes relevant performance 
measurements as well as practical suggestions on 
how to mitigate their impact.  Among these factors 
are: PML depth, the number of unique materials, 
dispersive materials, the impact of field 
reads/observations, simulation orientation, and 
domain decomposition using multiple GPUs.  The 
paper shows that the performance of FDTD on 
GPUs can be limited in certain extreme cases, but 
with proper care on the part of the designer these 
cases can be managed and maximum performance 
guaranteed.   
 
Index Terms─ GPU, acceleration, FDTD, CPML, 
dispersive materials.  
 

I. INTRODUCTION 
  

    For several years, running FDTD (Finite 
Difference Time Domain) [1] on graphical 
processing units, or GPUs, accelerators has been 
shown as a successful technique to reduce run 
times [2-4]. The fine-grained parallelism of FDTD 
maps well to the several hundreds of 
computational streaming processor cores available 
on modern GPU hardware.  The faster memory 
bandwidth from GPU RAM to the GPU 
processing elements is also largely responsible for 
the observed performance gain versus traditional 
CPU (central processing unit) architectures.   

The complexity involved when writing GPU-
enabled FDTD codes involves making sure that 
the processing elements are not data starved.  This 
is done through effective memory, cache and 
memory bandwidth management.  This complexity 

must be addressed for every feature of FDTD, not 
just the basic [1] Yee updates. 

Section II of this paper will introduce and 
explain the basics of FDTD performance on GPUs 
from an end user perspective.  It will also detail 
the general limiting cases of this performance 
caused by the GPU architecture mentioned above. 
     The body of the paper, Sections III through IX, 
will build on this overview and introduce more 
advanced features and their impact on 
performance.  These features are: PML (Perfectly 
Matched Layer) boundary conditions, the number 
of unique materials, dispersive materials, 
simulation orientation, observation/modification of 
field data during the simulation, and domain 
decomposition across multiple GPUs.  In each 
case, the performance of the feature or concept is 
illustrated with a graph and explained in words.  In 
addition, practical suggestions are offered for 
ensuring maximum performance and mitigating 
any adverse effects. 

To illustrate these effects, Acceleware’s 
FDTD library, version 9.x, implemented in CUDA 
and running NVIDIA Tesla C1060 are the 
software and GPU platforms of choice. 
 

II. FUNDAMENTALS OF  
FDTD PERFORMANCE ON GPU 

 
The graph below is an overview that illustrates 

the performance of Acceleware’s FDTD library on 
both multi-core CPU and GPU hardware.  The 
CPU hardware used throughout the paper is AMD 
OpteronTM 2214 2.2GHz, and  Intel® Xeon® CPU 
X5550 @ 2.67GHz code-named ‘Nehalem’. The 
GPU hardware is NVIDIA Tesla C1060 GPU 

1054-4887 © 2010 ACES

315ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



cards connected via PCI Express x16 t
system. 

Memory bandwidth is perhaps 
determinant of FDTD performance
hardware perspective.  The memory ban
the C1060 architecture is 102GB/S, 
X5550 architecture is 32GB/s, and th
2214 architecture is 11.8GB/s.  Thes
roughly correlate with the peak pe
observed for FDTD in Figure 1 below
generations of both CPU and GPU har
continue to increase memory bandwidth
 

Fig. 1. FDTD performance – CPU v
 

CPU performance versus simul
ramps up relatively quickly and reaches
steady state limited by the finite
bandwidth, and provided the CPU mem
exceeded.  The GPU performance curv
dramatic, and shows several key operati
which are noted in Fig. 1 and explained 
 
Ramp Up - In this range the GPU is no
of its compute resources and memory 
efficiently.  PML may also take up a lar
of the total simulation size and acts to
total simulation throughput. 
 
Knee - The knee is the point at 
performance levels off and the GPU 
optimally. 
 
Optimal Range - This is the optimal ra
GPU as processing resources are b
utilized and the impact of data transfer m
The goal of any GPU FDTD code is to
the breadth and magnitude of this region
 

0

200

400

600

800

1000

0 25 50 75 100

Pe
rf

or
m

an
ce

 (M
ce

ll/
s)

Simulation Size (Mcell)

GPU (10 Series)
CPU (Nehalem)
CPU (Non-Nehalem)

Optimal Range Soft MRamp Up

Knee

M

to the host 

the key 
e from a 
ndwidth of 
the Xeon 

he Opteron 
se numbers 
erformance 
w.  Newer 
rdware will 
h. 

 
vs. GPU. 

lation size 
s a constant 
e memory 
mory is not 
ve is more 
ing regimes 
below. 

ot using all 
bandwidth 
rge portion 
o slow the 

which the 
is running 

ange for the 
being fully 
minimized.  
o maximize 
n. 

GPU Memory Limit - This is the po
the GPU runs out of memory.  There i
dramatic performance impact beyon
due to FDTD updates shifting to the C
the amount of GPU RAM is fixed, 
limit as measured by the number o
change depending on the materials an
the simulation. 
 
‘Soft Memory’ - In this area the CPU
the remaining calculations that the GP
have memory for. As simulation size 
into soft memory, the performance w
that of the CPU. 
 

The performance in MCells/s of th
the paper is calculated as follows: 
݁ܿ݊ܽ݉ݎ݋݂ݎ݁ܲ  ቀெ௖௘௟௟௦௦ ቁ ൌ ௌ௜௠௨௟௔௧௜௢௡ ௌ௜௭௘ ሺெ௖௘ௌ௜௠௨௟௔௧௜௢௡ 
 
In the above calculations, the ‘simu
does not include any PML cells u
simulation, while the ‘simulation time
elapsed from the beginning of the time

Unless being treated as an 
variable or otherwise noted, the 
results in this document have 1
materials, four-layer CPML (c
perfectly matched layer) [5], are cubi
field observations disabled.  This i
results in Fig. 1.  While 16 materia
layer CPML may be a simplistic cas
with more advanced simulations whic
of each, the effect on performance is e
representative of a broad range of 
The precise dependence on more CPM
materials are both examined in 
sections. 

Finally, results in this paper are 
for single precision, floating-point
representation of field and material d
has the advantage that the numerical 
usually more significant than any sing
error.  This is fortuitous since the doub
performance of GPUs has, until recen
order of magnitude slower than single 

 

125 150

Memory

Memory Limit

oint at which 
is a clear and 
d this point 
CPU.  While 
the memory 

of cells will 
d features of 

U is solving 
PU does not 
goes further 

will approach 

hroughout 

          ௘௟௟௦ሻ௫ ்௜௠௘ ௌ௧௘௣௦்௜௠௘ ሺ௦ሻ             
(1) 

ulation size’ 
used in the 
e’ is the time 
e stepping.  

independent 
performance 
6 dielectric 
onvolutional 
ic, and have 
includes the 

als and four-
se compared 
ch use more 
enough to be 
simulations.  

ML and more 
subsequent 

all reported 
t numerical 
data.  FDTD 
dispersion is 
gle precision 
ble precision 
ntly, been an 
precision. 

316 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



III. PERFECTLY MATCHED L
 (PML) 

 
Adding absorbing CPML (con

perfectly matched layer) boundary laye
to truncate the overall simulation
Computation of these cells is made mor
due to the recursive convolution perfor
number of layers required depends on t
reflection coefficient from the bound
done at the discretion of the designer. 
five to ten layers are used, with five
-30dB or better reflection. [5]   

While reducing reflections, these 
also reduce simulation performance by 
50% [6], especially for small simulation
The maximum simulation size the GPU
of running will also be partially reduced
cells require more memory than non-CP
They also are more expensive to comp
is why the performance is reduced.   

Figure 2 below shows GPU-accelera
performance for simulations with 
amounts of CPML.  Note that 
performance and maximum GPU-a
simulation size are affected.  Also noti
point at which the GPU enters the so
limit is reduced.  This is a reflecti
increased memory usage of the CPML c

Fig. 2. GPU-accelerated FDTD perform
CPML layers. 
 

Small simulations are impacted 
larger simulations because CPML cells 
greater majority of the computational lo

Minimizing the use of CPML as a te
preserve performance should be evide
already well known for CPU implem
How much CPML a given simulation re

0

200

400

600

800

1000

0 25 50 75 100

Pe
rf

or
m

an
ce

 (M
ce

lls
/s

)

Simulation Size (Mcells)

0 Layers
10 Layers
20 Layers

LAYERS 

nvolutional 
ers is done 
n volume.  
re intensive 
rmed.  The 
the desired 
ary and is 
 Typically 

e providing  

layers can 
as much as 
n volumes.  

U is capable 
d, as CPML 
PML cells.  

pute, which 

ated FDTD 
different 

both the 
accelerated 
ice that the 
oft-memory 
ion of the 
cells. 

 
mance with 

more than 
represent a 
ad. 
echnique to 
ent, and is 
mentations.  
equires can 

only be understood by the designe
balance reflections, accuracy and perfo
 
IV. NUMBER OF UNIQUE MA
 

The number of materials, defined 
with unique permeability, permittivity,
magnetic conductivity, can have a larg
performance - up to a 20% decrease. In
Acceleware’s implementation, this is
the way these properties are stored fo
GPU. 

Acceleware’s library employs the 
look-up table method to save memor
unnecessary copies of material dat
technique, the look-up table index is p
computational kernel which in turn 
material parameters before completing
This works well (uses the least m
simulations where the number of uniq
is much less than the number of 
simulations with very large numbers 
it becomes more advantageous from
perspective to send the material 
directly to the kernel.  While ther
performance impact to doing so, it m
memory efficient.   This so called dire
can also support unique E and H ma
the number of cells in the simulation.  

The performance is illustrated belo
and shows that there is indeed a 
impact for the C1060 GPU hard
moving from the look-up table me
direct method.  The number of uniq
materials is also shown to have an 
and additive effect on simulation perfo

 

Fig. 3. GPU-accelerated FDTD perform
versus the number of materials. 

125 150

0

100

200

300

400

500

600

1 32 1024

Pe
rf

or
m

an
ce

 (M
ce

lls
/s

)

Unique Materials (#)

E Materials

H Materials

E and H Materials

er, who will 
ormance. 

ATERIALS 

as materials 
, electric and 
ge impact on 
n the case of 
s a result of 
or use on the 

well known 
ry and avoid 
ta.  In this 
passed to the 

fetches the 
g the update.  
memory) for 
que materials 

cells.  For 
of materials, 

m a memory 
parameters 

re can be a 
may be more 
ect technique 
aterials up to 
 
ow in Fig. 3 
performance 

dware when 
ethod to the 
que E and H 

independent 
ormance.   

 
mance 

32768

317WELDON, MAXWELL, CYCA, HUGHES, WHELAN, OKONIEWSKI: GPU-ACCELERATED FDTD PERFORMANCE



The choice of 1024 is somewhat arbitrary and 
unique to the Acceleware library.  Other 
implementations may use a different break point 
or use the look-up table method or the direct 
method exclusively.  On different GPU hardware, 
the direct and look-up table methods perform 
differently, which adds further complexity to 
understanding the performance.  

The general end user recommendations should 
be to simply keep an awareness of the number of 
unique materials in your simulation and ensure 
they are not an unnecessary cause of simulation 
slow down.  Many applications add arbitrary 
complexity by allowing for continuous variation of 
the material parameters.   

For FDTD developers, additional intelligence 
in the library itself may also more automatically 
optimize the material storage and access a priori 
depending on the number of materials, hardware, 
and kernel implementations available.  This would 
ensure an optimal performance where the 
simulation is not memory limited and maximum 
simulation size where it is.   
 

V. DISPERSIVE MATERIALS 
 

Simulating materials with dispersive properties 
can have an even more significant impact on 
simulation performance and maximum simulation 
size. Both the order of the dispersive materials 
(number of poles) and the total volume of 
dispersive material need to be considered.  For a 
given cell, adding a single dispersive pole to 
describe its behavior will increase the memory 
requirement of the cell and increase the required 
number of flops for additional material current 
calculation.  This increases proportionally with the 
number of poles.  Simulations with larger volumes 
and more higher-order poles will hence show more 
pronounced degradation of performance and more 
reduced simulation size.  Several relevant cases 
are shown in Fig. 4 below. 

The above effect applies to all dispersive 
materials types: Drude, Debye, Lorentz, Drude-
Lorentz, etc.  Simulations with dispersive 
materials also run slower on the CPU, so the 
'speed up factor' when using GPUs is roughly the 
same as for non-dispersive simulations.   

Managing the effect of dispersive materials 
involves using only the minimum volume and 
order required to achieve your desired result.  As 

is illustrated comparing cases four with five, and 
two with three, the distribution of dispersive 
materials does not significantly affect the 
performance; it is the overall volume and order 
that counts. 

 

 
Fig. 4. GPU-accelerated FDTD performance for 
several cases of dispersive material usage. 
 
Case 1 – 1600 non-dispersive materials 

distributed evenly thought the entire 
simulation space. 

Case 2 – 1 single-pole dispersive material 
occupies 40% of the total volume 
contiguously. 

Case 3 – 1 single-pole dispersive distributed 
evenly throughout the entire volume, 40% 
of the total volume is made up of 
dispersive materials. 

Case 4 – 1600 Multi-pole dispersive materials 
distributed contiguously throughout 40% 
of the total volume. 

Case 5 – 1600 Multi-pole dispersive materials 
distributed evenly throughout the entire 
volume, 40% of the total volume is made 
up of dispersive materials. 

 
VI. READS AND READ REGIONS  

(WRITES AND WRITES REGIONS) 
 

Moving field data between GPU and CPU 
system memory during a simulation can 
dramatically impact performance and has been 
discussed as a limitation of GPU FDTD 
implementations.  For the purpose of this discussion 
we will refer to these data moves as reads and 
writes. Field data is read when calculating relevant 
outputs like SAR, far field patterns, optical 
generation, special updates for assessing 
convergence, and in other regards.  Field data is 

0

200

400

600

800

0 25 50 75 100 125 150

Pe
rf

or
m

an
ce

 (M
ce

lls
/s

)

Simulation Size (Mcells)

Case 1
Case 2
Case 3
Case 4
Case 5

318 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



written in cases like soft or customized excitations 
or active materials.   

The two critical factors affecting performance 
for reads and writes are: how much of the volume is 
read/written and how frequently. Figure 5 below 
shows performance for different read volumes 
based on a percentage of the total volume.  All six 
fields are read for each cell in the volume. The 
number of time steps between each volume read is 
swept and shown on the horizontal axis. 
 

 
Fig. 5. GPU-accelerated FDTD performance for 
different field observations. 
 

The above volume reads are made for 
contiguous volumes within the simulation space 
which is a simplified though still realistic case.  The 
other extreme would be a large number of 
individual point reads dispersed evenly through a 
volume or plane.  Individually reading these points 
one by one would further reduce the performance 
given the overhead attached with each read and 
their disparate locations in physical memory.  
Acceleware has implemented a strided region 
function as one technique to eliminate this 
overhead.   An exhaustive study of all possible read 
patterns and techniques is a significant effort in 
itself and beyond the scope of this paper. 

The general suggestions to manage the impact 
of field observations are relevant in all cases.  They 
are: keep the read volume to a minimum, only 
observe the region (volume) that is of direct 
interest, and read only as frequently as is necessary 
to achieve accurate power, DFT, SAR, optical 
generation or other results. For steady state 
measurements like optical generation, far field etc. 
only start to read after a simulation has converged.  

 

VII. SIMULATION ORIENTATION 
 

Single-GPU simulations where the number of 
cells on one particular axis is significantly smaller 
than the others will experience a decrease in 
simulation performance and maximum simulation 
size.  ‘Significant’ in this case is defined as a 
dimension that is 20% or less of the size of the 
other dimensions.  For the Acceleware library, the 
particular dimension is Z, but this is 
implementation dependent. 

This behavior is related to the way in which 
memory is optimally accessed for a given 3D 
layout in memory.  This problem is not unique to 
GPU FDTD solutions; it is also present in 
vectorized CPU-only FDTD solvers.  

The example illustrated in Fig. 6 and plotted in 
Fig. 7 shows an extreme case, 10:10:1, of smallest 
dimension. For less extreme cases the decrease in 
performance and max simulation size is 
proportionally smaller.  

 

 
Fig. 6. Illustration of an extreme simulation 
orientation case. 
 

 
Fig. 7. GPU-accelerated FDTD performance for 
various extreme simulation orientations. 
 

An important note is that partitioning across 
multiple GPUs will change the effective 
simulation dimensions on each GPU, and hence 
the performance, which is an important fact to 
consider.   

 
 

0

100

200

300

400

500

600

0 20 40 60 80 100

Pe
rf

or
m

an
ce

 (M
C

el
ls

/s
)

All Fields Read Every X Time Steps

0%
25%
50%
75%
100%

% of Volume Read

0

200

400

600

800

1000

0 25 50 75 100 125 150

Pe
rf

or
m

an
ce

 (M
ce

lls
/s

)

Simulation Size (Mcells)

Cubic
X Smallest
Y Smallest
Z Smallest

 X Y Z 
X Smallest (a, b, b) 
Y Smallest (b, a, b) 
Z Smallest (b, b, a) a 

b

b

319WELDON, MAXWELL, CYCA, HUGHES, WHELAN, OKONIEWSKI: GPU-ACCELERATED FDTD PERFORMANCE



To manage the effects of simulation 
orientation, simply rotate the simulation so that the 
Z (or critical) axis is not the smallest dimension. 
Avoid extreme differences in dimensions between 
the axis, if possible.  Cubic simulation sizes will 
show the best performance. 
 

VIII. MULTI-GPU SYSTEMS 
 

Using multiple GPUs in concert on a single 
problem will increase both performance as well 
the maximum simulation size that can be run in 
full accelerated mode.  Doing this requires 
significant additional complexity in the code, as it 
is not handled automatically at the hardware or 
driver level.  The performance curve shown in 
Figure 1 for one GPU is now extended to show 
two, four and eight GPUs and plotted in Figure 8. 

 

 
Fig. 8. GPU-Accelerated FDTD performance on 
multiple GPUs. 
 

In the Acceleware implementation, the scaling 
with the number of GPUs depends on the 
simulation size.  Small simulations in the ramp up 
range will experience a smaller scaling factor than 
simulations in the optimal range.  For a simulation 
of 100 MCells, scaling is on the order of 80-90 
percent up to four GPUs with diminishing returns 
going above four.  However, if one considers the 
maximum throughput of each configuration, the 
scaling remains over 70 percent all the way up to 
eight GPUs.  The scaling is plotted in Figure 9 
below. 

 
Fig. 9. GPU-Accelerated FDTD performance 
scaling across multiple GPUs. Peak performance 
observed. 

 
Scaling beyond eight GPUs is also possible, 

but necessitates the use of an MPI or cluster layer 
above the GPU code.  Clusters of up to 64 GPUs 
have been demonstrated at Acceleware and more 
details can be found in [8]. In general, GPU cluster 
scaling remains above 60% and well above that of 
CPU performance for large numbers of cores. 

 
IX. OTHER CONSIDERATIONS 

 
There are several other practical 

considerations to be aware of when running GPU 
accelerated FDTD.  It is common to see GPUs 
used for FDTD computation also used to drive a 
display device either directly or indirectly.  
Display and computational work contesting for the 
same GPU resources can negatively impact 
performance. The two most common ways this 
can happen are with graphically intensive 
applications or screen savers, and with remote 
desktop applications.   

Screen savers are not that impactful to 
simulation performance, typically less than 5%, 
but running a blank or non-3D screen saver will 
ensure maximum simulation performance.  

Remote desktop applications on the other hand 
can have a severe, >50%, impact on performance 
and also prevent simulations from running.  The 
best way to avoid this problem is to use a KVM, 
Keyboard-Video-Mouse, as it does not require any 
additional GPU resources.  Next to that, IP-based 
remote desktop applications such as UltraVNC are 
another solution but can still reduce performance 
by 10-30%. 
 
 

0
500

1000
1500
2000
2500
3000
3500
4000

0 200 400 600 800 1000 1200

Pe
rf

or
m

an
ce

 (M
ce

lls
/s

)

Simulation Size (Mcells)

Dual NVIDIA® Tesla™ S1070s (8 GPUs)
NVIDIA® Tesla™ S1070 (4 GPUs)
NVIDIA® Quadro® Plex 2200 D2 (2 GPUs)
NVIDIA® Tesla™ C1060 (1 GPU)

0

1000

2000

3000

4000

5000

6000

1 2 4 8

Pe
rf

or
m

an
ce

 (M
C

el
ls

/s
)

Number of GPUs

100MCells
Peak
Theoretical Linear

320 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



X. CONCLUSION 
 

As GPU-accelerated FDTD has become an 
accepted and advantageous computational 
technique, its use is becoming more and more 
widespread.  With increased usage, several 
practical limitations have been exposed.  Most of 
these are in extreme cases and depend heavily on 
the particular implementation of accelerated 
FDTD functions as well as the hardware itself. 

This paper looked at several of the most 
common practical limitations and suggested 
techniques to prevent them from excessively 
impacting performance.  These included the 
number of materials, dispersive materials, PML 
absorbing boundaries, the extent of field 
observations, simulation orientation, and the use of 
multiple GPUs.  Performance reductions vary 
from 5% to 50% versus a similar simulation in a 
less extreme case.  

It is demonstrated that with proper care on the 
part of the end user, any performance degradation 
can be mitigated or eliminated to achieve the 
maximum benefit of running on GPUs.  From both 
a SW and HW development perspective it also 
exposes potential architectural limitations of GPUs 
and should be a call to developers and designers to 
examine their code and hardware to further 
improve performance in these extreme cases. 
 

REFERENCES 
 
[1] K. S. Yee, “Numerical Solution of Initial 

Boundary Value Problems Maxwell’s 
Equation in Isotropic Media”, IEEE Trans. 
Antennas and Prop., Vol. 14, No. 3, pp. 302-
307, 1966.  

[2] S. E. Krakiwsky, L. E. Turner, M. 
Okoniewski, “Acceleration of Finite-
Difference Time-Domain (FDTD) Using 
Graphics Processor Units (GPU)”, IEEE MTT-
S Int. Symposium Digest, Vol. 2, pp. 1033-
1036, 2004. 

[3] P. F. Curt, J. P. Durbano, M. R. Bodnar, S. 
Shi, M. S. Mirotznik “Enhanced Functionality 
for Hardware-Based FDTD Accelerators,” 
ACES Journal, Vol. 22 No.  1, 2007. 

[4] P. Sypek, M. Mrozowski, "Optimization of a 
FDTD code for graphical processing units," 
The 17th. Int. Conf. on Microwaves, Radar 

and Wireless Communications, MIKON, May 
2008. 

[5] A. Taflove, S. Hagness. Computational 
Electrodynamics: The Finite-Difference Time-
Domain Method, 3rd ed., Artech House, 2005.  

[6] M. J. Inman, A. Z. Elsherbeni, J. G. Maloney, 
and B.N. Baker, “GPU Based FDTD Solver 
with CPML Boundaries,” IEEE Antennas and 
Propagation Society International Symposium, 
pp. 5255- 5258, 2007.  

[7] J. A. Roden and S. D. Gedney, “Convolutional 
PML (CPML): An efficient FDTD 
implementation of the CFS-ML for arbitrary 
media”, IEEE Transactions on Antennas and 
Propagation, Vol. 50, 2002, pp. 258-265. 

[8] C. Ong, M. Weldon, D. Cyca, and M. 
Okoniewski, “Acceleration of large-scale 
FDTD simulations on high performance GPU 
clusters,” IEEE Antennas and Propagation 
Society International Symposium, APSURSI 
'09,  pp. 1 – 4, 2009. 
 

 

Mike Weldon has an MSEE 
from the University of Calgary / 
TRLabs where he researched 
RF to optical conversion 
techniques for wireless network 
infrastructure.  He also spent 
five years as an RF 

development engineer working on broadband 
Doherty power amplifiers at Nortel.  He is 
currently a product manager at Acceleware 
responsible for the GPU-accelerated, RF/optical 
FDTD product. 

 

Logan Maxwell is presently 
an intern at Acceleware and 
will graduate next year with 
a BSc in Electrical 
Engineering from the 
University of Calgary. 

 
 
 

321WELDON, MAXWELL, CYCA, HUGHES, WHELAN, OKONIEWSKI: GPU-ACCELERATED FDTD PERFORMANCE

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5171722&queryText%3DFDTD+GPU%26openedRefinements%3D*%26searchField%3DSearch+All�
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5171722&queryText%3DFDTD+GPU%26openedRefinements%3D*%26searchField%3DSearch+All�
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5171722&queryText%3DFDTD+GPU%26openedRefinements%3D*%26searchField%3DSearch+All�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5154401�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5154401�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5154401�


Dan Cyca has an M. Sc. in 
Electrical Engineering.  He has 
spent six years developing GPU 
computing products at 
Acceleware. 

 
 

Matt Hughes is currently a 
senior software developer with 
Acceleware, working on 
various Professional Services 
projects.  He was the team lead 
for Acceleware's FDTD product 
prior to heading up the linear 
algebra team.  Prior to joining 

Acceleware in 2005, Matt completed a M.A.Sc in 
Electrical Engineering at the University of 
Victoria, where he studied optical transmission 
through thin metal films using FDTD simulations 
on shared memory and distributed computers.  He 
obtained a B.Sc in Electrical Engineering from the 
University of Calgary in 2003. 

 
Conrad Whelan studied 
Electrical and Computer 
Engineering at the 
University of Calgary 
where he was awarded 
BSc and MSc degrees.  
During his time with the 
applied electromagnetics 
group, he investigated 

conformal methods for reducing the run time of 
patch antenna simulations.  This segued right into 
his work with Acceleware where he has been a 
member of the FDTD team for four years, seeing 
the full range of transition from CPU to OpenGL 
GPU computing to the arrival of CUDA and the 
integration of Multi-node MPI for cluster 
operations. 
  
 
 
 
 
 
 

Michal Okoniewski, P.Eng., 
is a Professor at the 
Department of Electrical and 
Computer Engineering, 
University of Calgary. He 
holds  Libin/Ingenuity Chair in 
biomdeical-engineering and 
Canada Research Chair in 
applied electromagnetics. His 

interests range from computational 
electrodynamics, to tunable reflectarrays, RF 
MEMS and RF micro-machined devices, as well 
as hardware acceleration of computational 
methods.   He is also involved in bio-
electromagnetics, where he works on tissue 
spectroscopy and medical imaging. Dr 
Okoniewski is a fellow of IEEE and member of 
IEEE AP-S AdCom. In 2004 he co-founded 
Acceleware Corp. 
 

322 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

http://m.a.sc/�


Abstract—Advances in computer hardware 
technologies accompanied by easy-to-use parallel 
programming software platforms have led to the 
wide spread use of parallel processing 
architectures, such as multi-core central processor 
units (CPUs) and graphic processing units (GPUs), 
in technical and scientific computing. Among 
electromagnetic numerical analysis methods, the 
finite-difference time-domain (FDTD) method is 
very well suited for parallel programming, and 
several implementations of FDTD have been 
developed and reported to solve electromagnetics 
problems orders of magnitude faster. Examination 
of performances of these implementations reveals 
that, in general, it is more efficient to solve larger 
FDTD domains than smaller domains. In this paper 
it is demonstrated that one can exploit the higher 
efficiency inherent to the solution of larger 
problem sizes to solve parameter sweep and 
optimization problems faster: instead of solving 
multiple smaller FDTD domains separately, these 
domains can be combined or stacked to form a 
larger problem and the large problem can be 
solved more efficiently. It has been shown that up 
to 40% faster solution can be achieved on GPUs 
with this method.  
 
Index Terms—FDTD methods, parallel 
architectures, graphics processing unit (GPU) 
programming, Compute Unified Device 
Architecture (CUDA), hardware accelerated 
computing. 

I. INTRODUCTION 
The finite-difference time-domain (FDTD) 

method [1]-[3] has been the most popular 
numerical analysis technique throughout the past 
decades to solve a variety of electromagnetics 

problems. In FDTD, the problem space is 
composed of cells, in which electric and magnetic 
field components are located at discrete positions. 
These field components are recalculated at every 
time-step of a time-marching algorithm. The 
calculations for each cell can be performed 
independent from other cells at each time step; 
thus FDTD is very suitable for parallel 
programming. Until recently central processor 
units (CPUs) have been the main hardware 
architecture to perform high performance scientific 
and technical computing, and several 
implementations of FDTD have been developed 
for high performance CPU clusters and multi-core 
CPUs.  

Recently, graphic processing units (GPUs), 
equipped with hundreds of processing cores, have 
evolved rapidly and outmatched CPUs in terms of 
computation power. Accompanied by advances in 
parallel programming software technologies, the 
advances in GPUs enabled widespread use of these 
devices, which had been initially designed for 
processing computer graphics, for general purpose 
computing. Initially GPUs were designed to 
support only single-precision floating-point 
arithmetic operations, which is sufficient for 
graphics processing. To further aid general 
purpose computing, latest generation GPUs 
support double-precision floating-point arithmetic 
operations as well. Thus graphics cards have 
evolved into computation cards.  

Implementations of various numerical analysis 
methods have been developed on GPU platforms 
to solve electromagnetics problems faster. In 
particular, several implementations of FDTD 
method have been developed and reported [4]-
[24]. These implementations are based on various 
programming platforms. For instance, [4]-[7] are 

A Stacking Scheme to Improve the Efficiency of Finite-Difference 
Time-Domain Solutions on Graphics Processing Units 

 
 
 
 

Veysel Demir 
 

Department of Electrical Engineering 
Northern Illinois University, DeKalb, IL 60115, USA 

demir@ceet.niu.edu 

323

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



based on OpenGL; [8]-[14] are based on Brook; 
[15] uses High Level Shader Language (HLSL); 
and [16]-[20] are based on compute unified device 
architecture (CUDA) [25]. Independent of the 
different programming languages used in these 
contributions, it has been shown that FDTD 
problems can be solved orders of magnitude faster 
on graphics cards.  

Parameter sweep and optimization are two 
commonly used techniques in the design of 
circuits. Electromagnetic calculations are 
computationally expensive and usually it takes a 
long time to run a simulation. Since, parameter 
sweeps and most optimization techniques need a 
large number of runs to achieve their target; long 
execution times can seriously hinder the adoption 
of these techniques. With the significant speed 
gains available with the GPU based FDTD solvers; 
optimization becomes a viable option in 
electromagnetic design [13]. The use of GPU 
based FDTD solvers for optimization and 
parameter sweep has been presented in [13]. 
Similarly, GPU based FDTD is used in [16] and 
[20] in optimization for radio coverage prediction.  

One reasonable way to measure the efficiency of 
an FDTD implementation is to calculate the 
number of cells processed per second, in other 
terms the throughput, such as [26] 

          610steps

s

n Nx Ny Nz
NMCPS

t
−× × ×

= × ,        (1) 

where NMCPS is the number of million cells 
processed per second, stepsn is the total number of 
time steps the program has been run, and st is the 
total computation time in seconds. Here, Nx , Ny , 
and Nz  are the number of cells in an FDTD 
problem space in x, y, and z directions, 
respectively. Such throughput data as a function of 
the FDTD domain size have been provided in [18], 
[24], and [26]. Generally the trend of throughput 
as a function of problem size in these data is 
similar to that illustrated in Fig. 1. The data shows 
that the computation efficiency is directly 
proportional to the problem size; i.e. the efficiency 
is higher for larger problem sizes. This trend is 
expectable since it is more efficient to load larger 
amounts of data to the GPU memory at once than 
loading smaller chunks at multiple times. 
Furthermore, the multiprocessors can more 

efficiently schedule the threads for larger number 
of threads, thus problem sizes. The higher 
efficiency inherent to the solution of a larger 
domain implies that if solutions of multiple 
smaller problems are required, it will be more 
efficient to combine their spatial domains as a 
single larger domain and solve the larger problem. 
This scenario fits to optimizations or parameter 
sweeps very well, since solutions of multiple 
similar size problems are sought in such cases: 
Similar size FDTD spatial domains can be stacked, 
where each domain is electromagnetically isolated 
from the others, and a large domain can be 
obtained. The entire combined domain can be 
solved in a single run. Using this method, a 
significantly faster solution can be achieved 
compared to the case where all the individual 
domains are solved separately.    

 
Fig. 1. Throughput versus problem size. 

 
This paper demonstrates, via examples, that 

overall simulation time can be significantly 
reduced by a CUDA based FDTD code using the 
presented stacking method. The paper is organized 
as follows. Section II presents an FDTD 
implementation based on CUDA for GPU 
platforms. Section III discusses various schemes to 
stack FDTD spatial domains and shows time 
reductions in calculation times achieved by these 
stacking schemes in an example case. Section IV 
presents an analysis to examine the effect of 
orientation of the problem geometry on the 
efficiency of the solutions. Section V discusses 
some other benefits the stacking method can offer 
to the FDTD solutions of problems. 

324 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



II. FDTD USING CUDA 
New software development platforms and 

languages have accompanied and aided the general 
purpose GPU (GPGPU) computing as it has 
evolved and become widespread. OpenGL, Brook, 
and HLSL are among those languages that are 
commonly used, as discussed earlier, to program 
FDTD. However, steep learning curves of these 
languages prevent their widespread use.   

Recently, Compute Unified Device Architecture 
(CUDA) is introduced by NVIDIA as a software 
development platform. CUDA is a general purpose 
parallel computing architecture. To program the 
CUDA architecture, developers can use C, which 
can then be run at great performance on a CUDA 
enabled processor [27]. Compared to other 
programming languages, some advantages and 
disadvantages of CUDA can be listed [28]. One of 
the main limitations of CUDA is that it can be 
used only with CUDA-enabled GPUs, which are 
manufactured only by NVIDIA. Some of the main 
advantages of CUDA are listed as availability of 
scattered reads from arbitrary addresses in 
memory, and shared memory that can be 
simultaneously accessed by the threads in the same 
thread block. Besides these advantages, two major 
factors led to its widespread use in many 
applications including FDTD: NVIDIA provides 
extensive support to programmers who would like 
to develop codes using CUDA, and programming 
for GPU computing is easier with CUDA.  

In this current contribution a CUDA 
implementation of FDTD is used to prove the 
performance improvement achieved by the 
proposed stacking method. The details of this 
implementation are presented in [29], where the 
algorithm of the implementation is referred to as 
xy-mapping. In order to aid the understanding of 
discussions in the subsequent sections, some 
details of this implementation are summarized here 
as a reference. 

In CUDA a number of threads work in parallel 
and form a thread block, while a number of thread 
blocks form a grid. In the xy-mapping algorithm, a 
grid of threads is mapped to the cells in the xy-
plane cut of an FDTD problem space. Each thread 
is mapped to a cell and the field components in 
that cell are updated by the thread. Each thread 
then traverses the cells in the same column in the z 

direction and updates the field components in the 
same column, as illustrated in the pseudocode in 
Listing 1. This algorithm implies that there is 
anisotropy in the computations in the sense that 
computation in the z direction is treated 
differently. 

In CUDA, it is very important to have global 
memory accesses coalesced to achieve faster 
computations. In the xy-maping algorithm, to make 
sure that the global memory accesses are 
coalesced, the FDTD problem space is enlarged by 
padding extra cells to the problem space, such that 
the number of cells in x and y directions are 
integer multiples of 16. For instance, if a problem 
space is composed of Nx Ny Nz× ×  cells, the 
problem size becomes Nxx Nyy Nz× ×  after the 
padding, where Nxx  and Nyy  are integer multiples 
of 16.  

It should be noted that in the xy-mapping 
algorithm, the fields in the cells padded in the x 
direction are computed by the associated threads, 
while the cells padded in the y direction are not 
processed, as shown in Listing 1. This algorithm 
implies another anisotropy in the x and y directions 
throughout the computations. As a result, the 
FDTD algorithm in consideration is anisotropic in 
the sense of computations in x, y, and z directions. 
Therefore, if a non-cubic problem space will be 
computed, different computation performances 
should be expected if the problem geometry is 
rotated to align in different directions.   

 
Function update_magnetic_fields 
 
Calculate thread index ti 
Calculate cell index i and j using ti 
 
If j < ny 
For k from 1 to nz 
Update Hx, Hy, and Hz 

End for 
End if 

 
End function 
 
Listing 1. Pseudocode of CUDA kernel to update 

magnetic field components based on 
xy-mapping. 

325DEMIR: STACKING SCHEME TO IMPROVE EFFICIENCY OF FDTD SOLUTIONS ON GPUS



III. STACKING SCHEMES 
Many different scenarios can be envisioned to 

stack smaller FDTD spatial domains to obtain a 
larger domain. For instance, domains can be 
stacked in a linear sequence in one-dimension, a 
planar sequence in two-dimensions, or a cuboidal 
sequence in three-dimensions. In this contribution, 
linear stacking is considered for the analyses. The 
linear stacking, as well, can be achieved in three-
different scenarios: stacking in the x direction, 
stacking in the y direction, or stacking in the z 
direction, as illustrated in Fig. 2 for three domains. 
These three schemes will be referred to as x-
stacking, y-stacking, and z-stacking, respectively, 
in the following discussions. 

As discussed in the previous section, the 
algorithm acts differently in different directions. 
This algorithmic anisotropy would cause a 
different calculation time every time the problem 
spaces are stacked in different directions.  

 

 
Fig. 2. FDTD problem spaces stacking schemes. 
 

A performance analysis test is performed to find 
which direction is the best for stacking. An 
NVIDIA® Tesla™ C1060 Computing Processor 
running at 1.3 GHz is used for the tests presented 
in this paper. A problem space composed of 
100 100 25× ×  cells is used as the base FDTD 
spatial domain, where a smaller number of cells is 
used in the z direction to model a microstrip type 
structure. Then this domain is stacked in x, y, and z 
directions. Each time the number of stacked 
domains is increased, simulation is performed, and 
throughput is calculated. The results of this test are 
plotted in Fig. 3. It is found that as the problem 
size increases the efficiency increases, as 
expected. Furthermore, the x-stacking is found to 
be the best performing scheme, while the z-
stacking is the worst. One reason for why x-
stacking performs better is that as the problem 
domain is enlarged in the x direction, the number 
of unnecessarily processed padding cells becomes 
negligible compared to the number of cells in the 
main domain. The reason for why the y-padding 

performs better than the z-padding is that as the 
domain size increases, the number of thread blocks 
also increases with the y-padding, and the thread 
blocks are scheduled more efficiently by the GPU 
multiprocessor. 

In this given example, the base problem domain 
size is 250,000 cells, and this number of cells is 
processed with a throughput of 340 million cells 
per second. When 128 of this domain are stacked 
in the x direction, the problem size becomes 32 
million cells, while the throughput becomes 497 
million cells per second. These numbers show that, 
for instance, if 128 runs of the base domain are 
required for an optimization problem, it will be 
more than 40% faster to complete the optimization 
using the proposed stacking method compared to 
the case where all the base domains are solved 
separately.  

 

 
 
Fig. 3. Throughput of different stacking schemes. 

 
It should be noted that these findings are valid 

only for the code of the presented xy-mapping 
algorithm and for different codes based on 
different algorithms the efficiencies due to 
stacking directions may be different. In any case, 
an increase in efficiency should be expected if the 
problem size is increased by stacking. 

IV. ALIGNMENT OF GEOMETRIES  
The analysis presented in the previous section 

revealed that it is better to stack the FDTD spatial 
domains in the x direction to achieve the best 
performance out the presented algorithm. In 
general a problem space can be in arbitrary size in 

326 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



different directions; i.e. number of cells in a 
direction may be different from the number of 
cells in other directions. It is easy to rotate the 
geometry such that a side is aligned in any desired 
direction. For instance, one can align the longest 
side of a domain in x, y, or z direction by simple 
transformations.  

Since there is a flexibility to align sides in 
desired directions, one can expect different 
performances from stacking for different 
alignments. In order to find which alignment is the 
best, an alignment test is performed as described 
below. A base FDTD domain with size of 64 cells 
on the short side, 128 cells on the medium side, 
and 192 cells on the long side, as shown in Fig. 4, 
is prepared. Then this domain is rotated and 
stacked in the x direction for six different 
alignment scenarios. For instance, Fig. 5 illustrates 
one of these cases, in which the three copies of the 
base domain are stacked in the x direction such 
that the short side is aligned in the x direction, and 
the long side is aligned in the z direction. 

 

 
Fig. 4. A problem space with different sizes in 

different directions. 
 

 
Fig. 5. Base FDTD domain stacked in the x 

direction such that short side is aligned in 
the x direction and the long side is 
aligned in the z direction. 

For each of these six cases, first, the base 
domain is simulated alone and then 20 copies of 
the base domain are stacked and simulations are 
repeated. The throughput is calculated for each 
simulation, and results are tabulated as shown in 
Table 1. The results reveal that for all of these six 
cases the efficiencies of the stacked domains 
simulations are better than that of individual 
domains simulation. When the efficiencies of the 
stacked domains simulations are compared, no 
significant difference has been observed between 
the six alignments. However, the case in which the 
shortest side is aligned in the z direction, the last 
row in Table 1, has slightly higher throughput, 
thus efficiency. It should be reminded that this 
alignment efficiency analysis is valid for the code 
of the xy-mapping in consideration, and for a 
different code the results might be different. 
Nonetheless, alignment directions of geometries 
shall be taken into consideration to reach the best 
performance out of the proposed stacking 
algorithm.  

V. OTHER ADVANTAGES OF 

STACKING 
The tests presented in the previous section are 

performed using a simple FDTD domain with PEC 
boundaries and a microstrip structure excited by a 
single voltage source. For some other classes of 
problems, stacking can provide some other means 
to achieve better performance in speed as well as 
memory usage.  

One class of problems that can benefit from 
stacking is scattering due to an incident field. For 
scattering calculations, the problem space is 
illuminated by an incident field that has to be 
recalculated at every time step of time-marching. 
In an optimization problem, all problem spaces 
will be excited with the same incident field. 
Therefore, if incident field is calculated and stored 
for the base domain, it can be used to excite the 
other domains in the stack as well. This way, 
recalculation and storage of fields for separate 
domains can be avoided and efficiency can be 
significantly improved both in terms of simulation 
time and memory.  

Another class of problems is the calculation of 
scattering parameters in a multi-port circuit. For 
the solution of such problems, in each simulation, 

327DEMIR: STACKING SCHEME TO IMPROVE EFFICIENCY OF FDTD SOLUTIONS ON GPUS



one port is active as a source and scattering 
parameters are calculated with respect to the active 
port. Thus for an N-port problem, the calculation 
shall be repeated N times. These N problem spaces 
can be stacked and simulated at one run; thus a 
faster solution can be achieved. Another advantage 
is that, all FDTD updating coefficients are 
essentially the same in all of these individual 
problems. Therefore, it is sufficient to calculate 
and store the updating coefficients only for a base 
domain and reuse these coefficients in other 
domains. Thus efficiency can be achieved in terms 
of memory use as well. 

 
 

Table 1. Efficiency of stacking with respect to 
alignment. 

 

  

sh
or

t s
id

e 
 

m
ed

iu
m

 s
id

e 
 

lo
ng

 s
id

e 

nu
m

be
r o

f s
ta

ck
ed

 
do

m
ai

ns
 

st
ac

ke
d 

do
m

ai
n 

si
ze

 
(m

illi
on

 c
el

ls
) 

nu
m

be
r o

f m
illi

on
 

ce
lls

 p
ro

ce
ss

ed
 p

er
 

se
co

nd
 

di
re

ct
io

n 
of

 a
lig

nm
en

t (
x,

 y
 o

r z
) x y z 1 1.6 324 

x y z 20 31.5 499 
x z y 1 1.6 375 
x z y 20 31.5 496 
y x z 1 1.6 344 
y x z 20 31.5 480 
y z x 1 1.6 414 
y z x 20 31.5 495 
z x y 1 1.6 436 
z x y 20 31.5 499 
z y x 1 1.6 448 
z y x 20 31.5 503 

   

VI. CONCLUSION 
The concept of stacking FDTD problem spaces 

to achieve computation efficiency in terms of 
solution speed is introduced for optimization and 
parameter sweep problems on graphics processing 
platforms. In particular, an FDTD implementation 
based on CUDA is discussed for GPU platforms 
and it has been shown that significantly shorter 
solution times can be achieved if problem spaces 

are stacked and solved at one run compared to the 
case where all these problems are solved 
separately. It has also been shown that, for some 
classes of problems, stacking can achieve memory 
efficiency as well.   

REFERENCES 
[1] K. S. Yee, “Numerical Solution of Initial 

Boundary Value Problems Involving 
Maxwell's Equations in Isotropic Media,” 
IEEE Transactions on Antennas and 
Propagation, vol. 14, pp. 302–307, May 
1966. 

[2] A. Taflove and S. C. Hagness, Computational 
Electrodynamics: The Finite-Difference 
Time-Domain Method, 3rd edition, Artech 
House, 2005. 

[3] A. Elsherbeni and V. Demir, The Finite 
Difference Time Domain Method for 
Electromagnetics: With MATLAB 
Simulations, SciTech Publishing, 2009. 

[4] S. E. Krakiwsky, L. E. Turner, and M. M. 
Okoniewski, “Graphics Processor Unit (GPU) 
Acceleration of Finite-Difference Time-
Domain (FDTD) Algorithm,” Proc. 2004 
International Symposium on Circuits and 
Systems, vol. 5, pp. V-265–V-268, May 2004. 

[5] S. E. Krakiwsky, L. E. Turner, and M. M. 
Okoniewski, “Acceleration of Finite-
Difference Time-Domain (FDTD) Using 
Graphics Processor Units (GPU),” 2004 IEEE 
MTT-S International Microwave Symposium 
Digest, vol. 2, pp. 1033–1036, Jun. 2004.  

[6] R. Schneider, S. Krakiwsky, L. Turner, and 
M. Okoniewski, “Advances in Hardware 
Acceleration for FDTD,” Chapter 20 in 
Computational Electrodynamics: The Finite-
Difference Time-Domain Method,  3rd edition, 
Artech House, 2005. 

[7] S. Adams, J. Payne, and R. Boppana, “Finite 
Difference Time Domain (FDTD) 
Simulations Using Graphics Processors,” 
Proceedings of the 2007 DoD High 
Performance Computing Modernization 
Program Users Group (HPCMP) Conference, 
pp. 334–338, 2007. 

[8] M. J. Inman, A. Z. Elsherbeni, and C. E. 
Smith, “GPU Programming for FDTD 
Calculations,” The Applied Computational 

328 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



Electromagnetics Society (ACES) Conference, 
2005. 

[9] M. J. Inman and A. Z. Elsherbeni, 
“Programming Video Cards for 
Computational Electromagnetics 
Applications,” IEEE Antennas and 
Propagation Magazine, vol. 47, no. 6, pp. 71–
78, December 2005. 

[10] M. J. Inman and A. Z. Elsherbeni, 
“Acceleration of Field Computations Using 
Graphical Processing Units,” The Twelfth 
Biennial IEEE Conference on 
Electromagnetic Field Computation CEFC 
2006, April 30 - May 3, 2006. 

[11] M. J. Inman, A. Z. Elsherbeni, J. G. Maloney, 
and B. N. Baker, “Practical Implementation of 
a CPML Absorbing Boundary for GPU 
Accelerated FDTD Technique,” The 23rd 
Annual Review of Progress in Applied 
Computational Electromagnetics Society, 19-
23 March 2007. 

[12] M. Inman, A. Elsherbeni, J. Maloney, and B. 
Baker, “Practical Implementation of a CPML 
Absorbing Boundary for GPU Accelerated 
FDTD Technique,” Applied Computational 
Electromagnetics Society Journal, vol. 23, no. 
1, pp. 16–22, 2008. 

[13] M. J. Inman and A. Z. Elsherbeni, 
“Optimization and parameter exploration 
using GPU based FDTD solvers,” IEEE MTT-
S International Microwave Symposium 
Digest, pp. 149–152, June 2008. 

[14] M. J. Inman, A. Elsherbeni, and V. Demir, 
“Graphics Processing Unit Acceleration of 
Finite Difference Time Domain”, Chapter 12 
in The Finite Difference Time Domain 
Method for Electromagnetics (with MATLAB 
Simulations), SciTech Publishing, 2009. 

[15] N. Takada, N. Masuda, T. Tanaka, Y. Abe, 
and T. Ito, “A GPU Implementation of the 2-
D Finite-Difference Time-Domain Code 
Using High Level Shader Language,” Applied 
Computational Electromagnetics Society 
Journal, vol. 23, no. 4, pp. 309–316, 2008. 

[16] A. Valcarce, G. de la Roche, and J. Zhang, “A 
GPU Approach to FDTD for Radio Coverage 
Prediction,” Proceedings of the 11th IEEE 
Singapore International Conference on 
Communication Systems (ICCS '08), pp. 
1585–1590, November 2008.  

[17] P. Sypek and M. Michal, “Optimization of an 
FDTD Code for Graphical Processing Units,” 
17th International Conference on Microwaves, 
Radar and Wireless Communications, 
MIKON 2008, pp. 1–3, 19-21 May 2008. 

[18] P. Sypek, A. Dziekonski, and M. Mrozowski, 
“How to Render FDTD Computations More 
Effective Using a Graphics Accelerator,” 
IEEE Transactions on Magnetics, vol. 45, no. 
3, pp. 1324–1327, 2009. 

[19] N. Takada, T. Shimobaba, N. Masuda, and T. 
Ito, “High-speed FDTD Simulation Algorithm 
for GPU with Compute Unified Device 
Architecture,” IEEE International Symposium 
on Antennas & Propagation & USNC/URSI 
National Radio Science Meeting, p. 4, 2009. 

[20] A. Valcarce, G. De La Roche, A. Jüttner, D. 
López-Pérez, and J. Zhang,“Applying FDTD 
to the coverage prediction of WiMAX 
femtocells,” EURASIP Journal on Wireless 
Communications and Networking, February 
2009. 

[21] D. K. Price, J. R. Humphrey, and E. J. 
Kelmelis, “GPU-based Accelerated 2D and 
3D FDTD Solvers,” in Physics and 
Simulation of Optoelectronic Devices XV, 
Proceedings of SPIE, vol. 6468, 2007.  

[22] D. K. Price, J. R. Humphrey, and E. J. 
Kelmelis, “Accelerated Simulators for Nano-
Photonic Devices,” International Conference 
on Numerical Simulation of Optoelectronic 
Devices 2007, NUSOD '07,  pp. 103–104, 
September 2007. 

[23] A. Balevic, L. Rockstroh, A. Tausendfreund, 
S. Patzelt, G. Goch, and S. Simon, 
“Accelerating Simulations of Light Scattering 
Based on Finite-Difference Time-Domain 
Method with General Purpose GPUs,” 
Proceedings of the 2008 11th IEEE 
International Conference on Computational 
Science and Engineering, pp. 327–334, 2008.  

[24] C. Ong, M. Weldon, D. Cyca, and M. 
Okoniewski, “Acceleration of Large-Scale 
FDTD Simulations on High Performance 
GPU Clusters,” 2009 IEEE International 
Symposium on Antennas & Propagation & 
USNC/URSI National Radio Science Meeting, 
2009. 

[25] NVIDIA CUDA ZONE: 
www.nvidia.com/object/cuda_home.html. 

329DEMIR: STACKING SCHEME TO IMPROVE EFFICIENCY OF FDTD SOLUTIONS ON GPUS

http://www.nvidia.com/object/cuda_home.html�


[26] Acceleware: www.acceleware.com. 
[27] CUDA_Getting_Started_2.3_Windows.pdf: 

http://www.nvidia.com/object/cuda_develop.
html. 

[28] http://en.wikipedia.org/wiki/CUDA. 
[29] V. Demir and A. Z. Elsherbeni, “Compute 

Unified Device Architecture (CUDA) Based 
Finite-Difference Time-Domain (FDTD) 
Implementation,” Journal of the Applied 
Computational Electromagnetics Society 
(ACES), vol. 25, no. 4, 2010. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Veysel Demir is an assistant 
professor at the Department of 
Electrical Engineering at 
Northern Illinois University. He 
received his Bachelor of 
Science degree in electrical 
engineering from Middle East 
Technical University, Ankara, 
Turkey, in 1997. He studied at 

Syracuse University, New York, where he received 
both a Master of Science and Doctor of Philosophy 
degrees in electrical engineering in 2002 and 2004, 
respectively. During his graduate studies, he 
worked as a research assistant for Sonnet 
Software, Inc., Liverpool, New York. He worked 
as a visiting research scholar in the Department of 
Electrical Engineering at the University of 
Mississippi from 2004 to 2007. He joined 
Northern Illinois University in August 2007.  

Dr. Demir's main field of research is 
electromagnetics and microwaves. He is especially 
experienced in applied computational 
electromagnetics. He heavily participated in the 
development of time domain and frequency 
domain numerical analysis tools for new 
applications and contributed to research on 
improving the accuracy and speed of algorithms 
being developed. He is experienced in designing 
RF/microwave circuits and antennas for the related 
technologies, and performing experimental 
characterizations of these devices. 

Dr. Demir is a member of IEEE and ACES and 
has coauthored more than 20 technical journal and 
conference papers. He is the coauthor of the books 
Electromagnetic Scattering Using the Iterative 
Multiregion Technique (Morgan & Claypool, 
2007) and The Finite Difference Time Domain 
Method for Electromagnetics with MATLAB 
Simulations (Scitech 2009).  
 

330 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

http://www.acceleware.com/�


Accelerating Multi GPU Based Discontinuous Galerkin FEM 
Computations for Electromagnetic Radio Frequency Problems  

  
Nico Gödel 1, Nigel Nunn, Tim Warburton 2, and Markus Clemens 3  

 
1 Faculty of Electrical Engineering  

Helmut-Schmidt-University, University of the Federal Armed Forces Hamburg, 
P.O. Box 700822, D-22008 Hamburg, Germany 

Nico.Goedel@hsu-hh.de 
 

2 Computational and Applied Mathematics 
Rice University, 6100 Main Street MS-134, Houston, TX, USA 

 
3 Bergische Universität Wuppertal, FB E, Chair for Electromagnetic Theory 

Rainer-Gruenter-Str. 21, D-42119 Wuppertal, Germany  
 

Abstract─A Graphics Processing Unit (GPU) 
accelerated simulation of Maxwell’s equations in 
the time domain is presented. The Discontinuous 
Galerkin Finite Element Method (DG-FEM) is 
used for discretization since the elementwise 
structure fits the parallelization design aspects of 
the GPU architecture and the NVIDIA Compute 
Unified Device Architecture (CUDA), a GPU 
programming model. The parallelization strategy 
for a multi-GPU setup using CUDA is focused. 
Several performance improvements are analyzed 
and investigated with the help of a realistic 3D 
electromagnetic scattering example. 
 
Index Terms─GPU-Computing, GPGPU, DG-
FEM, electromagnetics, CUDA, TESLA. 
 

I. INTRODUCTION 
 Numerical simulation of electromagnetic 

devices during the development and certification 
process can significantly reduce time, efforts and 
costs. Efficiency and costs of numerical 
simulations depend on hardware and software 
investments as well as on personnel expenses, 
which directly evolve from code performance and 
simulation time. The presented hardware 
accelerated approach is able to significantly reduce 
both, simulation time and hardware costs using 
consumer based GPUs instead of highly expensive 
large scale computing clusters. 

Hardware accelerated computation is not a 
new research domain, but recently gained attention 
due to the availability of high-level compute 
abstractions such as CUDA [1], BROOK+ [2] and 
OPENCL [3]. Furthermore, floating-point 
performance and device memory bandwidth of 
current consumer based GPUs exceed their CPU 
counterparts by more than one order of magnitude 
at approximately the same price per unit. 

The combination of these GPU based co-
processing units and the evolving programming 
models provide a significant potential for high-
performance related computations. 

This potential has been investigated for 
different volume based discretization methods, 
such as the Finite Difference Method [4, 5] and the 
Finite Integration Technique. Recently, the 
Discontinuous Galerkin Finite Element Method 
(DG-FEM) has gained attention in connection with 
GPU computations [6, 7]. 

In this paper, the parallelization model and 
several optimization techniques for DG-FEM 
computations on GPU-clusters will be 
investigated. The focus will be on the scalability 
of multi-GPU systems. 

The paper is organized as follows: In Section 
II, the model is defined stating both the governing 
differential equations for the electric and the 
magnetic field and the spatial discretization using 
DG-FEM. Subsequently, in Section III, the DG-
FEM discretization is investigated with respect to 
the suitability of a parallel implementation. In 

331

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



Section IV, the parallelization model
different abstraction layers as well as th
in use is presented and Section V
numerical results for the different 
implementations with the use of a
example. 
 

II. DESCRIPTION OF THE M
A. Maxwell’s Equations 

Electromagnetic wave propagation 
medium can be described using Amp
together with Faraday’s law of induction
 
   

                          
 
                        .

         
Here, ܧ ሬሬሬԦand ܪሬሬԦ denote the ele

magnetic field strength, respectively, 
and μ identify the electric permittivit
magnetic permeability. The right-h
(RHS) of (1) and (2) describing t
dependencies can be discretized with h
Nodal Discontinuous Galerkin method. 
 
B. Discontinuous Galerkin Discretizat

DG-FEM was first introduced by 
Hill in 1973 [8] for neutron transport 
and during the last decade, this m
intensively investigated for solving 
equations. Relevant results have been
especially by Cockburn et. al. [9], Co
[10] and by Hesthaven and Warburton [

The DG method was chosen due
important characteristics, i.e.  
(1) the treatment of complex geometr
unstructured tetrahedral meshes,  
(2) explicit time stepping schemes, 
multirate time stepping schemes,  
(3) the use of high order basis functions 
(4) a domain decomposition approach
intrinsically included in the DG formula

Along with these features, the c
restricted to geometry-dependent time st
overhead in degrees of freedom at th
faces compared to continuous FEM as w
providing a strictly conservative model
charges. 

l for three 
he hardware 
V provides 

types of 
a complex 

ODEL 

in lossless 
père’s law 
n 

(1) 

             (2) 

ectric and 
whereas ε 

ty and the 
hand sides 
the spatial 
help of the 

tion 
Reed and 
simulation 

method was 
Maxwell’s 

n published 
ohen et. al. 
11, 12]. 
e to some 

ry through 

especially 

and  
h, which is 
ation. 
caveats are 
teps and an 
he element 
well as not 
 of electric 

A Nodal DG discretization of eqn
is derived in [12] using Lagrange pol
basis functions. The main characteri
FEM is that it allows for an 
computation of the elements, i.e. each
computed separately. The semi-discr
still continuous in time, for each eleme
 

Here, M-1 is the inverse of a local m
S a local stiffness-matrix and F a 
matrix. The size of the matrices dep
number of nodes inside each element.
the symmetric matrices M and S is lis
1 for different polynomial orders. The
refers to a local differentiation in 
without the need for using a custom 
mass-matrix for every single element. 

The flux-matrix F refers to the
over every triangular face of each tetra
size of the flux matrix F depends on th
nodes inside the element and the num
on all surfaces of the element. The f
and fH in eqn. (3) and (4) refer to 
terms of adjacent face values on each f
 

III. PARALLEL STRUCTURE
MODEL 

To allow for efficient parallelizati
as well as on CPUs, the computatio
split up into small pieces of work. I
piece of work has a completely indep
structure, thus requires no memory
with other parts. However, treating
problems, it seems clear that there
communication, at least for neighborin
to resolve the propagation of elec
waves. The idea of the DG-FEM and t
implementation is to minimize and en
dependencies and to efficient
communication with help of special GP

As described in section II.B
operation of the RHS, referring t
computation on Maxwell’s equation, 
inside each element. Here, every elem
computed completely independent 
other, providing the opportunity o
parallel implementation. The second 

n. (1) and (2) 
lynomials as 
istic of DG-
elementwise 
h element is 
rete scheme, 
ent reads 

(3) 
 

. (4) 
 

mass-matrix, 
local flux-

pends on the 
. The size of 
sted in Table 
e term M-1 S 
the element 
elementwise 

e integration 
ahedron. The 
he number of 

mber of nodes 
flux terms fE 
flux density 

face. 

 OF THE 

ion on GPUs 
on has to be 
Ideally, each 
pendent data 
y interaction 
g hyperbolic 
e has to be 
ng elements, 
ctromagnetic 
the proposed 

ncapsulate all 
tly handle 
PU features. 
., the first 
to the curl 
is computed 
ment can be 

from each 
of a highly 

term in the 

332 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



RHS has to be treated more carefully. 
term evaluations, the jumps in the el
magnetic fields are integrated over th
faces. The integration itself, being n
expensive, is computed for each
separately. The jump computation how
data from adjacent elements. This comp
to be treated in a special way 
elementwise, highly parallel implement
will be presented in Section IV.C. 

 
IV. HARDWARE, PROGRAM
MODEL AND PARALLELIZA

STRATEGY 
A. TESLA S1070 GPU Server 

For the GPU computations, a NVIDI
S1070 with four GPUs and 4 GB GDD
each is used. Each GPUs consis
Multiprocessors (MP) with 8 Streaming
(SP) each. The GPU server is attached 
server using two PCIe x16 Gen2 connec

 
B. Coarse Grained Parallelism 

Regarding GPU-cluster computa
most coarse grained parallelization can 
using a METIS [13] domain decomposi
computational domain as presented in Fi

 

 
Fig. 1. Domain decomposition using ME
partitioning. 
 

 Each color maps the tetrahedral e
one GPU. The METIS domain decomp
be executed using two constraints: load
and minimization of communication b
subdomains. In [7], an algorithm using
was presented, providing good minimiza
surface, but not optimal load balancin

In the flux 
lectric and 
e elements 

numerically 
h element 

wever needs 
putation has 

regarding 
tations and 

MING 
ATION 

IA TESLA 
DR3 RAM 
sts of 30 
gprocessors 
to the host 

ctions. 

ations, the 
be realized 
ition of the 
ig. 1. 

 

ETIS graph 

elements to 
osition can 

d balancing 
etween the 
g KMETIS 
ation of the 
ng for this 

small amount of subdomains. In 
PMETIS being more suitable for a sm
of subdomains is used. The resulting 
improvements are presented in Section

Each METIS subdomain is comp
GPU. For the flux computation p
Section III, field data of neighborin
across METIS boundaries have to be 
the corresponding GPU. Since this com
has to be carried out as a CPU task v
bus, the data exchange is suppose
potential bottleneck of the presented a
minimize the effects of the laten
bandwidth of the PCIe bus, two aspec
ensured: 

1. Only the data which are needed
GPU should be transferred, and
specific device. 

2. The data transfer should be hid
other computations with 
asynchronous file transfer. 

The second part is one of the 
regarding highly scalable code on 
systems. On NVIDIA TESLA GPU d
compute capability 1.1, the po
simultaneous execution of kernel fu
host-device/device-host memory 
introduced. A kernel can be executed 
to a data transfer to or from the h
applicable as long as the kernel does
on the transferred data. Regarding th
DG-FEM implementation, the kern
evaluating the curl operator inside e
can be executed while field data 
METIS subdomain boundaries is trans
this feature, the scalability bottlen
expanded. 

 
C. GPU Based Block Parallelism 

On each GPU, one METIS su
computed. All data (fields, geo
operators) related to this subdomain a
the device memory and stays in 
memory for the entire simulation. Usin
a programming model, the computatio
arranged in a CUDA GRID. This GR
of CUDA BLOCKS, each having the s
of computational work. This data mana

this work, 
mall amount 
performance 

n V. 
puted on one 
presented in 
ng elements 
 provided to 
mmunication 
via the PCIe 
ed to be a 
approach. To 
cy and the 

cts should be 

d by another 
d only to this 

dden behind 
help of 

key aspects 
multi-GPU 

devices with 
ssibility of 

unctions and 
transfer is 
concurrently 

host. This is 
s not depend 
he presented 
nel function 
each element 

of adjacent 
sferred. With 
eck can be 

ubdomain is 
ometry and 
are stored in 

the device 
ng CUDA as 
onal work is 
RID consists 
same amount 
agement is  

333GÖDEL, NUNN, WARBURTON, CLEMENS: ACCELERATING MULTI GPU BASED DISCONTINUOUS GALERKIN FEM



 
pictured in Fig. 2, highlighting the
strategy of implementing DG simu
CUDA. Instead of conventional vec
implementations, branching is possible 
Single Instruction Multiple Thread
architecture. CUDA BLOCKS 
communicate with each other du
execution. One BLOCK is executed 
where it profits from the high-speed, l
shared memory space within each M
memory fetches have to be executed in a
way, avoiding multiple read operations 
address. In the case that coalesced reads
ensured, read conflicts are serialized
effect of several hundreds of cycles l
each conflict. In this case, the use 
memory is beneficial, providing buffere
access at almost the same bandwidth as
global memory fetches.  
As long as all operations are done loc
each element, coalesced reads can be e
the fields. However, when calculatin
operator in the RHS, spatial derivati
reference element have to be provided 
elements. Here, coalesced reads cannot 
and the use of texture buffered mem
provides higher performance as pre
section V. 

Fig. 2. Correlation between DG-FE

e proposed 
ulations in 
ctor based 
within this 

d (SIMT) 
cannot 

uring their 
on a MP, 
ow-latency 

MP. Global 
a coalesced 
on a single 
s cannot be 
d with the 
latency for 
of texture 

ed memory 
s coalesced 

ally within 
ensured for 

ng the curl 
ves in the 
for all the 
be ensured 

mory access 
esented in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Regarding flux computations,
evaluation of field differences of th
faces, each field value at the faces w
more than one time, leading to seriali
fetches. This read conflict is less sev
one earlier presented since the num
conflicts depends on the maximum 
elements, a vertex is connected to. Ho
in this case, the use of texture 
preferable. 

Figure 2 highlights that the GRID
decomposition within the CUDA 
reflecting the geometric discretizati
METIS subdomain with help of fini
here tetrahedral elements. The id
proposed approach is to map every fi
to a CUDA BLOCK. 

 
D. Fine Grained GPU Thread Based
Parallelism 

The lowest level of abstraction
parallelization strategy is formed by 
managed by each MP for the computa
BLOCK. Each MP is able to man
hundreds of threads at the same time t
SP. The instruction unit of each MP 
one instruction every 4 cycles. There

EM discretization and CUDA data management.  
 

, for the 
he triangular 
will be read 
ized memory 
vere than the 
mber of read 

number of 
owever, also 
memory is 

D – BLOCK 
model is 

ion of each 
ite elements, 
dea of the 
inite element 

d 

n within the 
the threads 

ation of each 
nage several 
to feed the 8 
can process 

fore a set of 

334 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



32 CUDA THREADS form a WARP, the smallest 
scheduling unit. 

Since the solution in each DG element will be 
approximated with nodal basis functions, the 
nodes inside each element reflect the degrees of 
freedom for each field component. Fig. 2 
highlights the proposed strategy, which maps the 
nodes, i.e. the degrees of freedom inside each 
element to the CUDA THREADS. The number of 
nodes Np depends on the order N of the 
polynomial basis functions with Np = 
(N+1)(N+2)(N+3)/6 (see Table 1). Since the 
number of nodes does not match a multiple of a 
single WARP, some THREADS do not contribute 
to the computation. A strategy for improving the 
efficiency using these “padding” threads can be 
found in [6], where several element are grouped 
together for a low polynomial order N. 

 
Table 1: Polynomial order and number of nodes. 

N Np 
1 4 
2 10 
3 20 
4 35 
5 56 
6 84 
7 120 
8 165 

 
In the code presented in this work, the number 

of threads per CUDA BLOCK is defined as the 
number of nodes in one element. 

 
V. NUMERICAL INVESTIGATIONS 
In this section, the effects of several CUDA 

related optimization techniques are investigated. 
The accuracy of the presented approach is 
presented in [7]. In this work, more challenging 
geometries are considered. As application, an 
electromagnetic scattering object as presented in 
Figs. 1 and 2 is used.  

 

 
Fig. 3. Ey surface field component of a scatterer 
hit by a TEM wave. 
 

A TEM wave with 0.5 GHz is used as 
excitation function. The electrical surface field 
component in y-direction is presented in Fig. 3. 
The object is treated as perfect electric conductor 
and is surrounded by vacuum medium which is 
enclosed by an absorbing layer. The domain is 
discretized with 143    936 tetrahedra. Unless 
otherwise noted, the simulations were carried out 
using 6th order polynomials leading to 7.2·107 
unknowns and 5362 timesteps using the Low 
Storage Explicit Runge-Kutta (LSERK) scheme. 
On a single GPU, 2.02 GB memory is needed for 
this configuration.  

 
A. Texture Buffered Memory Fetches 

In this subsection, the effects of texture 
buffered memory fetches are investigated. As 
described in Section IV.C, the use of texture 
memory can be beneficial whenever coalesced 
reads cannot be ensured. The most drastic 
performance increase has been encountered within 
the curl computation of (3) and (4). Here, local 
derivatives in the reference element have to be 
provided for all elements / CUDA BLOCKS. The 
presented approach uses texture memory to buffer 
the operator and shared memory to buffer the field 
data. 

Within the flux computation, the evaluation of 
the field differences at the faces cannot be realized 
coalesced, however, the number of conflicts is 
small. Here, the caching of field data through 
texture memory is analyzed. 

On a single GPU, using texture fetches for the 
derivatives in the curl computation yields a 
performance improvement of a factor of 2.69, as 
presented in Table 2. 
 
Table 2: Performance gain with help of texture 
buffered memory fetches on a single GPU. 
Implementation Performance 

[GFlops] 
Speedup 

Without TEXTURE 
usage 

79.3 1.0 

TEXTURE usage for 
curl computation 

213.2 2.69 

TEXTURE usage for 
flux computation 

78.9 0.995 

TEXTURE usage for 
curl and flux 
computation 

209.3 2.64 

 

335GÖDEL, NUNN, WARBURTON, CLEMENS: ACCELERATING MULTI GPU BASED DISCONTINUOUS GALERKIN FEM



For the flux computation, the 
performance improvement cannot be pr
contrast, texture buffered memory f
slightly less efficient than their globa
counterparts. In comparison to the fo
core, where performance increases of
encountered, NVIDIA seems to have im
global memory access. In [1], the con
using coalesced memory access are 
compared to earlier documentations, w
be one reason for the observed changes i
architectures. 

To summarize, the use of the textur
buffered memory access can spee
implementation whenever a multiplici
conflicts occur. In case that the numb
conflicts is small compared to the w
volume transferred, global memory f
profit from their larger bandwidth. 
 
B. Performance and Scalability of M
Computations 

In this subsection, performance and
of multi-GPU computations using the 
of a TESLA S1070 server are investig
computations were carried out on four A
core Opteron CPUs with 2.3 GHz. Th
the S1070 is about 2900€ (academi
compared to 16.759€ of the latest H
DL785G CPU server. 

In Fig. 4, a comparison of GPU 
performance for different polynomial
presented.  

Fig. 4. Performance of GPU a
computations for different polynomial o
 

All computations were carried out
IEEE-754 single precision floating poin

expected 
roduced. In 
fetches are 
al memory 
ormer G92 
f 6% were 

mproved the 
straints for 
weakened 

which might 
in different 

re units for 
d up the 
ity of read 
ber of read 
whole data 
fetches can 

Multi-GPU 

d scalability 
four GPUs 

gated. CPU 
AMD quad-
he price for 
ic pricing) 

HP Proliant 

and CPU 
l orders is 

 
and CPU 

orders. 

t using the 
nt standard. 

GPU performance is about ten times 
the corresponding CPU implementatio

In Fig. 5, the scalability of 
computations is presented using diffe
distributions. Furthermore, the 
asynchronous file transfer is highligh
scalability evaluation, a polynomial or
been chosen. With help of the pe
balanced PMETIS distribution and a
file transfer, a strong scalability of
achieved. Due to the asynchronous 
almost the complete communicatio
could be hidden behind the arith
computation which needed 15ms time
in contrast to the communication wh
3ms in average. Except for a numer
packaging of the transferred data, th
solution incorporated zero com
overhead. The difference in
communication and curl computation
potential for further parallelization 
GPUs at the same high degree of scala
 

Fig. 5. Scalability of multi-
computations. 
 

Strong scalability in this case me
global problem size does not ch
increasing the number of GPUs
according to [6], a minimum 
approximatively 10000 elements per 
be provided to get the full flo
performance. With the 143    936  elem
scattering example, the problem 
distributed on more GPUs without los
the efficiency. 

The METIS distributions are prese
6 highlighting the difference in load b
the four subdomains. 

higher than 
on. 

multi-GPU 
erent METIS 

effect of 
hted. For the 
rder of 5 has 
erfectly load 
asynchronous 
f 98.8 % is 
file transfer, 

on overhead 
hmetic curl 
e in average 

hich required 
rically cheap 
he presented 
mmunication 
n parallel 
n time yields 

with eight 
ability. 

 
-GPU DG 

eans that the 
hange when 
. However, 

work of 
GPU should 

oating point 
ments of the 

could be 
sing much of 

ented in Fig. 
balancing for 

336 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



The PMETIS distribution is perfectl
whereas the KMETIS distribution 
unbalanced workload, where thread num
to do more work than the other threads. 
 

Fig. 6. Partitioning of PMETIS and
algorithms for four subdomains. 
 

VI. CONCLUSION 
A CUDA based GPU impleme

Maxwell’s equations in the time do
presented. The matching modeling pr
DG-FEM and CUDA regarding
implementation were highlighted an
optimization techniques have been in
As key point to high performing implem
detailed memory access concept is ne
profit from the high floating point perfo
the GPUs.  

Almost perfect scalability up to f
was presented using the asynchronous f
feature to hide all inter-GPU comm
behind the curl kernel execution which
depend on the data. 

Further work will include scalabilit
up to 8 GPUs, as well as hybrid 
implementations and porting to 
architectures like GT300 and new
abstractions like OpenCL. 

 
ACKNOWLEDGMENTS

T. Warburton is partly supported b
FA9550-05-1-0473, NSF CNS-0514002
DMS-0512673. N. Gödel is partly sup
DFG travel grant CL 143/8-1. 

The authors would like to thank
Klöckner and Jeff Bridge for discus
support related to DG implementation on
 

ly balanced 
leads to 

mber 2 has 

 
d KMETIS 

entation of 
omain was 
rinciples of 
g parallel 
nd several 
nvestigated. 
mentation, a 
ecessary to 
ormance of 

four GPUs 
file transfer 
munication 
h does not 

ty tests for 
CPU/GPU 
upcoming 

w compute 

S 
by AFOSR 
2 and NSF 
pported by 

k Andreas 
ssions and 
n GPUs. 

REFERENCES 
[1] Nvidia Corporation. “NVIDIA 

Compute Unified Device 
Programming Guide”, USA, 2009.

[2] Advanced Micro Devices, Inc., “
Computing”, Sunnyvale, USA, 200

[3] KHRONOS GROUP, “The
Specification Version 1.0”, 2008. 

[4] S. Krakiwsky, L. Turner, and M. 
“Acceleration of Finite-Differe
Domain (FDTD) Using Graphic
Units(GPU)”, IEEE MTT-S I
Microwave Symposium, pp. 1033-1

[5]  M. J. Inman, A. Z. Elsherbeni, J. 
and B. N. Baker, “Practical Implem
a CPML Absorbing Boundary
Accelerated FDTD Techniqu
Journal, vol. 23, 2008. 

[6] A. Kloeckner, T.Warburton, J. Br
Hesthaven, “Nodal discontinuou
methods on graphics processors,"
Computational Physics, vol. 228,
7882,  2009. 

[7] N. Gödel, T. Warburton, M. Clem
Accelerated Discontinuous Galerk
Electromagnetic Radio Frequency
IEEE APS Conference Charleston,

[8] W. Reed and T. Hill, “Trian
methods for the neutron transpor
Los Alamos Scientific Laboratory
Report, no. LAUR-73-479, 1973. 

[9] B. Cockburn, G. Karniadakis, and
“Discontinuous Galerkin Metho
Computation and Applications”
2000. 

[10] G. Cohen, X. Ferrieres and S. 
spatial high-order hexahedral d
Galerkin method to solve Maxwel
in time domain”, Journal of Co
Physics, vol. 217, pp. 340-363, 200

[11] J. S. Hesthaven and T. 
“Discontinuous Galerkin metho
time-domain Maxwell’s equatio
Journal, vol. 19, pp. 10–29, 2004. 

[12] J. S. Hesthaven and T. Warbu
Discontinuous Galerkin Methods. 
2008. 

[13] G. Karypis and V. Kumar, “A f
quality multilevel scheme for 
irregular graphs." Conference 
Processing, pp. 113-122, 1995. 

CUDA 2.2 
Architecture 
. 
“ATI Stream 
09. 
 OpenCL 

Okoniewski, 
ence Time-
cs Processor 
International 
1036, 2004. 
G. Maloney 

mentation of 
y for GPU 
ue”, ACES 

ridge, and J. 
us Galerkin 
" Journal of 
, pp. 7863 – 

mens, “GPU 
kin FEM for 
y Problems”, 
, 2009. 

ngular mesh 
rt equation,” 
y, vol. Tech. 

d C.-W. Shu, 
ods: Theory, 
”, Springer, 

Pernet, “A 
discontinuous 
ll's equations 
omputational 
06. 

Warburton, 
ods for the 
ons,” ACES 
 

urton, Nodal 
Springer, 

fast and high 
partitioning 
on Parallel 

337GÖDEL, NUNN, WARBURTON, CLEMENS: ACCELERATING MULTI GPU BASED DISCONTINUOUS GALERKIN FEM



Nico Gödel, born 1978 in 
Minden, Germany, received 
his diploma in Electrical 
Engineering from the Helmut- 
Schmidt University, University 
of the Federal Armed Forces in 
Hamburg in 2006. From 2007 
till 2010, he worked as a 
Research Engineer at the Chair 

for Theory in Electrical Engineering and 
Computational Electromagnetics at the  Helmut-
Schmidt-University, University of the Federal 
Armed Forces Hamburg. 
 
 

Tim Warburton received a 
PhD in Applied Mathematics 
from Brown University in 
1999. He is currently an 
Associate Professor of 
Computational and Applied 
Mathematics, at Rice 
University, Houston, Tx. 
He co-authored the first major 
text on discontinuous Galerkin 

methods, published by Springer in 2008. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Markus Clemens, born 1968 
in Wittlich, received his 
diploma in  Mathematical 
Engineering ("Diplom 
Technomathematik") with     
a minor in  Mechanical 
Engineering from the 
University of Kaiserslautern 
in 1995.  In 1998 he finished 

his Phd at the Institute for Theory 
of Electromagnetic Fields at the Technische 
Universität Darmstadt in the field of 
Computational Electromagnetics. Working as 
postdoc at the same institute he became team 
leader of an interdisziplinary team of   
phd and postdoc researchers.  In December 2003 
he received his venia legendi in "Electromagnetic 
Theory" and "Scientific Computing". From 2004 
to 2009 he was working as head of the Chair for 
Theory in Electrical Engineering and 
Computational Electromagnetics at the Helmut-
Schmidt University, University of the Federal 
Armed Forces Hamburg. In October 2009 he took 
on the position as head of the Chair of 
Electromagnetic Theory at the Bergische 
Universität Wuppertal, Germany. His teaching 
activities involve courses in Electromagnetic 
Theory, Advanced Engineering Mathematics, and 
Computational Electromagnetics. His research 
activities are in the field of Computational 
Engineering and Mathematical Engineering. His 
research specifically involves the development and 
application of numerical simulation methods 
for Computational Electromagnetics and 
Computational Multiphysics. 
  

338 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



CUDA Based LU Decomposition Solvers for CEM Applications 
 
 

Matthew J. Inman1, Atef Z. Elsherbeni1, and C. J. Reddy2 

 
1 Department of Electrical Engineering  

University of Mississippi, University, MS 38677-1848, USA 
atef@olemiss.edu , mjinman@olemiss.edu  

 
2 Applied EM 

 Hampton, VA 23666, USA 
cjreddy@emssusa.com 

 
  

Abstract ─  The use of graphical processing units 
to perform numerical computations required by 
electromagnetic analyses have been shown over 
the past several years significant increase in  the 
computational speed. Most of the previous work 
concentrated on electromagnetic analyses that do 
not require matrix inversion.  This paper uses the 
NVIDIA’s compute unified device architecture 
(CUDA) language to develop and modify routines 
for matrix solution based on the LU 
decomposition procedure to enhance and speed up 
a class of electromagnetic simulations. This 
implementation is utilizing the CPU and GPU for 
the inversion procedure. Various implementations 
for real, complex, single precision and double 
precision will be examined. The performance 
details of the developed LU decomposition 
routines especially for complex and double 
precision arithmetic are presented.  
  
Index Terms ─ CUDA, GPU, CEM, LU 
Decomposition, Matrix Solvers.  
 

I. INTRODUCTION 
 

As computational power has increased 
exponentially over the past few decades, the need 
for solving complex systems of equations has 
grown equally in tandem. Even simple geometries 
can often lead to complex matrices whose size can 
easily be in the order of thousands. In order to 
accurately and quickly provide results from these 
simulations an appropriate solution method must 

be chosen. This paper will address the use of 
graphical processing units (GPU’s) based LU 
decomposition solvers for matrix solutions.  

 
The LU decomposition offers many 

advantages for solving dense matrices. Full 
inversion methods (such as Gaussian elimination) 
can allow for the solving of many right hand sides 
easily once the inversion is complete. However, 
full inversions often require large computational 
runtimes compared with LU decomposition. Many 
parts of LU decomposition lend itself well to 
implementation on the GPU due to its past 
widespread use on other various parallel 
computing systems [2-6].  

 
Using the NVIDIA compute unified device 

architecture (CUDA) interface, many of the 
computations required for LU decomposition can 
be offloaded to the GPU. While LU decomposition 
on the GPU has previously been demonstrated to 
outperform the CPU [3-4], past published work 
has been mainly limited to real matrices in single 
precision. In order for LU decomposition to be of 
widespread use in computational electromagnetics 
(CEM), any GPU implementation must be able to 
support complex values. Large matrixes will also 
require double precision support in order to 
maintain stability.  

 
In this paper the construction of LU 

decomposition solver on the GPU is performed 
using existing and newly developed routines. 
While many of the subroutines used in LU 

339

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



decomposition can run on the GPU faster than the 
CPU, some portions of the code are still more 
appropriate to run on the CPU [2-3]. Maintaining 
data integrity between CPU and GPU for complex 
double precision numbers must be established. 
The inclusion of double-precision calculations will 
also be examined from a memory standpoint in 
optimizing the local cache memory in the GPU to 
achieve the fastest execution possible. 

 
II. Data Types and Computations 

Efficiency 
 

It is widely known that different data types 
can have a large effect on the computational 
runtime for any algorithm. For instance, going 
from any real data type to a complex one not only 
doubles the amount of memory required to move 
and store, but the complexity of even simple 
arithmetic operation increases by a significant 
amount. Complex addition and subtraction 
requires two separate additions or subtractions. 
Multiplication requires one addition, one 
subtraction, and four multiplications. Division 
requires eight multiplications, three additions, one 
subtraction, and two divisions. This increase in 
complexity for complex numbers can have major 
effects on the runtime of any algorithm.  

 
In addition, the change from single to double 

precision calculations can have a likewise effect 
on performance. The double precision 
performance of the NVIDIA Tesla C1060 is 
almost 12 times slower than single precision. An 
Intel Core i7 CPU has double precision speed only 
1.4 times slower. This major discrepancy is due to 
both the maturity of the arithmetic hardware and 
how this hardware is implemented. Double 
precision support on NVIDIA GPU’s are only a 
single generation old and are implemented by 
combining multiple single precision units together 
to create a double precision unit. Future generation 
of NVIDIA Fermi GPU’s are expected to have 
better double precision support according to the 
vendor information that are about to be released. 

 
In this paper we will consider various aspects 

in the comparison between solvers utilizing 
different data types. The amount of data to be 

transferred and stored in system, the increase in 
computations required for complex number, and 
the efficiency of double precision calculations will 
be taken into account. Comparisons will address 
all these issues within the results.  

 
III. LU Decomposition Solvers in CUDA 
 

The LU decomposition has been previously 
demonstrated on the GPU using CUDA and other 
programming techniques for single precision real 
matrices [3-4]. Published result produced speed 
gains approaching an order of magnitude over 
common CPU’s. These solvers mixed a 
combination of CPU Basic Linear Algebra 
Subprograms (BLAS) calls, CUDA CUBLAS 
(NVIDIA’s GPU based BLAS libraries) calls, and 
CUDA kernel. The BLAS libraries contain highly 
tuned functions commonly used in many programs 
to perform basic linear algebra. The published LU 
solvers were facilitated by the complete and 
mature development of CUBLAS libraries for 
single precision real data types. These solvers 
showed a speed increase of 6 to 12 times (relative 
to various hardware). However, the restriction of 
single precision real data types limits its 
usefulness for CEM simulations. Many common 
CEM problems require the solver to be available 
for any combination of single precision, double 
precision, real, and complex data. 

 
The development of solvers that support data 

other than a real single precision on the 
CUDA/GPU platform presents several unique 
challenges to be addressed. These challenges 
occur from the status of the CUBLAS libraries. 
The CUBLAS libraries (previous to release 3.0) 
only supported complete BLAS routines in single 
precision real and only very limited support for 
single and double precision complex. In the 
utilized version 2.0 of CUBLAS for this paper, 
only 2 out of 13 level 1 BLAS routines, 1 out of 
16 level 2 BLAS routines, and 2 out of 6 level 3 
BLAS routines were supported. The CUBLAS 
version 3.0, recently released, claims full support 
for all BLAS routines in all data types.  

 
With the release of CUBLAS 3.0 it is now 

possible to perform the LU decomposition directly 
on the GPU without the aid of any CPU calls. 

340 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



However, this does not mean that the CUBLAS 
functions outperform their CPU based 
counterparts. Certain linear algebra functions still 
perform significantly faster (such as factorization) 
on the CPU compared to the GPU’s as utilized in 
this paper. The algorithm presented here was 
carefully profiled to determine when and which 
parts of the LU decomposition routine can be 
solved on the GPU with maximum efficiency. 

 
The real single precision solver presented here 

follows the published methodology of utilizing 
both the CPU and the GPU as in [3-4] and the 
established algorithms for parallel computing 
systems [5]. The code has been programmed and 
tuned by the authors using these methods. In order 
to extend this solver for other data types, some of 
the CUBLAS calls have been replaced with 
custom developed kernels (GPU functions).  

 
In the solvers presented here, the “*trsm” 

function which is a standard BLAS routine used to 
solve a triangular matrix, has been offloaded to the 
CPU. The transpose functions have been 
developed in CUDA to support all types of data 
(complex and real in single and double precisions). 
With this added support for the various data types, 
the developed GPU code was tuned for various 
block sizes which determines how much data gets 
transferred, at a time, between the GPU and CPU. 
Offloading the “*trsm” function back to the CPU 
also presents problems in maintaining data 
consistency. The transfer of data between 
CUBLAS on GPU and Intel MKL BLAS on CPU 
is simple when working with single (float) or 
double precision real numbers. However, for 
complex data, MKL BLAS and CUBLAS have 
different data types and data structures to represent 
the numbers. In order to accomplish consistent 
data transfer, the MKL BLAS has been modified 
so that its data structure is compatible with 
CUBLAS data types. This modification allowed 
the free exchange of data between CUBLAS on 
the GPU and MKL BLAS on the CPU for 
complex numbers. 

  
The custom routines in CUDA for 

transposition and pivoting were developed to 
support all combinations of data types. Depending 
on the data type needed, the additional data 

overhead requires smaller blocks of the matrix to 
be transferred at a single time (as a double 
precision complex matrix has 4 times the data as a 
single precision real matrix). The transpose 
routines make use of local cache memory inside 
the GPU in order to make this process as efficient 
as possible.  

 
Table 1 details the various functions used for 

the developed CPU+GPU based LU 
decomposition and where they are performed.  The 
basic algorithm iterates through the various block 
columns of the matrix and performs the 
decomposition as detailed in [5]. Each block is 
first transposed and the L/U matrices are updated 
on the GPU. The block is transferred to the 
computer system and factorization takes place on 
the CPU. The block then streams through the GPU 
for pivoting and back to the CPU. The block is 
then inverted and the L matrix is solved. The 
update for the U matrix is performed on the GPU, 
then the data is transferred back and the final U 
solve is done on the CPU.   

 
Table 1: Functions required for LU decomposition 

 

Transpose Block GPU (CUDA Kernel) 

Matrix Multiply GPU (CUBLAS) 

Factorization CPU (MKL BLAS) 

Pivot GPU (CUDA Kernel) 

Triangular Matrix 
Solve CPU (MKL BLAS) 

  
Each of the functions listed in Table 1 can be 

implemented on either the CPU or the GPU. For 
the factorization and the matrix solve routines, the 
CPU was more efficient in processing even with 
the added overhead of transferring the data. Both 
of these functions are not easily parallelized which 
explains why they are more efficiently performed 
on the CPU. The transpose and pivoting functions 
were written in CUDA and optimized for each 
data type and block size. This necessitated writing 
separate CUDA functions for each separate data 
type in order to maintain the highest processing 
speed possible. 

341INMAN, ELSHERBENI, REDDY: CUDA BASED LU DECOMPOSITION SOLVERS FOR CEM APPLICATIONS



IV. LU Solver Results 
 

The developed CUDA based LU solver was 
implemented on different systems for various data 
types. Similarly a pure CPU solver based on the 
Intel MKL library was used for all comparisons. 
The solvers were run on various CPU and 
CPU+GPU based configurations as detailed in 
Table 2. In all cases, the Intel MKL library uses all 
available cores on a CPU (2 cores on Core Duo, 
and 4 cores on i7). 
 

Table 2: System configurations 
 

System  

System 1

GHz Intel Core i7  
6GB DDR3 PC12800 
NVIDIA 280GTX 1GB 
NVIDIA Tesla C1060 4GB

 

System 2
GHz Intel Core Duo  
4GB DDR2 PC4700 
NVIDIA 8800GTX 768 MB

  
Figure 1 shows the runtime results for the first 

case of single precision real data for CPU and 
CPU+GPU implementations on various systems. 
This baseline case matches other published results 
[3] in runtimes and speed gain. The CPU+GPU 
implementations outperformed the CPU only 
implementation anywhere from 3 to 12 times 
based on the configuration of the CPU and GPU. 

  

 
 

Fig. 1. Runtimes for real single precision LU 
decomposition. 

In the real single precision case, the 
implementation is quite simple and the best speed 
gain can be realized. When the solver is expanded 
to double precision, the results show a moderate 
decrease in speed for all the available cases as 
seen in Figure 2. Only the NVIDIA 280 and Tesla 
C1060 support GPU based double precision and 
thus are shown here. The Intel Core i7 is the CPU 
for both the CPU and CPU+GPU cases in this 
figure. For this real double precision case, the 
CPU only implementation increased the runtime 
speed by roughly double across all the various 
matrix sizes, while the CPU+GPU implementation 
increased runtime by only around 90% over the 
single precision case.  

 
 

 
Fig. 2. Runtimes for real double precision LU 
decomposition. 
 

In the real double precision cases, the 
CPU+GPU implementation achieved a speed gain 
of seven times over the CPU only based 
counterpart.  Interestingly, even though twice the 
amount of data is required to be moved for a 
double precision case and known inefficiencies of 
the GPU processing double precision data, the 
CPU+GPU case only increased runtime by 90%. 
This can be explained by examining the memory 
access patterns in processing double precision 
data. In algorithms such as LU decomposition, 
data access to the memory of the CPU and GPU 
are not optimal for the fastest transfer. The 
addition of double precision data in these cases 
actually increase the efficiency of memory access 
since larger blocks of linear memory is being read 
at a single time. The addition of double precision 
arithmetic for these cases did not account for any 

342 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



noticeable increase in processing time. This is due 
to the fact that in these cases the arithmetic is 
fairly simple. The calculations were completed 
before the next block of data has arrived from 
memory even with the overhead of double 
precision calculations. 

 
The last implementation presented is the 

complex double precision case. Figure 3 shows the 
runtimes for various configurations. With the 
addition of complex numbers, the runtimes have 
slowed significantly over the real single precision 
cases. The CPU only implementation runs 
approximately 9 times slower while the 
CPU+GPU implementation runs approximately 
twenty times slower. It can still be seen that in all 
cases the CPU+GPU implementation still 
outperforms the CPU only implementation by 
approximately two (2.66 Intel Core i7) to four (2.4 
GHz Core Duo).    

 

 
 
Fig. 3. Runtimes for complex double precision LU 
decomposition. 
 

The addition of complex data to the solver 
showed a drastic effect on the runtimes of the 
developed LU solvers. In order to understand how 
the various implementations performed, it is 
necessary to examine how the CPU only and the 
CPU+GPU implementations compared against 
themselves. Figure 4 shows the runtimes on the 
Intel Core i7 for the CPU only implementations.  

 
The addition of double precision to the 

implementation increased the runtime by only 
double. Since twice the data is being transferred in 

this case, it can be concluded that for the real 
single and double precision cases, the runtimes are 
simply a matter of the memory transfer rates. In 
the complex double precision case, the runtimes 
lagged the real single precision case by a factor of 
approximately 7. Since four times the data is 
required to be transferred it can be seen that the 
arithmetic itself becomes the limiting factor in 
performance.  

 

 
 

Fig. 4. Runtimes for CPU only LU decomposition. 
 

 

Figure 5 shows the comparison for the 
CPU+GPU cases running on the Intel Core i7 with 
the NVIDIA Tesla C1060 GPU. As shown before, 
the double precision increased the runtime relative 
to the single precision by only around 90%. While 
the data transferred did double, the GPU was able 
to handle the data more efficiently and thus did not 
require twice the time to make the transfer. 
Likewise from the CPU only cases, the memory 
transfer rates appear to be the limiting factor in the 
runtimes for these cases. However, in the complex 
double precision case, the slowdown is more 
pronounced. The runtime for the complex double 
precision is approximately twenty times slower 
over the real single precision case. Just as with the 
CPU only case, the complex double precision 
implementation becomes limited not by the 
memory access rate, but by the speed the system 
can perform the computations. Since the current 
CUBLAS on GPU is nowhere near as efficient as 
the MKL BLAS on CPU in performing double 
precision calculations, the GPU performance 
suffers a larger runtime penalty. 

      

343INMAN, ELSHERBENI, REDDY: CUDA BASED LU DECOMPOSITION SOLVERS FOR CEM APPLICATIONS



 
Fig. 5. CPU+GPU LU decomposition runtimes. 

 
VI. Verification and Examples 

 
To show the advantage of the CPU+GPU 

based solver, few examples were tested. These 
examples are based on a method of moments 
(MoM) solution whose results are well 
documented. Each of these examples will be used 
to compare both the speed and the accuracy of the 
CPU+GPU based solutions relative to the CPU 
only solution. For simplicity, all examples will be 
discretized with 4096 segments and run on an Intel 
Core i7 with a NVIDIA 280GTX. The 4096 
segments were choosen to show the performance 
for a simulation of decent size. The CPU only 
code utilizes all 4 cores of the Core i7 and the 
CPU+GPU code utilizes the same with the 
addition of the graphics card. All solutions were 
computed with double precision complex solvers. 

 
The first example is a simple wire dipole 

antenna. This example will calculate the current 
along a wire antenna of length L (0.1m) and 
diameter A (0.2mm) that is excited by a magnetic 
frill model as shown in Fig. 6. Sinusoidal basis 
functions and mid-point integration procedure are 
used for the solution of the resulting integral 
equation. 

 
Fig. 6. Dipole wire antenna configuration. 

 

The CPU+GPU code was run against the 
reference codes to ensure proper operation. Figure 
7 shows the current along the wire in both codes. 
The results show very good agreement with only 
very minor differences in the magnitude of the 
current. These differences  which are less than 
0.1% can be attributed to minor differences in how 
the numbers were stored and calculated in the 
various programs and the use of the GPU in the 
simulation.  

 

 
 

Fig. 7. Current distribution along the dipole wire 
antenna. 

 
The second example shows the calculation of 

the current distribution along a PEC plate 
illuminated by a TMz plane wave. Figure 8 shows 
the configuration of this setup. In this setup the 
width of the PEC plate is one wavelength and the 
TMz plane wave incident to the face of the plate at 
a 45 degree angle.  

 

 
Fig. 8.  PEC plate and excitation configuration. 

 

1λ 

TMz 

45○

x 

y 

z 

+ - 

L 

A

344 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



This example was run and compared against 
the reference code as seen in Fig. 9. The 
CPU+GPU code again show excellent agreement 
in calculating the surface current of the PEC plate. 
The maximum error observed between the two 
solvers is 0.08%. 

 

 
 

Fig. 9. Current distribution along the PEC plate. 
 
The last example shows the calculation of the 

current distribution along a PEC cylinder 
illuminated by a TMz plane wave. Figure 10 shows 
the configuration of this setup with the diameter of 
the PEC cylinder being one wavelength. 
   

 
 

Fig. 10. PEC cylinder and excitation 
configuration. 
 

Figure 11 shows the current magnitude along 
the PEC cylinder for both cases. As shown, the 
agreement between the two codes is excellent. In 
this case, the maximum error between the CPU 
and CPU+GPU codes was less than 0.02% 

 

 
Fig. 11. Current distribution along the PEC 
cylinder. 

 
All three of the sample cases show excellent 

agreement with the CPU only solver and 
successfully solved the problems utilizing the 
GPU. For these cases a single solve time on the 
CPU required approximately 6.3 seconds while the 
CPU+GPU only required 3.2 seconds. Many cases 
in computational electromagnetics, such as 
computing the monostatic RCS of an object, 
require solving for hundreds or more of right hand 
sides. The speed increase shown for even a 
moderate matrix of rank 4096 can halve the 
solution time compared against a high end CPU. If 
double precision is not required, the time savings 
can be even greater. 

 
 

VI. Conclusions 
 

It has been shown that an LU decomposition 
solver can be effectively implemented utilizing the 
GPU for various data types from real single 
precision to complex double precision. Due to the 
nature of certain functions required for LU 
decomposition, the use of the CPU to perform 
various operations is necessitated. 

 
While the complex double precision LU 

decomposition solver did not maintain increase in 
speed as for the real precision cases did, the 
increase of two-fold can have a drastic effect on 
CEM simulation times, especially for problems of 
multiple right-hand sides. The decrease in speed 
gain from the CPU+GPU implementation in the 

1λ 

TMz 

x 

y 

z 

345INMAN, ELSHERBENI, REDDY: CUDA BASED LU DECOMPOSITION SOLVERS FOR CEM APPLICATIONS



complex double precision cases can be easily 
attributed to the immature state of double 
precision arithmetic on this generation of GPU’s. 
Future generations of GPU’s have been promised 
to dramatically increase double precision 
arithmetic computations speed which should allow 
for greater utilization of the developed GPU 
routines for faster solutions to a variety of CEM 
and other applications.  

 
REFERENCES 

 
[1]  M. J. Inman and A. Z. Elsherbeni, “Programming 

video cards for computational electromagnetics 
applications,” IEEE Antennas Propagation Mag., 
Vol. 47, Issue 6, pp. 71-78, 2005. 

 
[2]  K. Fatahalian, et. al., “Understanding the 

Efficiency of GPU Algorithms for Matrix-Matrix  
Multiplication”,  Stanford University, 2004. 

[3] V. Volkov and J. W. Demmel,  Benchmarking 
GPUs to tune dense linear algebra, SC08, 2008  

[4] N. Galoppo, N. Govindaraju, M. Henson, and D. 
Manocha, LU-GPU: Efficient Algorithms for 
Solving Dense Linear Systems on Graphics 
Hardware, Proceedings of the ACM/IEEE 
conference on Supercomputing, 2005. 

[5]  E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, 
A. Mckenney, J. Du Croz, S. Hammerling, J. 
Demmel, C. Bischof, And D. Sorensen, LAPACK: 
a portable linear algebra library for high-
performance computers, Supercomputing ’90, 
1990. 

[6] M. Baboulin, J. Dongarra, and S. Tomov. Some 
Issues in Dense Linear Algebra for Multicore and 
Special Purpose Architectures, LAPACK Working 
Note 200, 1993. 

[7]  CUDA User Forums, http://forums.nvidia.com 
 
 

Matthew Joseph Inman 
received his B.S. in Electrical 
Engineering in 2000 and his 
Masters in Electromagnetics in 
2003 from the University of 
Mississippi. He is currently 
pursuing Ph. D. studies in 
electromagnetics there. He is 

employed by the University of Mississippi as a 
research assistant and graduate instructor teaching 
a number of undergraduate courses. His interests 
involve electromagnetic theories, numerical 
techniques, antenna design and visualization.  

Atef Z. Elsherbeni is a 
Professor of Electrical 
Engineering and Associate 
Dean for Research and 
Graduate Programs, the 
Director of The School of 
Engineering CAD Lab, and the 
Associate Director of The 

Center for Applied Electromagnetic Systems 
Research (CAESR) at The University of 
Mississippi.  In 2004 he was appointed as an 
adjunct Professor, at The Department of Electrical 
Engineering and Computer Science of the L.C. 
Smith College of Engineering and Computer 
Science at Syracuse University. On 2009 he was 
selected as Finland Distinguished Professor by the 
Academy of Finland and Tekes. Dr. Elsherbeni 
has conducted research dealing with scattering and 
diffraction by dielectric and metal objects, finite 
difference time domain analysis of passive and 
active microwave devices including planar 
transmission lines, field visualization and software 
development for EM education, interactions of 
electromagnetic waves with human body, sensors 
development for monitoring soil moisture, airports 
noise levels, air quality including haze and 
humidity, reflector and printed antennas and 
antenna arrays for radars, UAV, and personal 
communication systems, antennas for wideband 
applications, antenna and material properties 
measurements, and hardware and software 
acceleration of computational techniques for 
electromagentics.  Dr. Elsherbeni is the co-author 
of the book “The Finite Difference Time Domain 
Method for Electromagnetics With MATLAB 
Simulations”, SciTech 2009, the book “Antenna 
Design and Visualization Using Matlab”, SciTech, 
2006, the book “MATLAB Simulations for Radar 
Systems Design”, CRC Press, 2003, the book 
“Electromagnetic Scattering Using the Iterative 
Multiregion Technique”,  Morgan & Claypool, 
2007, the book “Electromagnetics and Antenna 
Optimization using Taguchi's Method”, Morgan & 
Claypool, 2007, and the main author of the 
chapters “Handheld Antennas” and  “The Finite 
Difference Time Domain Technique for Microstrip 
Antennas” in Handbook of Antennas in Wireless 
Communications, CRC Press, 2001.  Dr. 
Elsherbeni is a Fellow member of the Institute of 
Electrical and Electronics Engineers (IEEE) and a 
Fellow member of The Applied Computational 

346 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



Electromagnetics Society (ACES). He is the 
Editor-in-Chief for ACES Journal and an 
Associate Editor to the Radio Science Journal. 
 

C. J. Reddy received B. Tech. 
degree in Electronics and 
Communications Engineering 
from Regional Engineering 
College (now National Institute 
of Technology), Warangal, 
India in 1983. He received his 
M.Tech. degree in Microwave 
and Optical Communication 

Engineering and Ph.D. degree in Electrical 
Engineering, both from Indian Institute of 
Technology, Kharagpur, India, in 1986 and 1988 
respectively.  From 1987 to 1991, he worked as a 
Scientific Officer at SAMEER (India) and 
participated in radar system design and 
development. In 1991, he was awarded NSERC 
Visiting Fellowship to conduct research at 
Communications Research Center, Ottawa, 
Canada. Later in 1993, he was awarded a National 
Research Council (USA)'s Research Associateship 
to conduct research in computational 
electromagnetics at NASA Langley Research 
Center, Hampton, Virginia. Dr. Reddy worked as a 
Research Professor at Hampton University from 
1995 to 2000, while conducting research at NASA 
Langley Research Center. During this time, he 
developed various FEM codes for 
electromagnetics. He also worked on design and 
simulation of antennas for automobiles and aircraft 
structures. Particularly development of his hybrid 
Finite Element Method/Method of 
Moments/Geometrical Theory of Diffraction code 
for cavity backed aperture antenna analysis 
received Certificate of Recognition from NASA. 
Currently, Dr. Reddy is the President and Chief 
Technical Officer of Applied EM Inc, a small 
company specializing in computational 
electromagnetics, antenna design and 
development. At Applied EM, Dr. Reddy 
successfully led many Small Business Innovative 
Research (SBIR) projects from the US Department 
of Defense (DoD). Some of the technologies 
developed under these projects are being 
considered for transition to the DoD.  Dr. Reddy 
also serves as the President of EM Software & 
Systems (USA) Inc. At EMSS (USA), he is 
leading the marketing and support of commercial 

3D electromagnetic software, FEKO in the US, 
Canada, Mexico and Central America. 
Dr. Reddy is a Senior Member of the IEEE. He is 
also a member of Applied Computational 
Electromagetic Society (ACES) and serves as a 
member of Board of Directors. He has published 
more than 60 referred journal articles and 
conference papers. 

 

347INMAN, ELSHERBENI, REDDY: CUDA BASED LU DECOMPOSITION SOLVERS FOR CEM APPLICATIONS



 

GPU Based TLM Algorithms in CUDA and OpenCL 
 

Filippo Rossi, Colter McQuay, and Poman So 
 

Computational Electromagnetics Research Laboratory 
Department of Electrical and Computer Engineering 

University of Victoria, Victoria, BC, V8W 3P6, Canada 
 
 

Abstract— Recent advancements in graphics computing 
technology has brought highly parallel processing power 
to desktop computers.  As multi-core multi-processor 
computing technology becomes mature, a new front in 
parallel computing technology based on graphics 
processing units has emerged.  This paper reports a 
highly parallel symmetrical condensed node TLM 
procedure for the NVIDIA graphics processing units.  
The algorithm has been tested on three NVIDIA 
processors, from low-end laptop graphics card to high-
end workstation graphics processors. 
 
Index Terms— TLM, FDTD, GPU, SIMD, time-
domain, parallel computing, stream computing. 

I. INTRODUCTION 
 Graphics processing unit (GPU) based parallel 
computing has been an important topic for the 
computing industry for over a decade. Macedonia 
addressed this topic in a computing magazine article in 
2003 [1].  Most of the papers on GPU computing were 
related to signal and image processing [2–6]. Krakiwsky 
et al. and Inman et al. applied the technique to accelerate 
the FDTD algorithm [7, 8]. Takizawa et al. applied GPU 
computing to heat transfer simulation [9]. Z. Luo et al. 
and Harding et al. applied the paradigm to artificial 
neural network [10] and genetic algorithm [11], 
respectively.  Furthermore, a cluster of GPU based 
computers can be created to execute grand challenge 
problems [12]. Researchers at Stanford [13] have been 
using this technique for years in protein folding 
computation. 

Developing general purpose numerical modules for 
GPU was made easy by NVIDIA.  The company 
released its Compute Unified Device Architecture 
(CUDA) Software Development Kit (SDK) in early 
2007.  The SDK enables programmers to develop GPU 
code in a high level language, C-for-CUDA. Rossi et al. 
reported the first implementations of a two- and a three-
dimensional transmission line matrix (TLM) [14-17] 
program using the CUDA SDK [18]. This highly parallel 
TLM code has been ported to the new released OpenCL 

[19] environment. This makes it possible to run the 
program on non-NVIDIA GPUs and on heterogeneous 
computing hardware (for instance, GPU based 
computers with multiple multi-core CPUs). This paper 
addresses the algorithm design, programming 
techniques, and performance issues for implementing 
GPU based programs; in particular, the pros and cons of 
choosing CUDA and OpenCL will be discussed. 

 

II. GPU COMPUTING 
Modern GPU designs architectures are based on the 

Single Instruction Multiple Data (SIMD) computing 
paradigm. This hardware architecture utilizes multiple 
processors to perform similar tasks on vast quantities of 
data.  The appeal for GPUs exists not only because of 
their computational ability, but also given that they are 
relatively inexpensive and can be installed on existing 
workstations.  The NVIDIA GPUs used in this project 
are GeForce 8800 Ultra, Quadro FX 570M and Quadro 
FX5600 graphics cards [20]; these GPUs have 4 to 16 
multi-processors with 8 processors each for a total of  32 
to 128 processors. The GPUs have a maximum of 1.5 
GB of GDDR3 global memory. A schematic that depicts 
the computing model of the NVIDIA GPU using a layer 
of a TLM mesh is shown in Fig. 1. The figure illustrates 
a typical iteration cycle. The data structure to be 
processed (called a mesh) is defined in both the CPU 
and the GPU. After seeding a data structure with initial 
conditions, the host transfers the data to the GPU's 
global memory and constant memory. A GPU function 
(called a kernel) would then be invoked which would 
execute on all multi-processors (4 to 16). This 
computing paradigm is scalable by utilizing GPU 
clusters internal or even external to a workstation [21]. 
Adaptation to GPUs is suitable for many science and 
engineering applications. However, the parallelization of 
existing algorithms may require intricate and complex 
adaption efforts. 

The driving forces behind the computing framework 
depicted in Fig. 1 are the thread-blocks that control the 
GPU executions, Fig. 2. A thread block is defined as a 
grouping of threads that executes concurrently on the 
GPU multi-processors. Multiple data elements could be 

348

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



 

ass
thr
the
dat
exe
the
Aft
ava
gra
and
glo

Fig

Fig

signed per th
reads per thr
erefore it is th
ta blocks. E
ecute on a d
en transfer th
fter which the
ailable data b
aphics card u
d are coordin
obal memory.

 

g. 1. NVIDIA
framew

g. 2. NVIDIA
framewo

hread (data b
read block ar
hen necessary
Each multi-p
data block ut
he results ba
 multiprocess
block.  The 

used in this p
nated to pro
 

A CUDA bas
work. 

 

A CUDA base
ork. 

block). A ma
re available 
y to partition
processor w
tilizing its th
ack to the g
sor would dow
16 multi-pro

project worke
cess all data

ed GPU comp

d GPU comp

aximum of 5
for the GPU

n the mesh in
ould, in tur

hread-block a
global memor
wnload the ne
ocessors on t
ed concurrent
a blocks in t

 
puting 

puting 

12 
Us, 
nto 
rn, 

and 
ry. 
ext 
the 
tly 
the 

 

III. S
The

(SCN)
in a T
reflect
orthog
TLM n
are po
impuls
two or
directi
voltage
The sc
node T
matrix
reflect
The ot
to the 
at mat
applie
impul
transf
localiz
to redu
execut

Fig. 3.

SYMMETR
e three-dimen
) is depicted i
TLM algorith
tion of volta

gonal transmi
node.  Voltag

olarized in th
ses on the y-
rthogonal dire
on of propag
e impulses in
cattering ma
TLM method 
x multiplicatio
ed voltage ve
ther two TLM
neighboring 

terial boundar
ed to the tw
ses. All thre

fer and refle
zed operation
uce computin
te each ope

 SCN scatter

RIC CONDE
nsional symm
n Fig. 3. The 
hm are the s
age impulse
ission link li

ge impulses tr
e y- or z-dire
and z-axis ar

ections on the
gation.  Hence
n each symm
trix for the 
is a 12×12 m

on operation c
ector from the
M operations 

link lines an
ries, Fig. 4. T

wo orthogon
ee TLM ope

ection of vo
ns which may
ng time.  A q
ration concu

 

 
ring algorithm

ENSED NO
metrical cond
 fundamental
scattering, tr
s, [17]. The
ines in each 
ravelling alon
ection; simila
re polarized i
e plane transv
e, there are a

metrical conde
symmetrical 

matrix [17].  T
can be used to
e incident vol
are transfer 

nd reflection 
These two op
ally polariz
erations —

oltage impul
y be executed
quad-core pro
urrently for 

m. 

DE TLM 
densed node 
l procedures 
ransfer and 
ere are two 

port of the 
ng the x-axis 
arly voltage 
in the other 
verse to the 

a total of 12 
ensed node. 

condensed 
Therefore, a 
o obtain the 
ltage vector. 
of impulses 
of impulses 
erations are 
ed voltage 
scattering, 

lses — are 
d in parallel 
ocessor may 

four TLM 

 

 

349ROSSI, MCQUAY, SO: GPU BASED TLM ALGORITHMS IN CUDA AND OPENCL



 

 
Fig. 4. TLM boundary operation. 

 
nodes.  A traditional serial TLM program can be easily 
parallelized by using OpenMP [22] compiler directives.  
However, the number of cores on a single CPU is small 
and the gain in performance by using OpenMP is 
therefore still limited. With GPUs, numerical procedures 
such those described above can be executed in parallel 
on a much larger scale. 
 

IV. IMPLEMENTATION 
Efficient use of multiprocessor resources, especially 

global memory transfer strategies, can help to achieve 
close to the maximum theoretical operating speeds of 
GPUs. Memory transfer rates between the global 
memory and multiprocessors can be used as a 
benchmark for GPU performance since much of the 
kernel execution time (70% to 80%) may be spent in 
accessing global memory. In the case of the Quadro FX 
5600, the maximum theoretical memory bandwidth to 
global memory is 76.8 GB/sec [21] or expressed as 
read+write round trip: 38.4 GB/sec. 

Memory coalescing is a performance enhancement 
technique whereby access to global memory by 
multiprocessors can be accelerated [20]. Global memory 
(GDDR3 memory) consists of physical banks of 
memory. Access to global memory by any of the 
multiprocessors results in 400-600 clock cycles of 
latency. In other words, each four byte float or integer 
copied from or written to global memory takes 400-600 
clock cycles. Since the GDDR3 global memory exists 
physically as banks of memory, reads/writes can be 
organized such that [20]: 

1. The starting address of each half-warp (16 
threads) falls on a 64 byte interval 

2. Each thread of a half-warp reads/writes 4, 8 or 
16 bytes consecutively  

3. The threads of each half-warp must be spaced at 
4, 8 or 16 byte intervals. 
 

Figure 5 illustrates the differences in memory access 
speed (GB/sec read-write round trip) between coalesced 
code (~25 GB/sec) and non-coalesced code (~3 GB/sec). 

A speed-up of over 8 times for coalesced kernel code 
warranted developing TLM kernel that adhered to 
coalescing coding strategies. 

 

 
Fig. 5. GPU performance differences between coalesced 

a non-coalesced memory configurations. 
 
 

  
Fig. 6. Coalesced global memory access by thread-

blocks of multiprocessors. 
 

The TLM kernel is designed such that global memory 
is grouped by voltage link lines (12 per TLM node), and 
accessed by the multiprocessors in a coalesced manner 
to take maximum advantage of the GPUs speed 
performance, Fig. 6. The resolution of the Y and Z 
dimensions of a mesh is each one node wide. However, 
the X dimension is partitioned into 64 node segments. 
The addressing is thus contiguous, first in the x-
direction, then the y-direction and finally the z-direction.  
The thread-block dimension is defined at 64 threads, 
where the kernel would read a voltage link line for 64 
nodes at a time in the x-direction. For example, 64 
values of V1 would be read for 64 nodes, then for V2 
would be read for the same 64 nodes and so on until all 
12 voltagess have been read so that the scattering 

0

5

10

15

20

25

30

88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208

Re
ad

‐W
rit
e 
Tr
an
sf
er
 R
at
e 
(G
B/
Se
c)

Threads Per Thread‐Block

Read + Write Round Trip Transfer Rate
4 bytes/thread

V9V10V11V12 V1V2V3V4V5V6V7V8

Global  Memory

V5V6

V1 V2

V3

V4V7

V8

Y

X

Z

Memory Grouped by Voltage Link-Lines and Coalesced Partitions

350 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



 

pro
bac
7 
con

 
Fig.

 

pro
the
dev
to 
esp
use
the
to 
Op
mix
can
pro
int
coh

con
of 
fro
is t

pro
CU
Op
illu
Fig
rel
esp

1

1

2

2

Sp
ee

d 
(M

eg
aN

od
es
/s
ec
)

ocedure may 
ck to global m

showcases 
nfiguring the 

. 7. TLM co
codes w
(150,000
coalesce
Kernel. 

V. OPE
The newl

ogramming in
e CUDA para
veloped using
implement an

pecially true i
ed instead of 
e Driver API 

memory an
penCL differs
xture of para
n utilize a 
ocessors. The
egrating mu
hesive progra
  Figure 8 d

nstructs in the
the equivale

om CUDA to 
the "Local Me
In additio

ogramming co
UDA kernel c
penCL metho
ustrates the c
g. 10. When 
atively new A
pecially when

5.5
0

50

100

150

200

250

1 CPU

Per

commence o
memory is do

the perfo
TLM kernel 

odes performa
were used to
0 nodes). Th
d GPU kern

ENCL IMPL
ly released
nterface (API)
adigm.  In fac
g the CUDA f
n equivalent 
if the NVIDI

f "C for CUD
standards are
nd functions
s in its ability
allel hardwar
mixture of 

erefore Open
ultiple paral
amming parad
depicts some
e two APIs.  A

ent constructs
OpenCL; the

emory" const
n to sys
onstructs, it is
code attribute

ods, Fig. 9.  
code transform

compared 
API hence it 
n the proble

9.3 11.1

2 CPUs 3 CPUs

rformance C
(WR‐28 F

on 64 nodes. 
one in a simil
ormance enh
in a coalesced

ance on 1 to
o analyze a 
e GPU code
nel and a c

LEMENTA
d OpenCL
) has many fe
ct, once a pro
framework, it
version in O

IA's "Driver A
DA" [19]. Bot
e handle-base
s are requir
y to utilize a
re. An Open

GPUs, CPU
nCL is a pow
llel platform
digm. 
e equivalent 
As shown in 
s have meani
e only except
truct. 
stemically r
s also necessa
e modifiers w
A short cod
mation conce
to CUDA, 
is less efficie

em size is sm

12.2

38.

4 CPUs GPU

Comparison
Filter)

Writing resu
lar manner. F
hancement 
d fashion. 

o 4 CPUs. T
WR-28 filt

es have a no
coalesced GP

ATION 
L applicati
eatures found 
ogram has be
t is not difficu

OpenCL. This 
API" method
th OpenCL a
d hence objec
red. Howev

a heterogeneo
nCL applicati
Us, and oth
werful API f

ms under o

programmi
the figure mo
ingful mappi
tion in the tab

replacing t
ary to substitu
with equivale
e segment th

ept is shown 
OpenCL is 

ent than CUD
mall. Figure

8

202.0

U GPU: Coalesced

n

ults 
Fig 

of 

The 
ter 

on-
PU 

on 
in 

een 
ult 
is 

d is 
and 
cts 
er, 

ous 
on 

her 
for 

one 

ng 
ost 
ng 
ble 

the 
ute 
ent 
hat 
in 
a 

DA 
11 

compa
TLM 
million
compu

 
Fig. 8.

 
Fig. 9.

 
Fig. 10
 

We
highly
CUDA
both C
for im
such a
implem
achiev

ares the perfo
code.  When
n nodes, t
utation speed.

 Equivalent 
and OpenC

  Attribute tra

0.  Kernel cod

VI
e have succe
 parallel 

A/OpenCL en
CUDA and O
mplementing 

s TLM on GP
mentation of
ved a 293 MN

ormance of o
n the structur
the two pr
 

 

programmin
CL. 

ansformation 

de transforma

I. CONCLU
ssfully desig
SCN TLM

nabled NVIDI
OpenCL are g

computationa
PU based hard
f the 3D S
Nodes/sec pe

our CUDA an
re size reache
rograms hav

ng constructs

table. 

ation. 

USION 
ned and imp

M algorithm
IA GPU. It is
good program
al intensive a
dware. Our la

SCN TLM r
erformance o

nd OpenCL 
es about 10 
ve similar 

 in CUDA 

plemented a 
m for the 

s found that 
mming APIs 
applications 
atest CUDA 
routine has 

of an empty 

351ROSSI, MCQUAY, SO: GPU BASED TLM ALGORITHMS IN CUDA AND OPENCL



 

structure and 288 MNodes/sec with the filter 
implemented. Ongoing research activities are focusing 
on improving the speed of execution and adapting the  

 
Fig. 11. Performance comparison — CUDA versus 

OpenCL. 
 
algorithms to solve various structures and 
configurations. An investigation in utilizing a cluster of 
4 NVIDIA GPUs on an Acceleware ClusterInABox™ 
Quad Q30 workstation is being conducted. The 
implementations described above can be modified to 
handle the generalized symmetrical condensed node 
(GSCN) TLM algorithm developed by Trenkic et al. 
[23, 24].  The total number of voltage impulses to be 
stored per node would thus increases from 12 to 18.  
This would reduce the number of nodes each multi-
processor thread-block can handle.  However the GSCN 
scattering procedure would not cause any significant 
reduction on the overall performance as the bottleneck is 
in the data transfer, not in number of floating point 
operations.  Hence, the performance results depicted in 
figures 8 and 12 are still valid but the code would reach 
the maximum acceleration at a smaller structure size. 

 
ACKNOWLEDGMENT 

The authors wish to acknowledge the financial 
supports from the Canada Foundation for Innovation 
(CFI) and the Natural Science and Engineering Research 
Council (NSERC) of Canada. 

 
REFERENCES 

[1] M. Macedonia, "The GPU Enters Computing's 
Mainstream", IEEE Computer, vol. 36, no. 10, pp. 
106–108, October 2003. 

[2] G. Shen, G. P. Gao, S. Li, H. Y. Shum and 
Y. Q. Zhang, "Accelerating Video Decoding Using 
GPU", IEEE Transactions on Circuits and Systems 
for Video Technology, vol. 15, no. 5, pp. 685–693, 
May 2005. 

[3] J. Y. Hong and M. D. Wang, "High speed 
processing of biomedical images using 
programmable GPU", International Conference on 
Image Processing, vol. 4, pp. 2455–2458, October 
2004. 

[4] Y. Heng and L. Gu, "GPU-based Volume 
Rendering for Medical Image Visualization", 27th 
Annual International Conference on Engineering in 
Medicine and Biology, pp. 5145–5148, 2005. 

[5] O. Fialka and M. Cadik, "FFT and Convolution 
Performance in Image Filtering on GPU", IEEE 
Proceedings of the Information Visualization, 
pp. 609–614, July 2006. 

[6] J. S. Meredith, S. R. Alam and J. S. Vetter, 
"Analysis of a Computational Biology Simulation 
Technique on Emerging Processing Architectures", 
IEEE International Symposium on Parallel and 
Distributed Processing, pp. 1–8, March 2007. 

[7] S. E. Krakiwsky, L. E. Turner and M. 
M. Okoniewski, "Graphics Processor Unit 
Acceleration of Finite-Difference Time-Domain 
Algorithm", Proceedings of IEEE International 
Symposium on Circuits and Systems, vol. 5, 
pp. V265 – V268, May 2004. 

[8] M. J. Inman, and A. Z. Elsherbeni, “Programming 
video cards for computational electromagnetics 
applications”, IEEE Antennas and Propagation 
Magazine, vol. 47, no. 6, pp. 71–78, December 
2005. 

[9] H. Takizawa, N. Yamada, S. Sakai, and 
H. Kobayashi, "Radiative Heat Transfer Simulation 
Using Programmable Graphics Hardware", 5th 
IEEE/ACIS International Conference on Computer 
and Information Science, pp. 29–37, July 2006.  

[10] Z. Luo, H. Liu, and X. Wu, "Artificial Neural 
Network Computation on Graphic Process Unit", 
Proceedings of IEEE International Joint 
Conference on Neural Networks, vol. 1, pp. 622–
626, August 2005. 

[11] S. Harding, W. Banzhaf, "Fast Genetic 
Programming and Artificial Developmental 
Systems on GPUs", 21st International Symposium 
on High Performance Computing Systems and 
Applications, p. 2, May 2007. 

[12] F. Zhe, Q. Feng, A. Kaufman and S. Yoakum-
Stover, "GPU Cluster for High Performance 
Computing", Proceedings of the ACM/IEEE 
Conference on Supercomputing, pp. 47, 2004. 

352 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



 

[13] folding.stanford.edu/FAQ-ATI.html  
[14] F. V. Rossi, “Massively Parallel Two-Dimensional 

TLM Algorithm on Graphics Processing Units,” 
IEEE International Microwave Symposium, June 
2008. 

[15] F. Rossi and P. P. M. So, “Parallelized three-
dimensional TLM algorithms on a graphics 
processing unit”, 25th International Review of 
Progress in Applied Computational 
Electromagnetics Symposium, pp. 110–114, March 
2009. 

[16] W. J. R. Hoefer, “The Transmission-Line Matrix 
Method – Theory and Applications”, IEEE 
Transactions on Microwave Theory and 
Techniques, vol. MTT-33. No. 10, pp.882-893, 
October 1995. 

[17] P. B. Johns, “A symmetrical condensed node for the 
TLM method,” IEEE Transactions on Microwave 
Theory and Technique, vol-35, no. 4, pp. 370–377, 
April 1987. 

[18] http://www.nvidia.com/object/cuda_home_new.htm
l, April 2010.  

[19] http://www.khronos.org/opencl/  
[20] http://www.nvidia.com 
[21] ClusterInABox Quad (Q30) Product Info, 

http://www.acceleware.com/default/index.cfm/our-
products/clusterinabox-quad, November 2008. 

[22] http://OpenMP.org/wp/ 
[23] V. Trenkic, C. Christopoulos, and T. M. Benson, 

“Development of a general symmetrical condensed 
node for the TLM method”, IEEE Trans. on 
Microwave Theory and Techniques, vol. MTT-44, 
no. 12, pp. 2129–2135, December 1996. 

[24] V. Trenkic, C. Christopoulos, and T. M. Benson, 
“Advanced node formulations in TLM — the 
adaptable symmetrical condensed node”, IEEE 
Trans. on Microwave Theory and Techniques, vol. 
MTT-44, no. 12, pp. 2473–2478, December 1996. 

 
 

Filippo Rossi received the B.Eng. 
degree in Electrical Engineering in 2008 
from the University of Victoria, 
Victoria, British Columbia, Canada. 
Currently he is completing a Master of 
Applied Science at the University of 
Victoria. He is working at the 

Computational Electromagnetics Research Laboratory 
(CERL) at the University of Victoria in GPU computing, 
as well as working with the Millimeter Instrumentation 
team at the Herzberg Institute of Astrophysics, Victoria, 
B.C., Canada. 
 
 

Colter McQuay is an undergraduate 
student at the University of Victoria, 
B.C. in Electrical Engineering with a 
specialization in Signal Processing and 
Computer Music.  Colter was born in 
Kamloops B.C. in 1987.  In 2009, his 
research focused on implementing 

TLM algorithms on GPU hardware using OpenCL , 
presenting a paper at the USRI Conference in Boulder 
Colorado in Jan 2010.  Currently Colter is involved in 
writing an open source electromagnetic simulation 
application using the code developed in previous 
research. 
 
 

Poman So is an Assistant 
Professor at the University of Victoria.  
He received the B.Sc. degree in 
Computer Science and Physics from 
the University of Toronto, Toronto, 
Ontario, Canada, in 1985; the B.A.Sc. 
and M.A.Sc. degrees in Electrical 
Engineering from the University of 

Ottawa, Ottawa, Ontario, Canada, in 1985 and 1987, 
respectively; and the Ph.D. degree in Electrical 
Engineering from the University of Victoria, Victoria, 
BC, Canada, in 1996. 

Dr. So possesses twenty years of hands-on object-
oriented software engineering experience in time-
domain computational electromagnetics.  He developed 
a number of electromagnetic wave simulators based on 
the Transmission Line Matrix (TLM) method.  Dr. So is 
a co-founder of the Faustus Scientific Corporation and is 
the creator and chief software architect of MEFiSTo, a 
general purpose time-domain electromagnetic field 
solver based on the Transmission Line Matrix method. 
From July 1998 to June 2005, Dr. So was the Principal 
Software Engineer at Faustus Scientific Corporation.  In 
July 2005, He joined the Department of Electrical 
Engineering at the University of Victoria.  His research 
interests include object-oriented computational 
electromagnetics, graphics processing unit (GPU) based 
massively parallel TLM algorithms, time domain 
modeling of advanced electromagnetic structures, and 
modeling of bio-electromagnetic systems. 

353ROSSI, MCQUAY, SO: GPU BASED TLM ALGORITHMS IN CUDA AND OPENCL



 

Dr. So is a Registered Professional Engineer in the 
Province of British Columbia, Canada.  He is a senior 
member of The Institute of Electrical and Electronics 
Engineers (IEEE), a member of Applied Computational 
Electromagnetics Society (ACES), and a member of the 
Canadian Medical and Biological Engineering Society 
(CMBES). He has published over 100 refereed journal 
and conference papers.  Dr. So serves regularly a 
reviewer for the IEEE Transactions on Microwave 
Theory and Techniques, the IEEE Microwave and 

Wireless Components Letters, the Applied 
Computational Electromagnetics Society Journal, 
International Journal of RF and Microwave Computer 
Aided Engineering, the International Journal of 
Numerical Modeling – Electronic Networks, Devices 
and Fields by John Wiley and Sons Ltd. He is a member 
of the Editorial Advisory Board for the International 
Journal of Numerical Modeling – Electronic Networks, 
Devices and Fields by John Wiley and Sons. 

 

354 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



Fast CPU/GPU Pattern Evaluation of Irregular Arrays 
 

A. Capozzoli, C. Curcio, G. D’Elia, A. Liseno, and P. Vinetti 
 

Dipartimento di Ingegneria Biomedica, Elettronica e delle Telecomunicazioni  
Università di Napoli Federico II, Via Claudio, 21 Naples, Italy 

a.capozzoli@unina.it  
  

Abstract-  An approach for the fast analysis of 
“irregular”, i.e., of conformal, periodic or 
aperiodic, 2D arrays, based on the use of the p-
series approach and Non-Uniform FFT (NUFFT) 
routines is proposed. The approach allows for 
modulating the computational burden depending 
on the array curvature and, thanks to the use of the 
NUFFT, the asymptotic growth of the computing 
time reduces to that of a few, standard FFTs. A 
sub-array partition strategy is also sketched and 
shown to further unburden the procedure and 
control the accuracy. The approach has been 
implemented in both sequential and parallel codes 
enabling its execution on CPUs and on cost-
effective, massively parallel computing platforms 
like Graphic Processing Units (GPUs). Its 
performance in terms of computational efficiency 
and accuracy has been assessed by an extensive 
numerical analysis and also against benchmarks 
provided by algorithms based on fast Matrix-
Vector Multiplication routines. 
 
Index Terms- Aperiodic array antennas, 
conformal array antennas, fast antenna analysis, 
GPU computing, CUDA. 
 

I. INTRODUCTION 
Array pattern synthesis is a computationally 

challenging problem since it requires demanding 
iterative algorithms for the (local or global) 
optimization of a properly defined objective 
functional [1-3]. The computational bottleneck of 
such algorithms is essentially related to the 
repeated calculation of the far field pattern (FFP) 
and possibly of the functional gradient (FG) (as 
long as gradient-based optimization approaches 
are adopted). 

Different kinds of arrays have been subject in 
the literature of synthesis procedures. Many of the 
developed synthesis algorithms refer to “regular 
arrays” (RAs), for which the elements are arranged 

on a periodic grid of a portion of a line or plane 
(see Fig. 1). In the last decade, “irregular arrays” 
(IAs), namely, arrays for which the elements lay 
on an “aperiodic” grid and/or on conformal lines 
or surfaces have been proposed (see Figs. 2-4) to 
overcome the typical issues of RAs [4-8]. Indeed, 
“aperiodic” structures allow, as compared to 
“periodic” ones, a more efficient power handling, 
if uniformly excited in amplitude [5], and permit 
improving the bandwidth performance [9], while 
also reducing the overall number of elements and 
mitigating the effects of the grating lobes [10]. 
Furthermore, “conformal” structures, as compared 
to linear or planar ones, satisfy aerodynamic and 
low-scattering requirements in aircraft antennas 
[4], permit space deployability [11] and 
considerably reduce the feed path length, thus 
improving the bandwidth behavior, of reflectarray 
antennas [7]. However, IA synthesis appears 
computationally more demanding than RAs 
synthesis, since the FFP or FG evaluations become 
more burdened. 

 
 

Fig. 1.  Example of planar, periodic array. 
 
For RAs, when the array factor can be 

employed [12] and the far field pattern is 
evaluated on a regular spectral grid, the excitation 
coefficients and the array factor are related by a 
“standard” Discrete Fourier Transform (DFT) link, 
i.e., a DFT defined on Cartesian, regular grids, as 

355

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



 
 
Fig. 2. Example of planar, aperiodic array. 

 

 
 

Fig. 3. Example of conformal, periodic array. 
 

 
 
Fig. 4. Example of conformal, aperiodic array. 

discussed in [13]. In this case, the speedup is 
achieved by means of standard Fast Fourier 
Transform (FFT) routines [14]. Indeed, taking for 
example arrays of M elements, the use of FFTs 
changes the O(M2) computational complexity of 
each DFT to O(MlogM). 

On the other hand, for IAs, the possibility of a 
direct use of FFTs [6-8] breaks down. Indeed, for 
planar IAs, evaluating the FFP as well as the FG 
requires the DFT to be computed on irregular grids 
(Cartesian non-uniform or non-Cartesian), so that 
the requirement of standard FFTs is not met 
anymore. Moreover, for IAs whose elements are 
arranged on non-linear or non-planar domains, a 
standard DFT link between array factor and 
excitation coefficients is lost [7]. 

The aim of the paper is to show how the 
asymptotic growth of the computational burden 
when dealing with IAs can be reduced to 
O(MlogM) as long as the computation of the FFP 
can be recast as that of a few FFTs. To this end, 
three different tools are exploited in the following, 
namely the p-series approach [7,15,16], the Non-
Uniform FFT (NUFFT) algorithms [17,18] and a 
sub-array partitioning strategy. In particular, the p-
series approach enables, for conformal surfaces 
with mild curvature, recasting the link between the 
array excitation coefficients and the FFP as the 
sum of a few, possibly non-standard, DFTs. On 
the other hand, NUFFT algorithms quickly 
evaluate non-standard DFTs as the sum of a few 
FFTs. And so, the two approaches together are 
able to restore the yearned O(MlogM) 
computational complexity. Finally, the sub-array 
partitioning strategy is capable to additionally 
improve the method in terms of computational 
burden and accuracy. It is also shown that the 
computational approach herein proposed can be 
even more fruitfully exploited if implemented on 
innovative, intrinsically parallel, off-the-shelf 
hardware provided by Graphical Processor Units 
(GPUs) [19]. GPUs represent, in fact, inexpensive, 
highly-parallel hardware, significantly mitigating 
the requirements in terms of space, management, 
cost and user access, when compared to more 
complex CPU grid/cluster systems [20]. In 
addition, while programming on GPUs remains 
more involved than standard sequential 
programming, the recent interest in GPUs for 
scientific computing has promoted the 
development of effective programming 

356 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



frameworks [21,22], which in return simplified 
implementations on these platforms [23]. Finally, 
it is further shown how the proposed strategy 
fruitfully modulates, depending on the array 
curvature, the computational burden without 
impairing the accuracy of the FFP evaluation. 

The performance of the approach is tested by an 
implementation in C language on a standard, 
single-core (sequential) CPU and by an 
implementation in NVIDIA CUDA (Compute 
Device Unified Architecture) language [24] on a 
(multithread) NVIDIA GTX 260 GPU. More in 
detail, C language implementations of the 
proposed strategy and of an approach based on 
sequential Optimized Matrix-Vector 
Multiplication (OMVM) [25,26], generally having 
an O(M2) asymptotic complexity, but performing 
better than a brute-force (i.e., a matrix vector 
multiplication based on the use of “for loops” 
[27]) one, have been setup. The OMVM approach 
has been purposely developed in this paper to be 
used as a reference for assessing the performance 
of the proposed strategy. Speedups of more than 
10 times for arrays of 104 elements obtained by 
our method as compared to OMVM, FFP 
evaluation are highlighted. Similarly, CUDA 
language implementations of the proposed strategy 
and of an approach based on parallel OMVM 
routines have been realized. Speedups of more 
than 8 times for arrays of 104 elements, when 
comparing the GPU version of our approach 
against that of employing parallel OMVMs are 
pointed out. Moreover, speedups of more than 40 
times, when comparing the GPU and CPU 
versions of the developed algorithm, are indicated.  

Finally, the accuracy of the procedure is 
discussed. 

The paper is organized as follows. In Section II, 
the problem of radiation is formulated and the 
strategy exploited for the NUFFT-based 
evaluation of the FFP, relying on the use of the p-
series approach, is presented. The benchmarking, 
OMVM-based method is also sketched. Section III 
briefly enlightens some details of the sequential 
(CPU) and parallel (GPU) implementations for 
both considered approaches (i.e. NUFFT and 
OMVM). Sections IV and V illustrate and 
compare the computational performance and 
accuracy of the NUFFT-based method, as 
compared to the OMVM-based one. Finally, in 
Section VI, conclusions are drawn and future 

developments are foreseen. In the Appendices, the 
NUFFT algorithm is shortly recalled, C-like and 
CUDA-like listings of the developed NUFFT 
routines are reported and ancillary calculations 
concerning the convenience of adopting a sub-
array partitioning are presented. 
 

II. RADIATION BY 2D IRREGULAR 
ARRAYS 

In the following, the approach to the fast 
analysis of IAs is presented by referring to a 
general 2D geometry.  

Let us consider an antenna array made of M 
elements, non-uniformly distributed on a 2D 
arbitrary surface, S, of equation z=f(x,y), (x,y)∈D, 
with D a planar, auxiliary domain, so that the 
radiating elements are located at the points 
(xm,ym,zm) with zm=f(xm,ym) and m = 0, 1, …, M-1 
(see Fig. 5). The complex excitation coefficients 
are denoted with am, m = 0, 1, …, M-1. 

Generally speaking, the FFP of an IA can be 
written as [4,6-8] 

 
[ ]∑

−

=

+=
1

0
),,,(),(

M

m

vyuxj
mmrmr

mmeyxvuhavuF (1) 

 
where  

 





=
=

ϕθβ
ϕθβ

sinsin
cossin

v

u
,            (2) 

 
β=2π/λ, λ being the wavelength, and hr(u,v,xm,ym) 
accounts for the radiation characteristics and 
position of the m-th element (see also Subsection 
C). 

Henceforth, the vector aspects of the problem 
are dismissed. In other words, we assume that h 
can be factored out as  

 
),(),,,(),,,( vupyxvuhyxvuh mmmmr = , (3) 

 
that is, all the array elements share a common 
polarization behavior described by p. Accordingly, 
Fr(u,v)=F(u,v)p(u,v), where 

 
[ ]∑

−

=

+=
1

0
),,,(),(

M

m

vyuxj
mmm

mmeyxvuhavuF .(4) 

357CAPOZZOLI, CURCIO, D'ELIA, LISENO, VINETTI: FAST CPU/GPU PATTERN EVALUATION OF IRREGULAR ARRAYS



We notice that 
• for mild conformal geometries (the elements 

have approximately the same orientation), 
vector correction terms to eq. (3) are often 
negligible; 

• for non-mild conformal geometries, the sub-
array partitioning strategy helps to mitigate 
the assumptions needed for the validity of eq. 
(3) (see Subsection II.e). 

In practice, the FFP is required at a number H 
of spectral positions (uh,vh), so that the 
corresponding discrete values Fh of F can be 
written, following eq. (4), as 

 

 

Fh = amh(uh,vh ,xm,ym )e j uhxm +vhym[ ]

m= 0

M −1

∑ .        (5) 

 
Thus, even in the case when the spatial and 

spectral points (xm,ym) and (uh,vh), respectively, 
form a Cartesian grids, the samples of the FFP 
cannot be evaluated by a standard FFT since eq. 
(5) is not in the form of a DFT [28]. 

 
A. Far Field Pattern Computation by 
Optimized Matrix-Vector Multiplications 

Whenever it is not possible to conveniently 
express the function h(u,v,xm,ym), an effective way 
to evaluate the samples Fh of the FFP is employing 
OMVM routines. 

Indeed, the kernel h(uh,vh,xm,ym)expj[uhxm+ 
vhym] of eq. (5) can be arranged as a matrix B 
whose generic element is  
 

 

 

Bhm = h(uh,vh ,xm,ym )e j uhxm +vhym[ ]              (6) 
 
so that eq. (5) can be recast as a matrix-vector 
multiplication 

 

 

Fh = Bhmam
m= 0

M −1

∑ .             (7)  

 
Eq. (7) is amenable to be evaluated by OMVM 

routines, which in general perform as O(M2) or, in 
the case of particular symmetries of B, as 
O(Mlog5M) [25,26]. 

In the following, we illustrate a strategy capable 
of reducing the computational complexity needed 
to calculate Fh’s in cases when the function 
h(xm,ym,u,v) can be factored out. 

B. Factorization of the Function h(u,v,xm,ym) 
As long as h(u,v,xm,ym) can be written (in an 

exact or approximate way) as 
 

 

h(xm,ym ,u,v) = ϕ p (u,v)ψ p (xm,ym )
p= 0

P−1

∑ ,       (8) 

 
then the FFP samples Fh can be calculated as 
 

 

Fh = ϕ p (uh,vh )
p= 0

P−1

∑  

[ ]







∑
−

=

+
1

0
),(

M

m

yvxuj
mmpm

mhmheyxa ψ .          (9) 

 
Now, each inner summation of eq. (9) is in the 

form of a (possibly non-uniform, depending on the 
values of xm, ym, uh, and vh) DFT which can be 
computed, in the general case, by a NUFFT 
routine call, performing, as already stressed in the 
Introduction, as O(MlogM). Consequently, the 
FFP samples Fh can be evaluated by P NUFFT 
calls, for an overall O(PMlogM) complexity. 

Generally speaking, a simple way to obtain a 
factorization of h is to regard it as the kernel of a 
linear operator A so that the singular functions of 
A, can be employed [29] as functions ϕp and ψp 
which then provide, when the summation in eq. (9) 
involves infinite terms, an exact representation of 
h. However, when truncating, such summation 
requires a high number of terms for an accurate 
representation, then the expansion of h can be 
obtained by selecting proper basis functions ϕp and 
ψp, depending on the features of h. In the 
following, we present a simple example, of 
relevant practical interest, concerning the 
factorization (8), for a proper choice of ϕp and ψp. 
 
C. p-Series Factorization 

In order to focus the attention on a case of 
practical interest, we consider an IA for which  

 
mjwz

mm evufyxvuh ),(),,,( = ,          (10) 
 

where )( 222 vuw +−= β  and f(u,v) is the element 
factor [12]. As prefigured at the beginning of 
Section II, h depends on the radiation 
characteristics of the m-th element through the 

358 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



element factor p, and on its position through the 
quota zm. For the sake of simplicity, in the 
following formulas we will skip the element 
factor, unessential in the discussion, and we will 
nevertheless deal with it throughout the numerical 
analysis. 

Under this hypothesis, following the approach 
in [7, 15, 16] and on denoting by w0 the value of w 
related to the main beam direction, eq. (4) can be 
rewritten as 

 

 

F(u,v) = a'm e j[uxm +vym +w'zm ]

m= 0

M −1

∑           (11)  

 
with w’=w–w0 and a’m =am exp[jw0zm]. For mild 

curvatures of S, the exponential exp[jw’zm] can be 
expanded by a truncated Taylor series up to the 
(P-1)-th order (p-series), so that 

 

    

 

F(u,v) ≅
( jw')p

p!
zm

p

m= 0

M −1

∑ am
, e j uxm +vym[ ]

p= 0

P−1

∑        (12)  

  
and the discrete values Fh of F can be expressed as 

 

       

 

Fh =
( jwh

, )p

p!
zm

p

m= 0

M −1

∑ am
, e j(uhxm +vhym )

p= 0

P−1

∑ .       (13)  

 
Obviously, the smaller the curvature of S, the 

smaller the value of P required for a given 
accuracy. In practice, a proper value for P can be 
chosen to trade off the computational burden and 
the accuracy of the approach, as it will be clearer 
in Subsection II.e and in the numerical analysis 
presented in Section IV. In general, the number of 
p-series terms is chosen in a way to ensure that the 
argument of exp[jw’zm] is less than a “small” value 
all over the spectral (u,v) region of interest. Such a 
value is typically assumed equal to π/8, or even 
lower if more accurate results are desired. 
Moreover, the chosen number of p-series terms 
depends also on the coverage, so that, once the 
array and the coverage are given, the number of p-
series terms can be consequently assigned. We 
stress that the inner summation in eq. (13) is not in 
the form of a standard DFT [28], so that, to 
recover the desired computational complexity, a 
NUFFT structure should be employed.  

 
 

Fig. 5. Geometry of the problem. 
 

D. Use of the NUFFT 
Concerning the fast evaluation of each inner 

summation in eq. (13), a different NUFFT 
algorithm should be considered depending on the 
spatial and spectral grids at hand. More in detail: 

a) for an arbitrary spatial grid (xm,ym) (aperiodic 
conformal array) and for a regular, Cartesian 
spectral lattice (uh,vh), a Non-Equispaced 
Data (NED), or “type-1”, NUFFT is of 
interest [17]; 

b) for a regular, Cartesian spatial grid (periodic 
conformal array) and for an arbitrary spectral 
one, a Non-Equispaced Result (NER), or 
“type-2”, NUFFT should be employed [17]; 

c) for arbitrary spatial and spectral grids, a 
“type-3” NUFFT should be adopted [18]. 

Since cases b) and c) are extensions of case a) 
which do not add any conceptual difficulty, in this 
paper we assume to evaluate the FFP on a regular, 
Cartesian spectral lattice, so that NED-NUFFTs 
are of interest (case a)). This is the most frequently 
occurring case, since, in antenna synthesis, the 
design specifications are usually given on a 
regular, Cartesian spectral lattice (uh,vh), leading 
indeed to the use of NED NUFFTs. Accordingly, 
for the sake of brevity, cases b) and c) will not be 
dealt with in the details. 

Different approaches have been proposed in the 
literature for evaluating NUFFTs [17,18,30-33]. 

The main idea underlying many NUFFT 
algorithms is to approximate the non-uniform 
exponential function exp(jp∆uxm) (having assumed 
that the h-th spectral point (uh,vh) corresponds to 
the (p∆u,q∆v) uniform spectral grid point), by 
interpolating L, “oversampled”, properly chosen 
and windowed uniform exponentials 
exp(jp∆ul∆x), l=1,..,L. Accordingly, non-

x 

S 

O 

y 

(xN,yN,zN) 

 

 

 

 

z 

θ 

ϕ 

(x1,y1,z1) 

(x2,y2,z2)  

(u,v)-
direction 

359CAPOZZOLI, CURCIO, D'ELIA, LISENO, VINETTI: FAST CPU/GPU PATTERN EVALUATION OF IRREGULAR ARRAYS



uniformly sampled exponentials can be 
approximated by properly weighted sums of 
uniform exponentials, enabling to exploit a finite 
number of standard FFT routine calls. It is worth 
noting that this strategy is not equivalent to a 
“brute-force thinning” of an array which, on the 
contrary, requires significantly denser element 
grids [34]. In this paper, we use the approach in 
[17], based on an “exact” representation of the 
exponentials exp(jp∆uxm). For the reader’s 
convenience, we quote Appendix A for a brief 
mathematical description of the employed NUFFT 
algorithm. 

 
E. Sub-Array Partitioning 

It should be mentioned that the array can be 
also partitioned into N sub-arrays, each one made 
up of mn elements, such that m0+ m1+... mN-1=M. 
Accordingly, eq. (13) can be rewritten by 
explicitly describing the radiation by each array 
portion, thus leading to 

 

Fh =
( jwh

, )p

p!
zm

p

m= mn

mn+1

∑ am
, e j(uhxm +vhym )

p= 0

P−1

∑
n= 0

N−1

∑ .    (14) 

As an advantage, the number P of terms 
involved to represent the exponential in (10) by a 
Taylor series expansion associated to each 
subarray is expected to reduce, for a fixed 
accuracy. Accordingly, the strategy can be applied 
to non-mild shapes, also to reduce model errors 
related to the vector aspects (i.e., model errors in 
the assumption (3)). To better enlighten this 
advantage, we mention the borderline case of a 
faceted array (or a faceted reflectarray [35-37]). In 
this case, across the junctions between the facets, 
the curvature is singular. Nevertheless, a 
partitioning into subarrays enables accurate 
computations with a number of P=1 terms for each 
facet (see also Subsection IV.c). Moreover, the 
sub-array partitioning strategy is further facilitated 
by the use of type-2 (for non-aperiodic arrays) or 
type-3 (for aperiodic arrays) NUFFT routines. 
Indeed, even when dealing with a uniform array, 
the field radiated by the various facets should be 
computed onto the common (u,v) grid associated 
to the overall antenna, a procedure requiring in 
general time-consuming interpolation stages. From 
this point of view, the opportunity of employing 
(type-2 or type-3) NUFFT routines, enabling 
arbitrary (u,v) output grids, offers the possibility of 
performing such an interpolation with O(MlogM) 

complexity. In Section IV, we discuss how much 
convenient such a strategy can be. 

Finally, the sub-array approach is amenable to a 
multi-level implementation [38], but, for the sake 
of simplicity, in this paper we will deal with a 
single-level one. 

 
III. IMPLEMENTATION OF THE 

ALGORITHMS 
The approach proposed in Subsections B-E has 

been implemented in both, a sequential code, 
running on conventional computing architectures 
(single-core CPU), and in a parallel code, taking 
advantage of GPU acceleration. Moreover, 
sequential and parallel implementations of an 
approach based on OMVM routines according to 
eq. (7) have been also setup to serve as a 
benchmark for the performance of the proposed 
approach. 

For both, the sequential and parallel codes, 
particular care has been devoted to 

• selecting high performance FFT routines, as 
required by the proposed, NUFFT-based 
approach; 

• choosing high performance Matrix-Vector 
multiplication routines, as required by the 
OMVM-based scheme. 

In the following, some implementation details 
concerning the developed sequential and parallel 
codes will be discussed. We remark that symbols 
in the following are defined in the Appendices A, 
B and C. 

 
A. Sequential Implementations 

All the sequential codes have been developed in 
ANSI C language. Such a choice is due to the use 
of the CUDA environment to develop the parallel 
counterpart. Indeed, a CUDA program consists of 
“phases” that are executed on the host (CPU) or 
the device (GPU) and of data structures that can be 
allocated on the host or the device, as well (see 
[24]). The host code is straight ANSI C code. The 
device code is ANSI C code, extended with 
special keywords for calling data-parallel 
functions (kernels), and managing the associated 
data structures. Accordingly, the development of a 
parallel code can be performed by starting with the 
sequential ANSI C code, spotting the phases that 
should be parallelized, and extending the 
corresponding instruction and data structures with 

360 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



the special keywords for parallel executions 
provided by CUDA. 

In particular, concerning the sequential code: 
• the NUFFT algorithm has been implemented 

according to [17] (see also Appendix A); a 
particularly fast implementation of the FFT, 
based on the same philosophy of FFTW [39], 
and contained in the Intel Math Kernel 
Library (MKL) [40], has been exploited to 
speedup the required FFT calculations; a C-
style listing of the algorithm is reported in 
Appendix B; the critical point of the 
algorithm is represented by the U matrix 
filling operations, performed within three, 
nested (m, l1 and l2) for loops; such a filling is 
“pseudo-random” (i.e., it does not obey to a 
“row-major” filling criterion [41]) since the 
indices ix and iy “jump” between non-
consecutive values as long as m, l1 and l2 are 
swept; as known, this severely affects the 
memory latency when accessing the elements 
of U [41]; 

• the implementation of the OMVM-based 
approach relies on BLAS routines;  

For both the cases, Intel Math Kernel Libraries 
(MKL) (v.1.0.02), including BLAS and FFT 
routines, have been exploited. 

 
B. Parallel Implementations 

As already stressed in the Introduction, all the 
parallel codes have been developed by means of 
the CUDA language [24]. 

For both, the NUFFT-based and OMVM-based 
algorithms, the GPU is exploited as an 
accelerating device, executing portions of the code 
in parallel [19]. More in detail: 

• for the proposed approach, in correspondence 
to each NUFFT call, the execution is 
delivered to the GPU and the evaluation of 
each NUFFT performed by a proper, parallel 
implementation of the scheme detailed in 
Appendix A; 

• for the OMVM-based approach, the 
evaluation of the matrix multiplication 
required by eq. (7) is performed, again 
through a parallel implementation on the 
GPU; 

In the sequel, some details concerning the 
parallel implementations of the two considered 
approaches will be reported.  

 
1. NUFFT-based approach 

All the stages of Appendix A have been 
carefully examined and parallelized, according to 
the key rules of GPU programming [24]. A 
CUDA-style listing of the algorithm is reported in 
Appendix C. More in detail: 

 
Stage 1 
The calculations of the samples of the spatial 

and spectral windows Φ and Φ̂ , respectively, as 
well as of the indices µx,m and µy,m (see Appendix 
B) are fully independent from each other and are 
evaluated in parallel, rather than by for loops as in 
the sequential case. 

The computation of the U matrix is also 
parallel, but requires some more care, since 
different approaches could be envisaged to this 
end and the best performing one should be 
selected. Indeed, due to the already remarked 
“pseudo-random” access to U required by the 
sequential implementation, devising an efficient 
filling procedure in the parallel case is not 
straightforward and represents the main difficulty 
to be solved throughout the parallelization of the 
whole code described in Appendix B. 

A first possible parallelization strategy would 
be to commit a thread to compute a single matrix 
element of U. However, in this way, the generic 
thread should perform, due to the “pseudo-
random” filling, a time-consuming browsing of the 
input elements to establish whether they contribute 
to the committed element of U or not. 

As an alternative, the implemented parallel 
code employs a 1D block grid of length M, each 
block allocating (2K+1)×(2K+1) threads. In this 
way, the above mentioned browsing is avoided 
since each thread is assigned to a different input 
element and updates the corresponding element of 
the U matrix.  

Generally speaking, the number of allocable 
blocks in a 1D grid depends on the computing 
capability of the employed GPU [24]. For the 
GPU employed in this paper, the number of 
allocatable blocks is 65535, which is large enough 
for all the considered numerical tests. For arrays 
with M>65535, the algorithm should foresee a 
sequential allocation of 1D block grids. Since the 
maximum number of allocatable blocks depends 
on the employed GPU, the actual performance of 

361CAPOZZOLI, CURCIO, D'ELIA, LISENO, VINETTI: FAST CPU/GPU PATTERN EVALUATION OF IRREGULAR ARRAYS



the algorithm depends on the hardware 
performance of the available graphic card. 

However, it should be noticed that, by this 
solution and regardless to M, more than one thread 
may need to simultaneously update (namely, read, 
compute and store a new value) the same element 
U(ix,iy). Unfortunately, when this happens, a 
conflict such as Writing After Writing (WAW) 
and Writing After Reading (RAW) [41] can occur, 
affecting the results. To preserve the integrity of 
the data, atomic operations have been exploited 
[41,42], which basically ensure the semantic 
correctness of the algorithm through a serialization 
of the updating operations. We finally observe 
that, the parallel implementation is such that two 
threads belonging to the same block never update 
the same element U(ix,iy) (although threads 
belonging to different blocks can do). Moreover, 
since each block is (2K+1)×(2K+1) sized and, 
generally speaking, K is usually “small” (typical 
values range from 6, for single precision 
arithmetic, to 12, for double precision [17]), in 
order to speed-up the memory access, the updating 
operations are performed first on a temporary 
(2K+1)×(2K+1) matrix, allocated in the shared 
memory (and then shared by threads belonging to 
the same block), and subsequently on the global 
memory by the mentioned atomic operations. 

 
Stage 2 
The computation of the required FFT has been 

parallelized by means of the latest release of the 
cuFFT library (cuFFT v2.3) [43], implementing 
several, optimized parallel FFT algorithms, and 
choosing the one to be used depending on the 
shared memory occupation of the input array and 
on the possibility of reducing its size to a power of 
an integer factor. 

 
Stage 3 
Extracting the elements of the Û  matrix, their 

scaling with the elements Φpq and the subsequent 
memory updates are independent, and then easily 
parallelizable, operations. 

We finally remark that, throughout the parallel 
implementation of the NUFFT routine, the typical 
suggested guidelines in programming GPUs [24] 
and concerning, for example, 

• avoiding divergencies due, f.i., to conditional 
statements or non-coalesced memory 
accesses; 

• balancing the computational load among the 
available resources; 

have been applied. 
Furthermore, data padding [24] has been 

adopted to manage a generic input data size. It 
should be noticed that, for the considered case, 
data padding does not significantly affect the 
algorithm performance since the amount of 
employed padding is always less or equal to the 
block size (which, as above discussed, contains 
(2K+1)×(2K+1) only threads) and, as such, 
negligible for a large input data size M. 

 
2. OMVM-based approach 

The implementation of the OMVM-based 
approach relies on the latest release of the 
cuBLAS (cuBLAS v.2.3) routines [44]. 

Also for this case, data padding has been 
applied. 

 
3.  Multilevel parallelization 

It is worth noting that, the particular expression 
in eq. (13) is amenable to a further level of 
parallelization, since the different terms of the p-
series summation can be simultaneously computed 
and, in turn, each NUFFT can be parallelized 
according to the guidelines above. Unfortunately, 
a single GPU cannot handle more kernels 
simultaneously and hence cannot effectively 
manage a multi-level, parallel computation.  

Nevertheless, with a multi-GPU system [45], 
the computation of each term of the p-series can 
be executed by a different GPU accomplishing, in 
turn, the computation of a parallel NUFFT. 
Afterwards, all the terms can be added together by 
means of a reduction operation on a “master” 
processing unit. This strategy allows operating a 
two-level parallelism, one to compute the p-series 
and one to compute the NUFFTs. 

Similar considerations apply also to the sub-
array partitioning approach (see eq. (14)). Indeed, 
also in this case the computations for each sub-
array are independent from all the others and a 
two-level parallelism can be obtained. Obviously, 
in this case, a three-level parallelism can even be 
achieved, by exploiting the independence of the 
sub-arrays and of the p-terms. 

362 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



In this paper, only results concerning a single-
level parallelization are shown. The multi-level 
case is left to future developments since it does not 
introduce any conceptual difficulty, but for 
communication protocols between the GPUs [45]. 

It should be finally observed that, with 
reference to the parallel implementation of the 
proposed NUFFT-based approach, the order of 
computation among the different p-series terms, 
or, in other words, the order of computation of the 
different required NUFFT routine calls, could be 
rearranged to simultaneously execute more than 
one NUFFT on the same GPU. In this way, 
apparently a multi-level parallelism could be 
achieved on a single GPU. However, if ever such a 
solution would be more effective, it should not be 
considered of practical interest since it would not 
comply with the typically required transparent 
scalability on a multi-scale architecture [24]. 
 

IV. COMPUTATIONAL 
PERFORMANCE 

In this Section, we present a numerical analysis 
showing the computational performance of all the 
developed algorithms. More in detail, after having 
illustrated the hardware setup employed for the 
tests, a comparison between the computational 
performance of the CPU and the GPU 
implementations of the NUFFT-based and 
OMVM-based algorithms are reported. Finally, 
the trade-off between computational performance 
and accuracy of the p-series and sub-array 
partitioning approaches is discussed.  
 
A. Hardware Setup 

Sequential implementations have been run on a 
personal computer with a single-core, Intel 
Pentium IV processor, with 3 GHz of clock 
frequency, and equipped with a RAM, 2.0 GBytes 
sized.  

Parallel CUDA codes have been executed on 
the same personal computer used for the 
sequential tests, but powered by a GeForce GTX 
260 GPU, having 24 multi-processors working at 
800 MHz and equipped with a memory, 872 
MByte sized.  

 
 
 

B. Computational Performance of the 
Implemented Algorithms 

Fig. 6 reports a comparison of computing times 
for the FFP evaluation by all the implementations 
discussed in Section III versus the size M of the 
IA. More in detail, the computing time has been 
normalized, for all the algorithms, to the 
corresponding one concerning the case M=80. As 
it can be seen, the two GPU implementations 
outperform the corresponding CPU ones, and, in 
particular, the NUFFT-based implementation on 
GPU ensures the lowest growth rate. It is worth 
noting that, the considered GPU computing times 
(here and in the following) include transfers 
from/to host (PC memory) to/from device (GPU 
global memory), so that they represent the 
effective speed-ups that the GPU can provide 
against the CPU architecture. In Fig. 6, the M2 and 
MlogM trends, agreeing with those for the two 
considered CPU-based algorithms, are also 
depicted for higher values of M. Finally, some 
relevant speed-ups are summarized in Table 1. 

 

 
 
Fig. 6. Growth rates of the computing times for the 
FFP evaluation by all the implementations 
illustrated in Section III. 
 
 Table 1: Speed-ups among different 
implementations for an array with M=104. 
 

Implementations Speed-up 
CPU NUFFT vs. 

OMVM >10 

GPU NUFFT vs. 
OMVM 8 

NUFFT GPU vs. 
CPU >40 

363CAPOZZOLI, CURCIO, D'ELIA, LISENO, VINETTI: FAST CPU/GPU PATTERN EVALUATION OF IRREGULAR ARRAYS



In Fig. 7, the speed-up of the GPU 
implementation as compared to the CPU one 
(CPU computing time / GPU computing time) for 
the NUFFT-based approach against the size M of 
the input data is depicted. As it can be seen, the 
improvement in the performance for the GPU 
computation is significant already for small sized 
arrays (less than 100 elements) and the speed-up 
factor grows dramatically with the increasing IA 
dimension M.  
 

 
 
Fig. 7. Speed-up of the GPU vs. CPU 
implementations for the NUFFT-based approach. 

 
In order to explain such a speed-up, a code 

profiling has been performed, enlightening that the 
improved performance is essentially due to the 
critical filling of the matrix U of the sequential 
case and to the employed effective solution in its 
parallelization. 

We finally note that, the relative drops of 
GPU/CPU performance are due to particular sizes 
of the input elements whose data structure does 
not effectively fit the characteristics (number of 
shared registers, constant memory size, number of 
allocatable blocks, number of processors) of the 
employed hardware. As a consequence, for such 
particular input dimensions, the code execution is 
not as massively parallel as it occurs for the others. 
Nevertheless, the GPU still guarantees a 
significant speedup as compared to the CPU. 

 
C. Computational Burden of the p-Series and of 
the Sub-Array Partitioning Strategy 

We now aim at briefly clarifying, for the 
sequential implementation, the conditions under 
which the sub-array partitioning strategy (eq. (14)) 

becomes computationally convenient with respect 
to the only p-series approach (eq. (13)). 

The computational burdens of eqs. (11) and 
(14) are reported and compared in Appendix D. As 
it can be expected, it turns out that (eq. (D3)), for 
sequential implementations, the sub-array 
partitioning becomes convenient as long as it 
“favorably” exchanges p-series terms with sub-
arrays. 

Obviously, these conclusions do not hold true 
when a multi-level parallelism is employed since, 
in this case, the computation time can be reduced 
by a p-series/sub-array partitioning approach 
despite the higher number of operations. 

A remarkable case when the sub-array 
partitioning becomes convenient is that (already 
mentioned) of faceted arrays [35-37], i.e., when 
the surface S is made up by contiguous planar 
portions (facets) with different relative 
inclinations. In this case, each facet can be 
associated to a sub-array which, being flat, 
requires just 1 p-series term. To enlighten this 
point, we have considered the case of a faceted 
array having 3 facets and M=19600 elements. Tab. 
2 summarizes the speed-ups obtained by the sub-
array partitioning strategy as compared to p-series 
only evaluations of the FFP, as a function of P. 
 
Table 2: Comparing the computational 
performance of sub-array partitioning vs. p-series. 

 

# p-series terms Speed-up 
3 1 
4 1.34 
5 1.67 
6 2 
7 2.34 

 
V. ACCURACY 

In this Section, we present a numerical analysis 
illustrating the accuracy of the proposed, NUFFT-
based strategy, by focusing the attention on two 
examples: a linear, aperiodic and parabolic, 
aperiodic arrays. 
 
A. Linear, Aperiodic Array 

Let us begin with a linear (non-conformal), 
aperiodic array. More in detail, we consider an 
equivalently tapered Chebyshev, 1D array [6,8], 
made of 2048 elements having uniform 

364 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



excitations. The elements positions (see Fig. 8) 
have been properly determined, according to the 
approach in [6,8], in order to synthesize the same 
pattern of a Chebyshev array of 1024 uniformly 
spaced elements having a side lobe level of -26dB. 
The resulting inter-element spacing of the array 
elements varies from a minimum of 0.33λ to a 
maximum of 1.8λ, while the overall array size is 
1000λ. 

 
Fig. 8. Elements positions for the Chebyshev 
array. For the sake of clarity, only the position of 
one element every 16 are shown. 

 
The adopted synthesis algorithm is based on 

the optimization of a proper objective functional 
and requires direct evaluations of the FFP, which 
have been performed by means of the proposed 
approach. Obviously, the array being linear, only 1 
p-series term is required. 

Figure 9 shows the synthesized FFP of the 
equivalently tapered Chebyshev array. The 
computations have been sequential and the 
reported “exact evaluation” has been performed by 
the OMVM approach. The computing times for 
the proposed and OMVM approaches have been 
35ms and 62ms, respectively.  

 
Fig. 9. u cut of the FFP of the synthesized 
equivalently tapered, 1D Chebyshev array. Red 
stars: proposed approach. Blue dashed line: exact 
evaluation. 
 

 

B. Parabolic, Aperiodic Array: Accuracy of the 
p-Series and Sub-Array Partitioning Strategies 

In this Subsection, we highlight, with reference 
to the case of a parabolic, aperiodic array, the 
accuracy of the p-series approach versus the array 
surface curvature, and the improvements in the 
accuracy provided by the sub-array partitioning 
strategy. 

To this end, we consider two IAs having the 
same number (i.e., 65388) of elements lying on 
two parabolic surfaces having the same diameter 
(D) but different focal length (f). In particular, the 
first IA, say IA1, has a focal/diameter ratio (f/D) 
equal to 1, while the other, say IA2, has f/D equal 
to 1.5. Under these hypotheses, the curvature of 
IA2 is smoother than that of IA1 (see Fig. 10).  

 

 
 

Fig. 10. The two considered parabolic IAs for the 
analysis of the p-series and sub-array partitioning 
accuracies. Blue: IA1. Red: IA2. 

 
The histogram in Fig. 11 indicates the Root 

Means Square (RMS) error between the exact 
evaluations of the FFPs for IA1 and IA2 (eq. (7)) 
and their computations with the proposed 
approach (eq. (14)), against the number of 
considered p-series terms and sub-arrays. 
Assuming, as acceptable accuracy, the one 
corresponding to a RMS equal to 1%, Fig. 11 
shows that if no partitioning is adopted for IA1, 
even six p-series terms are not enough to attain the 
desired precision. On the contrary, partitioning IA1 
into 16 sub-arrays ensures the desired accuracy 
already with 5 terms and splitting up further the 
array into 64 or 256 sub-arrays reduces the number 
of required p-series terms to 4 or 3, respectively. 
Concerning now IA2, Fig. 11 shows that its milder 

365CAPOZZOLI, CURCIO, D'ELIA, LISENO, VINETTI: FAST CPU/GPU PATTERN EVALUATION OF IRREGULAR ARRAYS



curvature gives rise to a faster p-series 
convergence with respect to IA1. Indeed, 4 p-series 
terms now ensure 1% of RMS error even without 
sub-array partitioning. Introducing the partitioning 
in this case allows reducing the p-series terms to 3 
or 2 with 16 or 256 sub-arrays, respectively. 

 

 
Fig. 11. RMS errors when computing the FFPs of 
IA1 and IA2 against number of p-series terms for 
different numbers of sub-arrays. FFP1 refers to 
IA1, while FFP2 refers to IA2. 
 
C. Accuracy of the p-Series Approach Versus 
the Degree of Aperiodicity 

We finally consider the case of a 2D IA, whose 
16384 elements are aperiodically distributed on a 
paraboloid with focal length/diameter ratio equal 
to 0.8, a typical value in the applications. The 
inter-element spacing varies from 0.35λ to 0.9λ, 
while the excitation coefficients have been chosen 
according to: 

 
1,...,1,0,*1)/( −== −−⋅ Mmeea mm didF

m
βα     (15) 

 
where dm is the distance of the m-th array element 
from the foci, •  is the wave-number and α has 
been properly determined to obtain an amplitude 
tapering of -4dB at the edge. 3 p-series terms have 
been considered, ensuring a negligible RMS error 
(~10-5) in the visible region [0.4,0.4]x[0.4,0.4] • 2 
of the (u,v) plane.  

Figure 12 compares the FFP evaluation of the 
considered IA by means of the proposed approach 
to the exact evaluation (eq. (7)). 

The robustness of the proposed approach versus 
the “degree of aperiodicity” of the array is 
illustrated in Table 3 which reports the RMS error 

of the FFP evaluation when an increasing random 
fraction of array elements is erased, as compared 
to the setting of Fig. 12, thus increasing the degree 
of aperiodicity. It should be mentioned that, as 
long as an increasing random fraction of array 
elements is erased, the sidelobe intensity rises up, 
which leads to the higher RMS in Tab. 3. This 
could be however mitigated by an increasing 
number of p-series terms. 

 
Fig. 12. u cut of the FFP of the parabolic, 
aperiodic array. Red stars: proposed approach with 
3 p-series terms. Blue dashed line: exact 
evaluation. 
 

Table 3:  RMS vs degree of aperiodicity. 
 

RMS error Erased 
elements [%] 

10−8 0 
2.9−3 1 
1.4−1 5 
0.27 10 

 
VI. CONCLUSIONS 

An approach for the fast analysis of IAs based 
on the use of the p-series expansion and NUFFT 
routines has been proposed and implemented in 
both, sequential (CPU) and parallel (GPU) codes. 

The performance of the algorithms has been 
analyzed both in terms of computational efficiency 
and of achievable accuracy.  

In particular: 
• both, the sequential and parallel, NUFFT-

based approaches are capable of improved 
performance as compared to (sequential and 
parallel) algorithms based on OMVMs; 

366 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



• a sub-array partitioning approach can 
further reduce the computational burden by 
speeding-up the convergence of the p-series;  

• a proper parallel code implementation 
enables GPU computing to significantly 
speed-up the execution as compared to that 
on CPU. 

We finally remark that, some of these results 
can be extended to the FG computation in 
synthesis algorithm and to the case of volumetric 
(3D) IAs. Concerning array synthesis, it should be 
mentioned that often multi-stage synthesis 
approaches are employed as in [46] and that the 
most computationally demanding stages can 
strongly benefit of calculating FFP and FG by the 
approach here above proposed, committing the 
computation according to more sophisticated 
vector models just to the last synthesis steps. 

 
APPENDIX A: THE NUFFT ALGORITHM 
 
According to [17], the “exact” representation of 

the exponential function exp(jp∆uxm) is the 
following: 

 

 

e jp∆uxm =
(2π )−1/ 2

Φ(p∆u /c)
ˆ Φ (cxm − l1)

l1 ∈Z

∑ e jp∆ul1 / c   (A1)  

 
where c > 1 is an “oversampling factor”, Φ is a 

∞
0C  function with support in [-π,π] and strictly 

positive in [-π/c,π/c], and Φ̂  is its Fourier 
transform. 

Following eq. (A1), any of the NUFFTs in eqs. 
(13) or (14) can be rewritten as 

 

  

  

  

2) (Step FFT 2D standard aby  Evaluate

,

//

1) (Step ),(

1

0
21

3 Step

11

0

)(

21

21

21

)(ˆ)(ˆ

)/()/(
)2(~

∑ ∑

∑

∈

∆∆
−

=

−−

=

∆+∆









−Φ−Φ

∆Φ∆Φ
==

Zll

culjqculjp

llU

M

m
mmm

M

m

vqyupxj
mpq

eelcylcxb

cvqcup
ebb mm

π

        (A2) 
 

where ,
m

p
mm azb = . Henceforth, we assume to 

be interested in the values of pqb
~

 for p=-N1/2,…, 
N1/2 and q=-N2/2,…, N2/2. 

The sums over l1 and l2 in eq. (A2) require the 
computation of standard 2D, FFTs. Furthermore, 
they can be effectively evaluated provided that Φ̂  
is small outside some interval [-K,K], so that it is 
required that Φ has compact support in [-α,α] and 
Φ̂  is concentrated, as much as possible, in [-K,K]. 
To this end, a Kaiser-Bessel window Φ is used 
[17]. 

The computation of eq. (A2) can be divided 
into three stages (see also [17]).  

 
Stage 1 
For each (xm,ym), the nearest equispaced spatial 

frequencies l1/c and l2/c are determined. The 
samples of the windowing/interpolating functions 
Φ and Φ̂ , respectively, are computed. The inner 
m summation in eq. (A2), that is, the U(l1,l2) 
function, is calculated.  

 
Stage 2 
A standard, 2D FFT routine is performed on U. 

The output matrix Û has size cM×cM. 
 
Stage 3 

Û is reduced to an N1×N2 matrix and then 
scaled with the windowing function 

 

(2π )−1 /Φ(p∆u /c)Φ(q∆v /c). 
 

APPENDIX B: C-STYLE LISTING OF THE 
SEQUENTIAL NUFFT ALGORITHM 

 
// ********* 
// * STEP 1 * 
// ********* 
 
for(p=-N1/2;p<N1/2;p++) { 
   for(q=-N2/2;q<N2/2;q++) { 
 
   Φpq=Φ(2πp/(cN1))Φ(2πq/(cN2)); 
        } 
           } 
 
   for (m=0;m<M;m++) { 
    
      µx,m=round(c*xm); 
      µy,m=round(c*ym); 
    
      for (l1=-K;l1<=K;l1++) {    
       
         ix=mod(µx,m +l1+c*N1/2,c*N1); 

367CAPOZZOLI, CURCIO, D'ELIA, LISENO, VINETTI: FAST CPU/GPU PATTERN EVALUATION OF IRREGULAR ARRAYS



         wxm= Φ̂ (c*xm-(µx,m+l1)); 
       
         for(l2=-K;l2<=K;l2++){ 
          
            iy=mod(µy,m+l2+c*N2/2,c*N2); 

            wym= Φ̂ (c* ym-(µy,m+l2)); 
            U[ix,iy]=U[ix,iy]+wxm*wym*bm; 
          } 
               } 
               } 
   
// ********* 
// * STEP 2 * 
// ********* 
 

Û =fft(U); // 2D fft routine provided by MKL 
 
 
// ********* 
// * STEP 3 * 
// ********* 
 
for (p=0;p<N1;p++){ 
   for(q=0;q<N2;q++) { 
       
      nufft[p,q]=div(u[(c-
1)*N1/2*c*N2+p*c*N2+(c-1)*N2/2+q],Φpq); 
               } 
            } 

 
APPENDIX C: CUDA-STYLE LISTING OF 

THE PARALLEL NUFFT ALGORITHM 
 

// ********* 
// * STEP 1 * 
// ********* 
 
/* Generates a 1D grid of threads to evaluate 
µx,m and µy,m. NUM_THREADS = # threads per block 
*/ 
dim3 dimGrid_mu(M/NUM_THREADS,1); 
dim3 dimBlock_mu(NUM_THREADS,1); 
 
// Parallel evaluation of µx,m and µy,m 
data_round<<<dimGrid_mu,dimBlock_mu>>>(xm,ym,µx,

m,µy,m); 
 
// Generates a 2D grid of threads to evaluate 
Φpq 
dim3 dimGrid_phi(N1/BLOCK_SIZE, N2/BLOCK_SIZE); 
 
// Parallel evaluation of Φpq 

  
dim3 dimBlock_phi(BLOCK_SIZE,BLOCK_SIZE); 
Φ<<<dimGrid_phi,dimBlock_phi>>>(Φpq,N1,N2);  
 
/* Generates a 2D grid of threads to evaluate 
wxm and wym and evaluates those quantities */ 
 
dim3 dimGrid_phi_hat(M,1); 
dim3 dimBlock_phi_hat(2*K+1,1); 

Φ̂ <<<dimGrid_phi_hat,dimBlock_phi_hat>>>(wxm,xm
,µx,m,M); 

Φ̂ <<<dimGrid_phi_hat,dimBlock_phi_hat>>>(wym,ym
,µy,m,M); 

    
// Generates a 1D grid of threads and 
evaluates U 
dim3 dimBlock_u(2*K+1,2*K+1); 
dim3 dimGrid_u(M,1); 
U_matrix_evaluation<<<dimGrid_u, 
dimBlock_u>>>(bm,M,µx,m,µy,m,U,wxm,wym,N1,N2); 
   
// ********* 
// * STEP 2 * 
// ********* 

Û =cuFFT(U); 
 
// ********* 
// * STEP 3 * 
// ********* 
 
dim3 dimGrid_scaling(N1/BLOCK_SIZE,N2 
/BLOCK_SIZE); 
dim3 dimBlock_scaling(BLOCK_SIZE,BLOCK_SIZE); 
scaling<<<dimGrid_scaling,dimBlock_scaling>>>(
Φpq);  

   
APPENDIX D: COMPUTATIONAL 

BURDENS OF THE p-SERIES AND SUB-
ARRAY PARTITIONING APPROACHES 
 
In the un-partitioned case, according to eq. 

(13), the number of operations needed to 
determine the FFP, say No, is (neglecting 
summation operations as compared to 
multiplications) 

  

 

No = M P 4.5c 2 log2(c 2M) + 20K 2 + 3[ ]+ 2{ },  (D1) 
 
where K and c are the NUFFT oversampling 

factor and interpolation length, respectively, and 
the complexity for the evaluation of a single 
NUFFT has been determined according to [17]. 

When the surface is partitioned into Nsub≤ M 
sub-arrays, the computational complexity becomes 
(neglecting again summation operations as 
compared to multiplications) 

 

 

No
sub = M ⋅ P ' ⋅{ N sub[ ⋅ (4.5c 2 log2(c 2M) +

20K 2 + 2)+1]+ Nsub +1}
 (D2) 

 
where P’≤ P is the number of p-series terms 

needed in eq. (17) to achieve the same accuracy as 
for the un-partitioned case. Dividing (D2) by (D1) 
and enforcing that the ratio is less than one, we 
have: 

  

368 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



 

No
sub

No
≤1⇒

⇒ Nsub ≤
9c 2P log2 c + 20K 2P + ∆P +1

1+ (20K 2 + 9c 2 log2 c)(P − ∆P)

(D3) 

 
where P’=P-Δ P. Eq. (D3) provides a necessary 

(but not sufficient) condition, in terms of number 
of sub-arrays Nsub, for the sub-array partitioning 
approach to be computationally convenient as 
compared to the un-partitioned case, for a fixed 
accuracy. Obviously, in eq. (D3), 0≤Δ  P<P since 
the partitioning can reduce the number of p-series 
terms at most to P’=1. Generally speaking, Δ P is a 
function of Nsub and it increases with the number 
of sub-array partitions.  

To be more specific we observe that, typically, 
the values of the NUFFT oversampling factor and 
interpolation length are 2 and 6, respectively. 
Substituting these values in eq. (D3), we get: 

 

 

Nsub ≤
756P + ∆P +1

1+ 756(P − ∆P)
≅

P
(P − ∆P)

≤ P .(D4) 

 
REFERENCES 

[1] O.M. Bucci, G. D’Elia, G. Mazzarella, and G. 
Panariello, “Antenna pattern synthesis: a new 
general approach”, Proc. of the IEEE, vol. 82, 
no. 3, pp. 358-371, Mar. 1994. 

[2] A. Capozzoli and G. D’Elia, “Global 
optimization and antennas synthesis and 
diagnostics, part one: concepts, tools, 
strategies and performances”, Progr. 
Electromagn. Res. PIER, vol. 56, pp. 195-232, 
2006. 

[3] A. Capozzoli and G. D’Elia, “Global 
optimization and antennas synthesis and 
diagnosis, part two: applications to advanced 
reflector antennas synthesis and diagnosis 
techniques”, Progr. Electromagn. Res. PIER, 
vol. 56, pp. 233-261, 2006. 

[4] L. Josefsson and P. Persson, Conformal array 
antenna theory and design, J. Wiley & Sons., 
New York, 2006. 

[5] G. Caille, I. Lager, L.P. Ligthart, C. Mangenot, 
A.G. Roederer, G. Toso, and M.C. Viganò, 
“Aperiodic arrays for multiple beam satellite 
applications,” Proc. of the 11th Int. Symp. on 
Microw. Opt. Tech., pp. 419-422, Dec. 2007. 

[6] A. Capozzoli, C. Curcio, G. D’Elia, A. Liseno, 
and P. Vinetti, “FFT & aperiodic arrays with 
phase-only control and constraints due to 
super-directivity, mutual coupling and overall 
size”, Proc. of the 30th ESA Antenna 
Workshop on Antennas for Earth Observ., 
Science, Telecomm. and Navig. Space 
Missions, May 2008. 

[7] A. Capozzoli, C. Curcio, G. D’Elia, and A. 
Liseno, “Fast power pattern synthesis of 
conformal reflectarrays”, Proc. of the IEEE 
Antennas Prop. Symp., pp. 1-4, July 2008. 

[8] A. Capozzoli, C. Curcio, G. D’Elia, A. Liseno, 
and P. Vinetti, “FFT & equivalently tapered 
arrays”, Proc. of the XXIX URSI General 
Assembly, Aug. 2008. 

[9] J.H. Doles III and F.D. Benedict, “Broad-band 
array design using the asymptotic theory of 
unequally spaced arrays,” IEEE Trans. 
Antennas Prop., vol. 36, no. 1, pp. 27-33, Jan. 
1988. 

[10] A. Akdagli and K. Guney, “Shaped-beam 
pattern synthesis of equally and unequally 
spaced linear antenna arrays using a modified 
tabu search algorithm,” Microw. Optical Tech. 
Lett., vol. 36, no. 1, pp. 16-20, Jan. 2003. 

[11] J. Huang, M. Lou, A. Feria, and Y. Kim, “An 
inflatable L-band microstrip SAR array”, 
Proc. of the IEEE Antennas Prop. Int. Symp., 
pp. 2100-2103, Jun. 1998. 

[12] R.E. Collin, Antennas and radiowave 
propagation, McGraw-Hill, New York, 1985. 

[13] A.W. Rudge, K. Milne, A.D. Olver, and P. 
Knight, The Handbook of Antenna Design Vol. 
2, London, Peter Peregrinus, 1983. 

[14] J.W. Cooley and J.W. Tukey, “An algorithm 
for the machine calculation of complex 
Fourier series”, Math. Comput., vol. 19, no. 
90, pp. 297-301, Apr. 1965. 

[15] V. Galindo-Israel and R. Mittra, “A new 
series representation of the radiation integral 
with application to reflector antennas”, IEEE 
Trans. Antennas Prop., vol. AP-25, no. 5, pp. 
631-641, Sept. 1977. 

[16] O.M. Bucci, G. Franceschetti, and G. D’Elia, 
“Fast analysis of large antennas – a new 
computational philosophy”, IEEE Trans. 
Antennas Prop., vol. AP-28, no. 3, pp. 306-
310, May 1980. 

[17] K. Fourmont, “Non-equispaced fast Fourier 
transforms with applications to tomography,” 

369CAPOZZOLI, CURCIO, D'ELIA, LISENO, VINETTI: FAST CPU/GPU PATTERN EVALUATION OF IRREGULAR ARRAYS



J. Fourier Anal. Appl., vol. 9, no. 5, pp. 431-
450, Sept. 2003. 

[18] J. Y. Lee and L. Greengard, “The type 3 
nonuniform FFT and its applications”, J. 
Comput. Phys., vol. 206, n. 1, pp. 1-5, Jun. 
2005. 

[19] J.D. Owens, M. Houston, D. Luebke, S. 
Green, J. E. Stone, and J. C. Phillips, “GPU 
computing”, Proc. of the IEEE, vol. 96, no. 5, 
pp. 879-899, May 2008. 

[20] www.top500.org . 
[21] T. R. Halfhill, “Parallel processing with 

CUDA”, Microproc. Rep., 
http://www.nvidia.com/docs/IO/55972/220401
_Reprint.pdf, Jan. 28, 2008. 

[22] S. S. Stone, J. P. Haldar, S. C. Tsao, W. M. 
Hwu, B.P. Sutton, and Z.P. Liang, 
“Accelerating advanced MRI reconstructions 
on GPUs”, J. Parallel Distr. Comp., vol. 68, 
no. 10, pp. 1307-1318, Oct. 2008. 

[23] M. J. Inman and A. Z. Elsherbeni, 
“Programming video cards for computational 
electromagnetics applications”, IEEE 
Antennas Prop. Mag., vol. 47, no. 6, pp. 71-
78, Dec. 2005. 

[24] D. Kirk and H. M. Hwu, CUDA Textbook, in 
press. 

[25] M. Bläser, “Lower bounds for the 
multiplicative complexity of matrix 
multiplication”, Comput. Complex., vol. 8, no. 
3, pp. 203-226, Dec. 1999. 

[26] K. Atkinson and D. D. K. Chien, “A fast 
matrix-vector multiplication method for 
solving the radiosity equation”, Adv. in 
Comput. Math., vol. 12, no. 2-3, Feb. 2000, 
pp. 151-174. 

[27] http://matrixprogramming.com/MatrixMultipl
y/ 

[28] D. Sundararajan, The Discrete Fourier 
Transform: Theory, Algorithms and 
Applications, Singapore, Word Scientific, 
2001. 

[29] F. Smithies, Integral equations, Cambridge, 
Cambridge University Press, 1958. 

[30] J. P. Boyd, “A fast algorithm for Chebyshev, 
Fourier and sinc interpolation onto an irregular 
grid”, J. Comput. Phys., vol. 103, no. 2, pp. 
243-257, Dec. 1992. 

[31] A. Dutt and V. Rokhlin, “Fast Fourier 
transforms for nonequispaced data”, SIAM J. 

Sci. Comput., vol. 14, no. 6, pp. 1368-1393, 
Nov. 1993. 

[32] Q. H. Liu and N. Nguyen, “An accurate 
algorithm for nonuniform fast Fourier 
transforms (NUFFT’s)”, IEEE Microw. 
Guided Wave Lett., vol. 8, no. 1, pp. 18-20, 
Jan. 1998. 

[33] J. A. Fessler, B. P. Sutton, “Nonuniform fast 
Fourier transforms using min-max 
interpolation”, IEEE Trans. Signal Proc., vol. 
51, no. 2, pp. 560-574, Feb. 2003. 

[34] W. P. M. N. Keizer, “Large planar array 
thinning using iterative FFT techniques”, 
IEEE Trans. Antennas Prop., vol. 57, no. 10, 
pp. 3359-3362, Oct. 2009. 

[35] H. Legay, B. Salome, E. Labiole, M. A. 
Milon, D. Cadoret, R. Gillard, R. 
Chaharmir,and J. Shaker, “Reflectarrays for 
satellite telecommunication antennas”, Proc. 
of the 2nd Europ. Conf. on Antennas Prop., 
Nov. 11-16, 2007. 

[36] A. G. Roederer, “Reflectarray antennas”, 
Proc. of the 3rd Europ. Conf. on Antennas 
Prof., pp. 18-22, Mar. 2009. 

[37] A. Capozzoli, C. Curcio, G. D’Elia, A. 
Liseno, D. Bresciani, and H. Legay, “Fast 
phase-only synthesis of faceted reflectarrays”, 
Proc. of the 3rd Europ. Conf. on Antennas 
Prop., pp. 1329-1333, Mar. 23-27, 2009, 

[38] N. Yuan, T. S. Yeo, X. C. Nie, and L. W. Li, 
“A fast analysis of scattering and radiation of 
large microstrip antenna arrays”, IEEE Trans. 
Antennas Prop., vol. 51, no .9, pp. 2218-2226, 
Sept. 2003. 

[39] M. Frigo and S.G. Johnson, “The design and 
implementation of FFTW3”, Proc. of the 
IEEE, vol. 93, no. 2, pp. 216-231, Feb. 2005. 

[40] The Numerical Algorithms Group, Intel Math 
Kernel Library Reference Manual, Intel 
Corporation, 2001. 

[41] J. L. Hennessy and D. A. Patterson, Computer 
Architecture: a quantitative approach, San 
Francisco, USA, Morgan Kauffman Publisher, 
2007. 

[42] NVIDIA CUDA Reference Manual, v. 2.0, 
Jun. 2008. 

[43] CUDA cuFFT Library, Oct. 2007. 
[44] CUDA cuBLAS Library, Sept. 2007. 
[45] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. 

McCormick, S.H.M. Buijssen, M. Grajewski, 
and S. Turek, “Exploring weak scalability for 

370 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



FEM calculations on a GPU-enhanced 
cluster”, Parallel Comp., vol. 33, no. 10-11, 
pp. 685-699, Nov. 2007. 

[46] A. Capozzoli, C. Curcio, G. D’Elia, and A. 
Liseno, “Power pattern synthesis of multifeed 
reconfigurable reflectarrays”, Proc. of the 29th 
ESA Antenna Workshop on Multiple Beams 
Reconfig. Antennas, Apr. 2007. 

 
Amedeo Capozzoli graduated (summa cum laude) 
in Electronic Engineering and received the PhD 
degree in Electronic Engineering and Computer 
Science, both from the University of Naples 
Federico II in 1994 and 2000 respectively. 
In 1996, he was awarded the Telecom Italia Prize 
for the best degree thesis in Electronic 
Engineering discussed at the University of Naples 
Federico II in the Academic Year 1994-1995. In 
November 1999, he won the open competition for 
the post of Researcher at the University of Naples 
Federico II. In September 2002, he was awarded 
the Barzilai Prize for young scientists at the XIV 
Riunione Nazionale di Elettromagnetismo. In 
April 2003, he won the open competition for the 
post of Associate Professor at Politecnico di 
Milano. Since January 2005, he has been 
Associate Professor of Electromagnetic Fields at 
the University of Naples Federico II. His research 
interests include synthesis and diagnosis of 
radiating systems, inverse-scattering techniques, 
advanced measurement techniques, and the 
restoring of aberrations due to propagation through 
random media. 
 
Claudio Curcio received the Laurea degree 
(summa cum laude) in Electronic Engineering and 
the PhD degree in Electronic and 
Telecommunication Engineering, both from the 
Università di Napoli Federico II, Naples, Italy, in 
2002 and 2005, respectively. In 2006-2007, he 
held a post-doctoral position at the University of 
Naples Federico II. He is currently a Researcher at 
Università di Napoli Federico II. His main fields 
of interest are antenna measurements, phaseless 
near-field/far-field transformation techniques, 
optical beamforming techniques for array 
antennas, and reflectarray synthesis. 
In February 2002, he was the recipient of the 
Optimus Award at the SIMAGINE 2002 
“Worldwide GSM & Java Card Developer 
Contest.” 

 
Giuseppe D'Elia was born in Italy in 1950. He 
received the EE degree (summa cum laude) from 
the Università di Napoli, Naples, Italy. From 1983 
to 1987, he was with the IRECE Institute of the 
National Research Council (CNR). From 1987 to 
1990, he was an Associate Professor of Antennas 
and Propagation at the Università di Salerno, 
Salerno, Italy. From 1990 to 2001, he was an 
Associate Professor of Antennas at the 
Dipartimento di Ingegneria Elettronica e delle 
Telecomunicazioni, Università di Napoli Federico 
II, Naples, Italy, where, since 2001, he has been a 
full Professor of Electromagnetic Fields. 
Prof. D'Elia has been a visiting scientist at many 
microwave labs, such as the Electrical Engineering 
Research Laboratory, University of Texas at 
Austin; the Popov Society, Moscow, Russia; the 
Institute of Electrical Engineering of the Queen 
Mary College at the University of London; the 
Microwave Laboratory of the Marconi GEG, 
Great Britain; and JPL, Pasadena, California. His 
main fields of interest include the transient 
behavior of antennas in dispersive media, efficient 
and non-redundant techniques for analysis and 
synthesis of reflector and array antennas, phase-
less near-field antenna characterization, wavefront 
reconstruction from amplitude data by blind 
deconvolution, NF-FF transformation techniques, 
non-redundant representation of radiated or 
scattered fields, and inverse scattering and remote 
sensing from polarimetric data. Prof. D'Elia was 
awarded the 1999 Honorable Mention for the H. 
A. Wheeler Applications Prize Paper Award of the 
IEEE Antennas and Propagation Society. 
 
Angelo Liseno was born in Italy in 1974. He 
received the Laurea degree (summa cum laude) 
and the PhD degree in 1998 and 2001, 
respectively, both in Electrical Engineering, from 
the Seconda Università di Napoli, Italy. In 2001-
2002, he held a postdoctoral position at the 
Seconda Università di Napoli. In 2003-2004, he 
was a research scientist with the Institut flir 
Hochfrequenztechnik und Radarsysteme of the 
Deutsches; Zentrum für Luft- und Raumfahrt 
(DLR), Oberpfaffenhofen, Germany. Since 2005, 
he has been a Researcher with the Università di 
Napoli Federico II, Dipartimento di Ingegneria 
Elettronica e delle Telecomunicazioni, Naples, 
Italy. His main fields of interest are phaseless 

371CAPOZZOLI, CURCIO, D'ELIA, LISENO, VINETTI: FAST CPU/GPU PATTERN EVALUATION OF IRREGULAR ARRAYS



near-field/far-field transformation techniques, 
remote sensing, and inverse scattering. 
 
Pietro Vinetti was born in Naples in 1978. He 
received the Laurea degree in Telecommunication 
Engineering from the University of Naples 
Federico II, Naples, Italy, in 2003. Since 2005, he 
has been a PhD student in Electronic and 
Telecommunication Engineering at University of 
Naples Federico II, with electromagnetic as his 
area of interest. His research activity is mainly 
focused on the development of innovative near-
field antenna-characterization systems, based on 
non-invasive dielectric probes and phaseless near-
field/far- field transformation techniques. 
 

372 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



A New Software and Hardware Parallelized Floating Random-Walk 
Algorithm for the Modified Helmholtz Equation Subject to 

Neumann and Mixed Boundary Conditions 
 

Kausik Chatterjee1, McCullen Sandora1, Christopher Mitchell1, Deian Stefan1, Dave 
Nummey1, and Jonathan Poggie2 

 
1Department of Electrical Engineering 

The Cooper Union for the Advancement of Science and Art, New York, NY 10003-7185, USA 
chatte@cooper.edu, sandor@cooper.edu, mitche2@cooper.edu,  

stefan@cooper.edu, nummey@cooper.edu 
 

2The Air Force Research Laboratory, AFRL/RBAC,  
Wright-Patterson Air Force Base, OH 45433-7512, USA 

jonathan.poggie@wpafb.af.mil 
 
 
Abstract– A new floating random-walk 
algorithm for the one-dimensional modified 
Helmholtz equation subject to Neumann and 
mixed boundary conditions problems is 
developed in this paper. Traditional floating 
random-walk algorithms for Neumann and 
mixed boundary condition problems have 
involved “reflecting boundaries” resulting in 
relatively large computational times. In a recent 
paper, we proposed the elimination of the use of 
reflecting boundaries through the use of novel 
Green’s functions that mimic the boundary 
conditions of the problem of interest. The 
methodology was validated by a solution of the 
one-dimensional Laplace’s equation. In this 
paper, we extend the methodology to the 
floating random-walk solution of the one-
dimensional modified Helmholtz equation, and 
excellent agreement has been obtained between 
an analytical solution and floating random-walk 
results. The algorithm has been parallelized and 
a near linear rate of parallelization has been 
obtained with as many as thirty-two processors. 
These results have previously been published in 
[1]. In addition, a GPU implementation 
employing 4096 simultaneous threads displayed 
a similar near-linear parallelization gain and a 
one to two orders of magnitude improvement 
over the CPU implementation. An immediate 
application of this research is in the numerical 
solution of the electromagnetic diffusion 

equation in magnetically permeable and 
electrically conducting objects with applications 
in dielectrometry and magnetometry sensors that 
have the ability to detect sub-surface objects 
such as landmines. The ultimate goal of this 
research is the application of this methodology 
to the solution of aerodynamical flow problems. 
 
Index Terms– Floating random-walk, Monte 
Carlo, modified Helmholtz equation, 
parallelizable algorithm, CUDA, GPU.  
 

I. INTRODUCTION 
The floating random-walk (FRW) method [2] 

is a statistical technique for the numerical 
solution of deterministic boundary value 
problems. It is a generalization of the Monte 
Carlo integration method [3], which is a 
statistical approach to estimating integrals, 
which, unlike many other techniques, is well-
suited to evaluating multi-dimensional integrals.  
We will discuss one such method, “Sample 
Mean Monte Carlo” [3], and then demonstrate 
how the technique is modified to form the basis 
for the FRW method. 

Consider a function )(xf  defined over the 
interval bxa ≤≤ . Our problem is to estimate 
the integral 

.)(∫=
b

a

xfdxI                        (1) 

373

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



In the event that the integral is improper, 
absolute convergence is assumed. We select an 
arbitrary probability density function )(xp , with 
a corresponding random variable ξ . We define 
another random variable η  as 

( )
( ).ξ
ξη

p

f
=                            (2)                   

The expectation value of the random variable 
η , written as ( )ηE , is equal to the integral I , 
which can be expressed as 

( ) .)(
)(
)(

∫ 







==

b

a

xp
xp

xf
dxE ηI               (3)                                                                                       

This integral can be evaluated by sampling the 
integrand with the help of a random-number 
generator, and averaging over a statistically 
significant number of samples. This approach is 
particularly suited to evaluating higher 
dimensional integrals, because the 
computational work of sampling the integrand 
does not increase substantially with the 
dimensionality of the integral. We will now 
describe how this Monte Carlo integration 
method can be generalized into the FRW 
method for the solution of boundary value 
problems. 

We consider a differential equation, with a 
differential operator L, 

[ ] ,)()( rr fUL =                         (4)                                                                                                                                                                  
where the solution U(r) is a function of the 
three-dimensional position vector r. The 
function f(r) is a source term. The Green’s 
functions for (4) are the solutions of the 
differential equation 

[ ] ,)()|( oo rrrr −= δGL                   (5)                                                                         
subject to specified boundary conditions. We 
assume that the operator L is of the Sturm-
Liouville [4] form: 

[ ] ,)()(. rr qpL +∇∇=                    (6)                                                                     
where )(rp  and )(rq are known functions of r . 
Using Green’s integral representation [4] U(r) 
can be written as 

( )

[ ]

[ ] .)()()(

)()()(

)()|(

rrr|r.s

r|rrr.s

rrrr

or

or

oo

UpGd

GpUd

fdvGU

S

S

V

∫∫

∫∫

∫∫∫

∇+

∇−

=

           (7) 

The first term on the right hand side of (7) is a 
volume integral involving the source term in the 
entire volume V of interest. The second and 
third terms are vector surface integrals over the 
surface S enclosing V, where sd  is a vector 
whose magnitude is equal to that of an 
infinitesimally small area unit on the surface S 
and directed normally outward from the center 
of the area unit.  The term G(r|ro) is often 
referred to as the volumetric Green’s function 
and the term  r|r or )(G∇ is called the surface 
Green’s function. The second term corresponds 
to the Neumann [4] boundary condition, 
whereas the third term corresponds to the 
Dirichlet boundary condition [4]. In traditional 
FRW algorithms, homogeneous Dirichlet 
boundary conditions are imposed on the Green’s 
function given by (5). As a result, the second 
integral in the right hand side of (7) goes to 
zero. To evaluate the solution to (4) at a 
particular point in the domain of interest, we 
consider [2] maximal spheres, cubes, or any 
geometrical object for which the solution to (5) 
is known. We then make random hops to the 
surface of that geometrical object based on any 
predefined probability density. The weights for 
such random hops are determined by sampling 
the remaining two integrands in (7). For 
example, in the case of a Dirichlet problem with 
no source term [i.e., 0)( =rf ], the contribution 
of the volume integral also goes to zero and the 
problem reduces to a Monte Carlo integration of 
an infinite-dimensional integral, as given by: 

( ) ( ) ( ) ( )

( ) ( ) ( ),cos||

,|...|

,1

1

1

nn

S

n

S

GK

UKdsKdsU
n

−−− ∇=

= ∫∫
γn1nrn1n

nn1-n100

rrrr

rrrrrr

n

(8)                                   

where nn ,1−γ  is the angle between 
 r|r n1nrn

)( −∇ G and .nsd  The successive surface 
integrals in (8) relate to successive random hops 
across the problem domain and the weight 
factors of the form ( )n1-n rr |K  are derived from 

374 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



the third integral term on the right hand side of 
(7) that corresponds to the Dirichlet boundary 
condition. A particular random walk is 
terminated at the boundary, where the solution 
is known, and the samples of successive weight 
factors multiplied by the solution at the 
boundary yield a particular sample of the 
solution. A numerical solution of (4) is obtained 
by averaging over a statistically significant 
number of such samples.  

The termination of the random walk becomes 
a problem for Neumann and mixed boundary 
condition problems where the solution is not 
known at all points of the domain boundary. In 
traditional random walk literature [5], these 
boundary conditions are formulated as partially 
“reflecting” as the random-walker has a chance 
of either being absorbed in the problem 
boundary or being thrown back into the problem 
domain. In a recent paper [6], we formulated a 
FRW algorithm for this particular problem 
where the reflection at problem boundaries was 
eliminated through the development of a 
Green’s function whose boundary conditions 
mimicked the boundary conditions of the 
problem of interest. In this paper, we extend the 
methodology to the solution of the one-
dimensional modified Helmholtz equation, 
subject to mixed boundary conditions. 
 

II. THE NEW FORMULATION 
Consider the equation 

,02

2

=
dx

Ud                           (9)                                                                         

where U  is the dependent variable of interest 
defined in the problem domain .0 Lx ≤≤  The 
boundary conditions imposed on this problem 
are α=)0(U  and .)( β=LU   A traditional 
FRW algorithm for this problem will be based 
on a Green’s function given by 

( )02

2

xx
dx

Gd
−= δ ,                   (10)                                                                

defined on a problem domain ,hxh ≤≤−  with 
homogeneous Dirichlet boundary conditions 
( ) 0| 0 =− xhG  and ( ) .0| 0 =+ xhG  The solution 

to (10) in a zero-centered notation (i.e., 00 =x ) 
is given by 

( )
( )

( )
.

0,
2
1

0,
2
1

0|
















≤+−

≥−
=

xhx

xhx
xG             (11)                                                            

Based on the 1D version of the Green’s integral 
representation (7), the solution to (9) at the 
center of the one-dimensional problem domain 
can be written as 

,

)0(

hx

hx

dx

dU
G

dx

dG
U

dx

dU
G

dx

dG
UU

−=

=





 −−





 −=

             (12)                                          

where no specific boundary conditions have 
been imposed on the Green’s function. Using 
the Green’s function given by (11), (12) can be 
reduced to 

).(
2
1)(

2
1)0( hUhUU −+=            (13)                                             

Thus, the solution to (9) at the center of the 
problem domain hxh ≤≤−  can be expressed 
in terms of the solution at the two end-points. In 
a traditional FRW algorithm, (13) is used to 
generate the random walks. The random walker 
either hops to the left or to the right with equal 
probability (without any restriction on the hop 
size) until it is absorbed at one of the 
boundaries. An estimate of the solution at any 
given point *xx = within the problem domain 

Lx ≤≤0 is given by 

( ) ,*

βα

βα βα
NN

NN
xU

+
+

=                 (14) 

where the number of times the random walker 
hits the 0=x  and the Lx =  boundary are αN  
and βN  respectively.  Now let us consider the 
solution of (9) defined on the problem domain 

,0 Lx ≤≤  but with the boundary conditions 
α=)0(U  and{ } .β=

=Lxdx
dU  It is obvious that 

a FRW scheme based on (13) will not find a 
reward at the Lx =  boundary. The termination 
at this boundary is based on a finite-difference 
based representation of the Neumann boundary 
condition [5] and the random-walker is either 
absorbed or reflected back into the problem 
domain. If the random walker is reflected back 
in the problem domain, once again random 
walks are generated based on (13). This partial 

375CHATTERJEE, SANDORA, MITCHELL, STEFAN, NUMMEY, POGGIE: ALGORITHM FOR MODIFIED HELMHOLTZ EQUATION



reflection at the boundary increases the 
computational time and as a result, Neumann 
and mixed boundary condition problems are 
considered difficult to be handled with the FRW 
method. 

In a recent paper [6], we proposed a 
philosophically different approach for Neumann 
and mixed boundary condition problems and 
applied it to the problem given in (9). In our 
approach, the boundary conditions imposed on 
the Green’s function mimic those of the problem 
of interest and as a result, the reflecting 
boundaries are converted to absorbing 
boundaries. In this paper, we use this approach 
to develop a FRW algorithm for the one-
dimensional modified Helmholtz equation given 
by 

,02
2

2

=− Uk
dx

Ud                     (15)                                                                       

where U is the dependent variable of interest 
defined in the problem domain ,0 Lx ≤≤  and 
k  is a real number independent of .x  The 
boundary conditions imposed are χ=)0(U  and 

{ } .δ=
=Lxdx

dU   Our approach is motivated by 

the one-dimensional version of Green’s integral 
representation given by (12) and is based on a 
Green’s function )|( 0xxG  of (15) given by 

( ) ( ),| 00
2

2

2

xxxxGk
dx

Gd
−=− δ         (16)                                                          

defined in the problem domain hxh ≤≤−  with 
the boundary conditions ( ) 0| 0 =− xhG  and 

{ } .0=
=hxdx

dG  This Green’s function is 

explicitly given by 

( ) ( )[ ]
[ ]

( )[ ]

( ) ( )[ ]
[ ]

( )[ ] .,cosh
2cosh

sinh
|

,,sinh
2cosh

cosh
|

0

0
0

0

0
0

xxhxk

khk

hxk
xxG

xxhxk

khk

hxk
xxG

≥−×

+
−=

≤+×

−
−=

          (17)                                           

We use the boundary conditions that have been 
imposed on the Green’s function given by (17) 
and the one-dimensional Green’s integral 
representation given by (12) to obtain a 
representation of the solution ( )0xU  at a point 

hxh ≤≤− 0  given by 

( ) ( )

( ) .

| 00

hx

hx

dx

dG
xU

dx

dU
xxGxU

−=

=





−





−=

             (18) 

We now obtain a derivative of (18) with respect 
to 0x  and obtain a representation of the 
derivative of the variable of interest U  given by 

( ) .
0

2

00 hxhx
dxdx

Gd
xU

dx

dU

dx

dG

dx

dU

−==









−








−=  (19) 

Equations (18) and (19) are used to generate a 
FRW scheme that is different from the scheme 
based on (13). In order to estimate the solution 
at a given point, the random walker hops to 
either the left or the right with probability 2/1  
as given by (18). If the random walker moves to 
the left, there is a multiplicative weight factor 
given by [ ] hxxLL xxGW −=−= )|(2 0  and (18) is 
again used to generate the random walks in the 
next hop. On the other hand, if the random 
walker moves to the right, there is a 
multiplicative weight factor given by 

( )[ ] hxLR xxGW =−= 0|2  and (19) is used to 
generate the random walks in the next hop. As 
(19) is used to generate the random walks, the 
random walker moves to the left or the right 
with probability .2/1  If the random walker 
moves to the left, there is a multiplicative 
weight factor given by 

( )[ ]
hxxxRL xxGW

−=
−= 0|2

0
and (18) is used to 

generate the random walks in the next hop. On 
the other hand, if the random walker moves to 
the right, there is a multiplicative weight factor 
given by [ ]

hxxRR xxGW
=

−= )|(2 00
and (19) is 

used to generate the random walks in the next 
hop. A particular random walk terminates either 
in the left boundary with a reward χ  or at the 
right boundary with a reward ,δ  and an 
estimate of the solution is obtained by averaging 
over a statistically significant number of random 
walks. Thus, through the use of the Green’s 
function in (17), the partially reflecting 
boundary at Lx =  is converted to an absorbing 
boundary and there is no reflection. The results 
for the problem given by (15) will now be 
presented. 

376 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



III. SOFTWARE RESULTS 
A mixed boundary condition problem for the 

modified Helmholtz equation given by (15) is 
chosen with ,3=L  ,5.0=k  1=χ  and .3=δ  
Fig. 1 plots the exact analytical solution and the 
FRW results and these are seen to be in 
excellent agreement. In the FRW simulations, 

6102×  random walks have been carried out for 
each solution point and the average error 
between the analytical results and the FRW 
solution was seen to be about 0.1 percent. Fig. 2 
shows the relative speed of parallelization with 
respect to single processor computation. It is 
seen that the relative speed of parallelization 
gets closer to unity as the number of random-
walks per solution point is increased. The 
increased deviation from linearity with decrease 
in the number of random-walks can be 
interpreted as the percentage increase in inter-
processor communication time with respect to 
actual computation time that occurs with 
decrease in the number of random-walks. 

 
Fig. 1. Analytical and FRW results for the 
solution of the modified Helmholtz equation 
plotted against normalized length ( ).' kxx =  
 

IV. GPU IMPLEMENTATION 
    While multiprocessor environments provide 
exceptional throughput advantages in scientific 
computing, GPUs have recently emerged as an 
alternative highly-parallel technology for 
general purpose computing.  GPUs contain a 
significantly higher core density than any 
commercially-available CPU, with the tradeoff 

 
 
Fig. 2. Relative speed of parallelization with 
respect to single processor computation. 
 
of a restricted and relatively more specific 
instruction set and the need for complex 
memory management by the designer. With the 
recent introduction [7] of the Compute Unified 
Device Architecture (CUDA) to developers on 
commodity NVDIA graphics cards, throughput 
gains of scientific applications can be increased 
by orders of magnitude. Using NVIDIA's CUDA 
application programming interface (API), we 
have implemented the previously-developed 
algorithm to explore and evaluate the merit and 
value of the approach.  Efficient parallelization 
is a significant logical problem that may be 
solved in different ways depending on the nature 
of the architectural environment and the 
algorithm under parallelization. CUDA’s shared 
memory model and layout of threads into 
blocks, for example, must be taken into account 
to maximally utilize the GPU’s resources.  
    The Helmholtz problem under study lends 
itself well to parallelization.  As the problem 
requires executing highly-repetitive code for 
millions of iterations per point at which the 
equation is solved, it can directly be parallelized 
by assigning each point to a thread within a 
thread block. Our final program was divided 
into three sections: 
 

377CHATTERJEE, SANDORA, MITCHELL, STEFAN, NUMMEY, POGGIE: ALGORITHM FOR MODIFIED HELMHOLTZ EQUATION



1)    A serial (CPU) part that set up initial 
conditions. 

2)   A parallel version that ran 200,000 iterations 
of the algorithm for each point. 

3)   A serial finalization section that collected 
and displayed the results from the GPU. 

The implementation has been simplified 
through the use of global GPU memory that is 
retained for the execution lifetime of the 
application. Additional improvements of 100x 
to 150x speedup can be achieved by using the 
shared memory, visible between the threads of a 
block but not shared among other blocks.  This 
requires some overhead to load from global to 
shared memory at the beginning of the block 
and restore results to global memory at the end, 
but ‘reads’ and ‘writes’ from shared memory are 
comparable to register access time which is 
drastically faster than the 400-600 cycles 
required for global memory ‘reads/writes.’ The 
initial copy from global to shared memory is 
hidden by using thousands of threads that are 
more computationally intensive. 
    A 200,000-iteration test has been run on both 
a CPU and a GPU, with 16 points for the CPU 
and 4096 points for the GPU, the CPU 
completed its task in 2.57 seconds, while the 
GPU took 16.56 seconds.  This indicates a 
speedup of 39.7 (0.16s/point vs. 0.004s/pt) in 
favor of the GPU.  With additional 
improvements in memory handling, significant 
additional speedup may be possible.  The GPU 
implementation is based on 4096 parallel 
threads organized into 32 blocks of 128 threads 
each for purposes of coalesced memory access 
and thread scheduling.  To circumvent an 8-
second execution time limit imposed by the 
Linux drivers for the graphics card, tests 
involving more than 100,000 random walks 
were broken down into multiple sub-steps each 
running at most 100,000 walks.  Note that the 
imprecision visible in Figure 3 below is 
attributable both to the use of single-precision 
floating point calculations instead of double-
precision in our tests (the GPU in question, 
GeForce GTS 8800, does not contain double-
precision floating point units) and to the 
relatively low number of walks (i.e., 200000) for 
each point.  Although only nine representative 
points are shown on the graph, the Helmholtz 

solution was calculated for a full 4096-point 
span for ],5.1,0[' =x  where kxx ='  is the 
normalized length scale shown in Fig. 1. 
    The GPU implementation utilized the 
Mersenne Twister pseudorandom number 
generator (PRNG) written by NVIDIA [8].  It 
was used to generate a very large array of 
pseudorandom numbers before the random walk 
algorithm began; the algorithm then picked 
successive numbers out of the pre-calculated 
array.  The random number array of about 24 
million values was recalculated on the GPU in 
roughly 1 second using 4096 parallel threads; 
when the test was broken into multiple sub-
steps, a new set of PRNGs was calculated with a 
new seed for each sub-step. 
     

 
 
Fig. 3. GPU solution to the Helmholtz equation 
utilizing random walks. The solution at nine 
representative points from a total of 4096 is 
shown. 
 

V.   CONCLUSION 
Summarizing, a previously-developed FRW 

methodology [6] for Neumann and mixed 
boundary problems has been extended to the 
solution of the 1D modified Helmholtz equation. 
In this methodology, reflecting boundaries are 
converted into absorbing boundaries through the 
development of Green’s functions that mimic 
the boundary conditions of the problem of 
interest. The algorithm has been validated by an 

378 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



analytical solution and excellent agreement has 
been obtained between analytical and numerical 
results. The algorithm has been parallelized in 
software and a near linear rate of parallelization 
has been obtained for as many as thirty-two 
processors.  On a commodity graphics card, a 
speedup of over two orders of magnitude over 
the software implementation has been obtained. 
Further work involving GPU implementation 
will therefore begin with further optimizing our 
current implementation and considering a 
method of higher parallelization by scheduling 
threads on the per-walk level rather than the per-
point level, which while introducing more 
overhead will allow for similar (and therefore 
lower) execution time between threads. Our 
future work in this area will involve the 
extension of this methodology to other 
important equations and to problems in two and 
three dimensions. The ultimate goal of this 
research is the utilization of this methodology 
for the solution of aerodynamical problems with 
Neumann and mixed boundary conditions. 
 

ACKNOWLEDGMENT 
This research has been supported by the Air 

Force Office of Scientific Research through a 
grant (FA9550-06-1-0439) monitored by Dr. F. 
Fahroo.  

 
REFERENCES 

[1] K. Chatterjee, M. Sandora, C. W. Yu, S. 
Srinivasan, J. Poggie, “A New Parallelized 
Floating Random-Walk Algorithm for the 
Modified Helmholtz Equation Subject to 
Neumann and Mixed Boundary Conditions: 
Validation with a 1D Benchmark Problem,” 
The 25th International Review of Progress in 
Applied Computational Electromagnetics, 
March 2009.  

[2] Y. L. Le Coz and R. B. Iverson, “A 
Stochastic Algorithm for High Speed 
Capacitance Extraction in Integrated 
Circuits,” Solid-State Electronics, Vol. 35, 
pp. 1005-1012, 1992. 

[3] M. Sobol, A Primer for the Monte Carlo 
Method, CRC Press: Boca Raton, 1994. 

[4] R. Haberman, Elementary Applied Partial 
Differential Equations, 3rd ed., Prentice-
Hall: New Jersey, 1998. 

[5] A. Haji-Sheikh, Application of Monte Carlo 
Methods to Thermal Conduction Problems, 
Ph.D. dissertation, University of Minnesota, 
1965, pp. 106-108. 

[6] K. Chatterjee, C. Yu, S. Srinivasan and J. 
Poggie, “A New Floating Random Walk 
Methodology for Neumann and Mixed 
Boundary Condition Problems Without 
Reflections at Boundaries: Validation with 
Laplace’s   Equation in   One   Dimension,” 
Far East Journal of Applied Mathematics, 
Vol.  26,  No. 3, pp. 705-713, 2007. 

[7] NVIDIA, 2007, Compute Unified Device 
Architecture: 
http://developer.download.nvidia.com/comp
ute/cuda/1_0/NVIDIA_CUDA_Programmin
g_Guide_1.0.pdf. 

[8] V. Podlozhnyuk, Parallel Mersenne Twister: 
http://developer.download.nvidia.com/comp
ute/cuda/sdk/website/projects/MersenneTwi
ster/doc/MersenneTwister.pdf, 2007. 

 
 

Kausik Chatterjee was born in 
India in 1969. In 1992, he 
received a Bachelor of 
Engineering degree in Electrical 
Engineering from Jadavpur 
University, Calcutta, India. 
Subsequently, in 1995, he 
received a Master of 

Technology degree in Nuclear Engineering from 
Indian Institute of Technology, Kanpur, India, 
and in 2002, he received his PhD degree in 
Electrical Engineering from Rensselaer 
Polytechnic Institute, Troy, New York. In 2002, 
he joined the faculty at California State 
University, Fresno as an Assistant Professor of 
Electrical and Computer Engineering, a position 
he held till 2005. He had been a visiting scientist 
at MIT Laboratory for Electromagnetic and 
Electronic Systems and had held faculty 
fellowships at Air Force Research Laboratory 
(Wright-Patterson Air Force Base) and NASA, 
Langley Research Center.  He is currently an 
Assistant Professor in the Department of 
Electrical and Computer Engineering at The 

379CHATTERJEE, SANDORA, MITCHELL, STEFAN, NUMMEY, POGGIE: ALGORITHM FOR MODIFIED HELMHOLTZ EQUATION



Cooper Union for the Advancement of Science 
and Art in New York City. His current research 
interests include the development of random-
walk algorithms for important equations in 
nature and a theory for high temperature 
superconductors.  

McCullen Sandora was born 
on March 21, 1987. In May 
2009, he received a Bachelor of 
Science degree in 
Interdisciplinary Engineering 
from The Cooper Union for the 
Advancement of Science and 

Art in New York City. He is currently a doctoral 
student in the Department of Physics at 
University of California, Davis and his current 
research focus is in the area of High Energy 
Theory. 

 
Christopher Mitchell was born 
on March 11, 1987.  In May 
2009, he received his BE degree 
in Electrical Engineering from 
The Cooper Union for the 
Advancement of Science and 
Art in New York City, and 

expects to receive his Masters of Engineering in 
Electrical Engineering from the same institution 
in May, 2010. His current research interests 
include augmented reality and wearable 
computing hardware and applications, neural 
network applications in the areas of image 
recognition and self-training syntactical parsing 
and the implementation of high-functioning 
software applications on low-resource portable 
devices. 

 
Deian Stefan received his B.E. 
degree in Electrical Engineering 
from The Cooper Union for the 
Advancement of Science and 
Art in 2009 and will receive his 
M.E. degree in Electrical 
Engineering in 2010. His current 

research interests include the analysis and 
implementation of cryptographic and coding 
algorithms. 
 
 

David Nummey was born on 
April 18, 1987.  In May 2009, he 
received his Bachelor of 
Engineering degree in Electrical 
Engineering from The Cooper 
Union for the Advancement of 
Science and Art in New York 

City.   He is now working toward his Masters of 
Engineering degree in Electrical Engineering at 
the same institution, and expects to finish in 
May 2010. His current research interests include 
statistical signal processing methods, pattern 
recognition and machine learning techniques, 
and applications towards medical 
imaging, electrophysiology, neuroscience and 
assistive devices. 

 
Jonathan Poggie was born in 
the United States in 1966.  He 
studied mechanical engineering 
at the University of Rhode 
Island, receiving a B.S. degree 
in 1988.  He went on to obtain a 
Ph.D. degree in mechanical and 
aerospace engineering from 

Princeton University in 1995, specializing in 
fluid mechanics.  Since then, he has worked at 
the U.S. Air Force Research Laboratory, 
focusing on physical problems associated high 
speed flight.  His work has encompassed 
laminar/turbulent transition in hypersonic 
boundary layers, unsteadiness of shock waves in 
separated flow, and the control of ionized gas 
flow by electromagnetic means.  
 

380 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



An Efficient Parallel Multilevel Fast Multipole Algorithm for 
Large-scale Scattering Problems 

 
Hu Fangjing, Nie Zaiping, Hu Jun 

 
School of Electronic Engineering,  

University of Electronic Science and Technology of China 
Chengdu 610054, PRC 
hfj1010@gmail.com 

 
 

Abstract—In this paper, we present an efficient 
parallel multilevel fast multipole algorithm 
(MLFMA) for three dimensional scattering 
problems of large-scale objects. Several parallel 
implantation tricks are discussed and analyzed. 
Firstly, we propose a method that reduces 
truncation number without loss of accuracy. 
Furthermore, a matrix-sliced technique, 
allowing data in the memory transforming into 
the hard disk, is applied here, in order to solve 
the problem of extremely large targets. Finally, a 
transition level scheme is adopted to improve 
the parallel efficiency. We demonstrate the 
capability of our code by considering a sphere 
of 220λ discretized with 48,879,411 unknowns 
and a square patch of 200λ discretized with 
10,150,143 unknowns. The bi-static RCS is 
calculated within 41.5 GB memory for the first 
object and 14.7 GB for the second one. 

 
Index terms—parallel algorithm, RCS 
calculation, multilevel fast multipole algorithm, 
electromagnetic scattering. 
 

I. INTRODUCTION 
Integral equation methods are widely used for 

solving electromagnetic scattering problems, 
and the multilevel fast multipole algorithm 
(MLFMA) has established itself as one of the 
most powerful among the different acceleration 
methods [1]. However, for many real-life 
problems, the discretization of these large-scale 
targets lead to millions of unknowns. The 
maximum size that can be solved is limited even 
with modern computers. Thus, it is necessary to 
develop an efficient parallel algorithm in order 
to solve these very large-scale problems. 

Of the various parallelization schemes for 
MLFMA, the most popular is the distributed 
memory architectures by constructing clusters of 

computers with local memories connected via 
fast networks [1]-[5]. However, the parallel 
implementation of MLFMA is not trivial, owing 
to the complicated structure of this algorithm. 
Without careful parallel schemes, the algorithm 
may fail to produce accurate results. Thus, a 
series of implementation tricks have been 
developed for the efficient parallelization of 
MLFMA in [2]-[5]. But even with these 
implementations, the algorithm has to face 
memory-hungry problem for many extremely 
large problems. 

In this paper, we present an efficient parallel 
MLFMA algorithm that integrating a series of 
implementation tricks proposed in [2]-[4]. In 
particular, a novel trick for reducing the 
truncation number is presented and the 
technique, that slices the matrix data and save it 
to the hard disk, is applied in our code, in order 
to optimize the memory usage and solve the 
memory-hungry problem. To demonstrate the 
capability of our parallel MLFMA code, the 
bi-static RCS of a sphere with a diameter of 
220λ, containing more than 50 million 
unknowns, and a patch of 200λ, containing 
about 10 million unknowns, are successfully 
solved. 

 
II. PARALLEL IMPLEMENTATION 

OF MLFMA 
 

A series of implementation tricks for parallel 
MLFMA are developed in [2]-[4], most of 
which focus on memory optimization. We can 
say that reducing the RAM requirement can 
never be over-emphasized. In this section, 
several tricks that integrating in our code will be 
introduced and analyzed.  

1054-4887 © 2010 ACES

381ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



A. Integral Equation Formulation 
In this section, we consider the scattering of 

electromagnetic waves from perfectly 
conducting objects. 

For a perfectly conducting object, the 
well-known electric-field integral equation 
(EFIE) can be written as [2] 

   ˆ ( , ') ( ') '
4 S

ik t G r r J r dS


 
  

 

            ˆ ( )it E r  
     r S       (1) 

with 

 
2

1( , ) ( , )G r r I g r r
k

       
   

  
'

2

1
'

ik r reI
k r r

      

 

 
 

In Equation (1),   is the impedance of free 
space, S is the surface boundary of the scatterer, 
and t̂  is the unit tangent vector at any given 
point on S. Furthermore, J


 is the unknown 

surface electric current, iE


is the incident 
electric-field vector, and I is the unit dyad. 

If the surface of the object is closed, it can 
also be described using the magnetic-field 
integral equation (MFIE) 

( ) 1ˆ ˆ ( , ') ( ') '
2 4 S

J rt t n g r r J r dS


     
          

ˆ ( )it n H r   
                (2) 

where n  is the unit normal vector, and iH


is 
the incident magnetic-field vector. 

However, both EFIE and MFIE suffer from 
nonunique solutions at resonant frequencies. To 
alleviate this problem, for a surface-closed 
target, we used the combined-field integral 
equation (CFIE) which is defined by the relation 

 EFIE+ (1 )  MFIE          (3) 

where α∈  [0,1] is called the combination 
coefficient. 

In order to solve these equations numerically, 
we should model the surface with flat triangular 
patches and expand the current in term of RWG 
basis functions [7]. Applying Galerkin’s method, 
the integral equation is then reduced to a system 
of linear equations. The matrix element of EFIE 

and MFIE is given by 

( ) ( , ') ( ') '
4

E
mn m n

S S

ikZ dSf r G r r f r dS


  
     (4) 

( )( )
2

M n
mn m

S

f rZ dSf r 
    

1 ˆ( ') ( , ') ( ') '
4 m n

S S

dSf r n g r r f r dS


   
      

(5) 

where ( )nf r  is the nth RWG basis function. 

The matrix element corresponding to CFIE 
can then be derived 
as (1 )E M

mn mn mnZ Z Z     . Then the integral 
equations reduce to the matrix equation 

   1 1[ ] [ ] [ ]N N N NZ J V             (6) 

where N is the number of unknowns. 

Equation (6) can be solved using an iterative 
method such as the Generalized Minimal 
Residual Algorithm (GMRES). The detailed 
discussions for the parallelized version of 
GMERS can be found in the literature [2]. 

 
B. A Novel Method for Reducing the 
Truncation Number 

In MLFMA, the memory requirement and the 
CPU time depend heavily on the truncation 
number, L, which is normally determined by the 
size of box, D [6]. We should determine the 
minimum value of D in order to reduce the 
truncation number, and thus save the memory 
requirement and CPU time. The relation 
between the truncation number L and D can be 
expressed as 

       lnL kD kD             (7) 

Previously, D is determined by the real size of 
box in each level. The truncation number L then 
can be calculated using equation (7). However, 
the value of D obtained in this way is not a 
minimum, for there are spaces for many boxes 
[4]. In [4], one method is proposed to determine 
the minimal D at each level by finding the 
maximum distance of the edge-distance located 
in each box.  

 

382 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



In this section, we present another method, by 
finding the equivalent maximum distance in 
each box, to determine the value of D. The 
equivalent maximum distance on level L is 
defined as 

     2 2 2
max min max min max min( )d l x x y y z z     

 

where xmin, ymin, zmin and xmax, ymax, zmax are the 
minimum and maximum coordinates, 
respectively, among the triangular patch pair 
center points for each box on one level. Figure 1 
shows the relation of the equivalent maximum 
distance, d, and D concerning with the real size 
of box for a two-dimensional problem. The solid 
and dashed line represents d and D respectively, 
and the white nodes are the patch pair center 
points in the box. 

 

 

 

 

 

 

 

 
 
 
 
Fig. 1. The relation of d and D for a two- 
dimensional problem. 

We could calculate every d in every box at 
each level, find the maximal one, and designate 
it as the equivalent value of D. Thus, the 
truncation number at each level can be 
determined by  

        ( ) ln ( )L kd l kd l          (8) 

For the equivalent maximum distance d is less 
than the value of D, thus the truncation number, 
L, can be reduced without loss of the accuracy. 
For a target discretized with tens of millions 
unknowns, the time consuming on finding the 
equivalent maximum distance can be neglected. 
Also, this method can be efficiently parallelized. 
Figure 2 shows the Bi-static RCS of a sphere 
with a diameter of 4λ，the result shows our 

method agrees well with the MIE series. 

 
Fig. 2. The Bi-static RCS of our method and the 
MIE series. 

 
C. The Matrix-Sliced-to-Disk Technique 

For many extremely large targets even modern 
servers and computers will encounter 
memory-hungry problems. The memory in 
MLFMA is mainly consumed in setting up the 
matrix equation. The idea that transforms the 
matrix data into the hard disk is straight-forward. 
There are three main reasons for adopting this 
technique to our parallel MLFMA code: 

1) This approach allows us to solve extremely 
big problems without having to worry about the 
memory consumption. Memory is almost used 
for other parts of MLFMA such as the oct-tree 
rather than the matrix equation. 

2) From an economic and convenient point of 
view, this approach helps our code to be more 
scalable and meet the demand of some 
low-performance computers. With this approach, 
we can solve a problem with about one million 
unknowns on a single computer of only 2 GB 
memory. 

3) With the swift improvements in the hard 
drive storage technology, the difference of the 
I/O speed of memory and the hard disk will be 
reduced, making this approach more and more 
attractive, as shown in Fig. 3. 

Actually, this technique will cost slightly 
more time than without it, for the I/O operation 
of hard disk is relatively slower than that of 
memory. Thus it is necessary to compare the 
CPU time and the elapsed time (which express 
the total time from the start of a program to the 

O x 

y 

D d 

383FANGJING, ZAIPING, JUN: PARALLEL FAST MULTIPOLE ALGORITHM FOR SCATTERING PROBLEMS



end of it), in order to evaluate the efficiency of 
this technique. Sphere with different electrically 
sizes are considered here. The diameters of 
sphere range from 20 wavelengths to 220 
wavelengths. The CPU and elapsed time for 
different sizes are depicted in Figure. 3. All the 
calculations are carried out on one computer 
with 4 CPUs and a high performance SAS hard 
disk. The result shows that up to nearly 50 
million unknowns, the performance with this 
technique is only 4.5% slower than that without 
it. For the situation that the number of 
unknowns less than 10 million, the differences 
of with and without this technique can be well 
neglected. 

 

Fig. 3. The comparisons of CPU time and 
elapsed time for different electrical sizes of 
sphere. 

 
The solid-state store technique is the trend. 

With the technical improvement of high 
performance hard disk, the influence of this 
relatively slower I/O operation will be less 
significant. Thus, we can say that this technique 
will be much more practical in the future. 

 
D. The Transition Level Scheme 

An important part of parallel MLFMA is the 
parallel efficiency. Previously, the boxes were 
distributed equally among the processors. It is 
natural that this parallel approach can achieve 
good load-balancing in fine levels. However, it 
is difficult to achieve good load-balancing in the 
coarse levels with this approach, since the 
number of boxes is small in those levels. This 
usually degrades the parallel efficiency and 
performance of parallel MLFMA code. 

A transition level scheme is proposed in [3] in 
order to improve the parallel efficiency. In the 
levels that are finer than the transition level, the 
boxes are distributed equally among the 
processors; in the levels that are coarser than the 
transition level, the far-field pattern and 
translation matrix are distributed equally among 
the processors. However, this scheme causes 
additional communication between processors.      
In order to reduce this problem of 
communication and to restrict each processor to 
communicate with only two nearby processors 
at most, it is proved in [4] that the transition 
level should be the level where the truncation 
number, L, is not less than twice the number of 
processors, p. To obtain good parallel efficiency, 
we usually choose L=2p. 

 
E. The Efficiency of Parallel MLFMA 

The efficiency of parallel algorithm is defined 
as 

1 100%
p

T
pT

  
 

where p is the number of processors, pT  is the 
CPU time consumed for p processors. 

To demonstrate the efficiency of our Parallel 
MLFMA, the bi-static RCS of a sphere of 
diameter 40λ is calculated. The total parallel 
efficiency and matrix-vector multiplication 
parallel efficiency is shown in Fig. 4. We can 
see that the efficiency is above 80% even for 16 
processors. 

 

 
Fig. 4. The parallel efficiency for a sphere of 
diameter 40λ from 1 to 16 processors. 

384 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



III. CAPABILITY OF THE PARALLEL 
MLFMA 

A parallel MLFMA code has been developed 
by implementing several tricks presented in the 
above sections. To demonstrate the capability of 
our code, we first calculate the bi-static RCS of 
a sphere of diameter 220λ discretized with 
48,879,411 unknowns. The incident angle is 
(90°, 0°), and the scanning plane is xoy plane 
with 1801 sampling points from (0°, 180°). The 
parallelized GMRES is adopted to solve the 
matrix equation, and the residual error is 0.005. 
The simulation is carried out on one single 
computer with 8 Xeon 3.0 GHz CPUs and 64 
GB memory. The detail resources used in this 
calculation is shown in Table 1.  

 
Table 1. The computational resources for a 
sphere of 220λ by the parallel MLFMA. 

General 
Information 

CPU Time (min) 

Geometry size 
(wavelength) 

220 Geometry 
information 

5.6 

Number of 
processors 

8 Set up of 
near-field 

matrix 

199.1 

Number of 
iterations 

19 Set up of 
far-field 
matrix 

67.3 

Total memory 
(GB) 

41.5 Iteration and 
solution 

1121.5 

Total time (hr) 26.9 RCS 
calculation 

0.63 

 

Fig. 5. The bi-static RCS for a sphere of 
diameter 220λ. 
 

To further demonstrate the capability of our 
parallel MLFMA code, we calculate the bi-static 
RCS of a square patch of size of 200×200 
wavelengths with 10,150,143 unknowns. Since 
this is an open structure, EFIE is used to solve 
this problem. The patch is located in the yoz 
plane with its  center at the origin. The incident 
angle is (90°,0°) and the scanning plane is xoy 
with 1801 sampling points from (0°,180°). The 
parallelized GMRES is adopted to solve the 
matrix equation, and the residual error is 0.001. 
This simulation is carried out on one computer 
with 8 Xeon 3.0 GHz CPUs and 64GB memory. 
In this problem, only 4 CPUs are used. The 
detailed resources for this calculation are shown 
in Table 2. 
 

Table 2. The computational resources for a 
square patch of 200λ by the parallel MLFMA. 

General 
Information 

CPU Time (min) 

Geometry size 
(wavelength)

200 Geometry 
information 

2.6 

Number of 
processors 

4 Set up of 
near-field 

matrix 

40.1 

Number of 
iterations 

142 Set up of 
far-field 
matrix 

13.4 

Total memory 
(GB) 

14.7 Iteration and 
solution 

624.9 

Total time (hr) 11.5 RCS 
calculation 

0.37 

 

Fig. 6. The bi-static RCS for a square patch of 
length 200λ. 

385FANGJING, ZAIPING, JUN: PARALLEL FAST MULTIPOLE ALGORITHM FOR SCATTERING PROBLEMS



IV. CONCLUSIONS 
In this paper, several implementation tricks of 

parallel MLFMA have been introduced and 
analyzed. Firstly, we proposed a modified 
truncation number method in order to reduce the 
memory and CPU time usage; secondly, a 
technique that sliced matrix to hard disk is 
applied to fulfill the memory demand for 
extremely large problems; finally, a transition 
level scheme is introduced in order to improve 
the parallel efficiency. With these tricks, 
memory usage can be reduced. We demonstrate 
the capability of our code by considering a 
sphere of diameter 220λ, containing nearly 50 
million unknowns and a square patch with a 
length of 200λ, involving approximately 10 
million unknowns.  

REFERENCES 

[1] W. C. Chew, J. M. Jin, E. Michielssen, and J. 
M. Song, Fast and Efficient Algorithms in 
Computational Electromagnetics. Norwood, 
MA, Artech House, 2001. 

[2] S. Velamparambil, W. C. Chew, and J. M 
Song. “10 Million Unknowns: Is It That 
Big?” IEEE Transaction on Antennas 
Propagation Magazine, vol. 45, no. 2, pp. 
43-58, April 2003. 

[3] S. Velamparambil and W. C. Chew, 
“Analysis and performance of a distributed 
memory multilevel fast multipole 
algorithm,” IEEE Transactions on Antennas 
and Propagation, vol. 53, no. 8, pp. 
2719–2727, August 2005. 

[4] X. M. Pan and X. Q. Sheng. “A 
Sophisticated Parallel MLFMA for 
Scattering by Extremely Large Targets”. 
IEEE Antennas and Propagation Magazine, 
vol. 50, no. 3, pp. 129-138, June 2008. 

[5] O. Ergul and L. Gurel, “Efficient 
Parallelization of the Multilevel Fast 
Multipole Algorithm for the Solution of 
Large-Scale Scattering Problems,” IEEE 
Transactions on Antennas and Propagation, 
vol. 56, no. 8, pp. 2335-2345, August 2008. 

[6] R. Coifmnan, V. Rokhlin, and S. Wandzura, 
“The Fast Multipole Method for the Wave 
Equation: A Pedestrian Prescription,” IEEE 
Antennas and Propagation Magazine, vol. 

35, no.3, pp. 7-12, June 1993. 

[7] S. M. Rao, D. R. Wilton, and A. W. Glisson, 
“Electromagnetic scattering by surfaces of 
arbitrary shape,” IEEE Transactions on 
Antennas and Propagation, vol. 30, no. 3, 
pp. 409–418, May 1982. 

[8] T. Malas, O. Ergul and L. Gurel, “Sequential 
and Parallel Preconditioners for Large-Scale 
Integral- Equation Problems,” 
Computational Electromagnetics Workshop, 
pp.35–43, August 2007.  

 
 

Hu Fangjing received the 
B.S. degree in 
electromagnetic field and 
microwave technique from 
the University of Electronic 
Science and Technology of 
China (UESTC), Chengdu, 
in 2007, where he is 

currently working toward the M.S. degree. His 
research has mainly focused on fast integral 
equation methods and in particular, multilevel 
fast multipole method and its parallelization. 
 
 

Nie Zaiping was born in 
Xi’an, China, in 1946. He 
received the B.S. degree in 
radio engineering and the 
M.S. degree in 
electromagnetic field and 
microwave technology from 
the Chengdu Institute of 

Radio Engineering (now UESTC: University of 
Electronic Science and Technology of China), 
Chengdu, China, in 1968 and 1981, 
respectively. From 1987 to 1989, he was a 
Visiting Scholar with the Electromagnetics 
Laboratory, University of Illinois, Urbana. 
Currently, he is a Professor with the Department 
of Electromagnetic Engineering, University of 
Electronic Science and Technology of China, 
Chengdu, China. He has published more than 
380 papers. His research interests include 
antenna theory and techniques, field and waves 
in inhomogeneous media, computational 
electromagnetics, electromagnetic scattering and 
inverse scattering, new techniques for antenna in 
mobile communications, transient electro- 
magnetic theory and applications.  
 

386 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



Hu Jun received the B.S., 
M.S., and Ph.D. degrees in 
electromagnetic field and 
microwave technique from 
the University of Electronic 
Science and Technology of 
China (UESTC), Chengdu, in 
1995, 1998, and 2000, 

respectively. During 2001 he was with the 
Center of Wireless Communication in the City 
University of Hong Kong, Kowloon, as a 
Research Assistant. He is currently an Associate 
Professor with the School of Electronic 
Engineering of UESTC. He is the author or 
coauthor of over 90 technical papers. His 
current research interests include computational 
electromagnetics, electromagnetic scattering, 
and radiation.  

387FANGJING, ZAIPING, JUN: PARALLEL FAST MULTIPOLE ALGORITHM FOR SCATTERING PROBLEMS



 



2010 INSTITUTIONAL MEMBERS 
 

DTIC-OCP LIBRARY 
8725 John J. Kingman Rd, Ste 0944 
Fort Belvoir, VA 22060-6218 
 
AUSTRALIAN DEFENCE LIBRARY 
Northcott Drive 
Canberra, A.C.T. 2600 Australia 
 
 
BEIJING BOOK CO, INC 
701 E Linden Avenue 
Linden, NJ 07036-2495 
 
BUCKNELL UNIVERSITY 
69 Coleman Hall Road 
Lewisburg, PA 17837 
 
 
ROBERT J. BURKHOLDER 
OHIO STATE UNIVERSITY 
1320 Kinnear Road 
Columbus, OH 43212 
 
DARTMOUTH COLLEGE  
6025 Baker/Berry Library 
Hanover, NH 03755-3560 
 
 
 
DSTO EDINBURGH 
AU/33851-AP, PO Box 830470 
Birmingham, AL 35283 
 
 
SIMEON J. EARL – BAE SYSTEMS 
W432A, Warton Aerodome 
Preston, Lancs., UK PR4 1AX 
 
 
ELLEDIEMME 
Libri Dal Mondo 
PO Box 69/Poste S. Silvestro 
Rome, Italy 00187 
 
ENGINEERING INFORMATION, INC 
PO Box 543 
Amsterdam, Netherlands 1000 Am  
 
ETSE TELECOMUNICACION 
Biblioteca, Campus Lagoas  
Vigo, 36200  Spain 
 
 
OLA FORSLUND  
SAAB MICROWAVE SYSTEMS 
Nettovagen 6 
Jarfalla, Sweden SE-17588 
 
GEORGIA TECH LIBRARY 
225 North Avenue, NW 
Atlanta, GA 30332-0001  
 

HRL LABS, RESEARCH LIBRARY 
3011 Malibu Canyon 
Malibu, CA 90265 
 
IEE INSPEC 
Michael Faraday House 
6 Hills Way 
Stevenage, Herts UK SG1 2AY 
 
IND CANTABRIA 
PO Box 830470 
Birmingham, AL 35283 
 
INSTITUTE FOR SCIENTIFIC INFO. 
Publication Processing Dept. 
3501 Market St. 
Philadelphia, PA 19104-3302 
 
KUWAIT UNIVERSITY 
Postfach/po box 432 
Basel, Switzerland 4900 
 
 
LIBRARY – DRDC OTTAWA 
3701 Carling Avenue 
Ottawa, Ontario, Canada K1A OZ4 
 
 
 
LIBRARY of CONGRESS 
Reg. Of Copyrights 
Attn: 407 Deposits  
Washington DC, 20559 
 
LINDA HALL LIBRARY 
5109 Cherry Street 
Kansas City, MO 64110-2498 
 
 
RAY MCKENZIE – TELESTRA 
13/242 Exhibition Street 
Melbourne, Vic, Australia 3000 
 
 
MISSISSIPPI STATE UNIV LIBRARY 
PO Box 9570  
Mississippi State, MS 39762 
 
MISSOURI S&T 
400 W 14th Street 
Rolla, MO 56409 
 
 
MIT LINCOLN LABORATORY 
Periodicals Library 
244 Wood Street 
Lexington, MA 02420 
 
OSAMA MOHAMMED 
FLORIDA INTERNATIONAL UNIV 
10555 W Flagler Street 
Miami, FL 33174 

NAVAL POSTGRADUATE SCHOOL 
Attn:J. Rozdal/411 Dyer Rd./ Rm 111 
Monterey, CA 93943-5101 
 
NDL KAGAKU 
C/0 KWE-ACCESS 
PO Box 300613 (JFK  A/P) 
Jamaica, NY 11430-0613 
 
OVIEDO LIBRARY 
PO BOX 830679 
Birmingham, AL  35283 
 
PENN STATE UNIVERSITY 
126 Paterno Library 
University Park, PA 16802-1808 
 
 
DAVID J. PINION 
1122 E PIKE STREET #1217 
SEATTLE, WA 98122 
 
 
KATHERINE SIAKAVARA - 
ARISTOTLE UNIV OF 
THESSALONIKI 
Gymnasiou 8 
Thessaloniki, Greece 55236 
 
SWETS INFORMATION SERVICES  
160 Ninth Avenue, Suite A 
Runnemede, NJ 08078 
 
 
TIB & UNIV. BIB. HANNOVER 
DE/5100/G1/0001 
Welfengarten 1B 
Hannover, Germany 30167 
 
UNIV OF CENTRAL FLORIDA  
4000 Central Florida Boulevard 
Orlando, FL 32816-8005 
 
 
UNIVERSITY OF COLORADO 
1720 Pleasant Street, 184 UCB 
Boulder, CO 80309-0184 
 
UNIVERSITY OF KANSAS – 
WATSON 
1425 Jayhawk Blvd 210S 
Lawrence, KS 66045-7594 
 
UNIVERSITY OF MISSISSIPPI 
JD Williams Library 
University, MS 38677-1848 
 
 
UNIVERSITY LIBRARY/HKUST 
CLEAR WATER BAY ROAD 
KOWLOON, HONG KONG 
 



UNIV POLIT CARTAGENA 
Serv Btca Univ,  
Paseo Alfonso XIII, 48 
Cartagena, Spain 30203 
 
THOMAS WEILAND  
TU DARMSTADT 
Schlossgartenstrasse 8 
Darmstadt, Hessen, Germany 64289 
 
STEVEN WEISS 
US ARMY RESEARCH LAB 
2800 Powder Mill Road 
Adelphi, MD 20783 
 
YOSHIHIDE YAMADA 
NATIONAL DEFENSE ACADEMY 
1-10-20 Hashirimizu  
Yokosuka, Kanagawa,  
Japan 239-8686 



ACES COPYRIGHT FORM

This form is intended for original, previously unpublished manuscripts submitted to ACES periodicals and conference publications.  The signed form, 
appropriately completed, MUST ACCOMPANY any paper in order to be published by ACES.  PLEASE READ REVERSE SIDE OF THIS FORM FOR 
FURTHER DETAILS. 

TITLE OF PAPER:         RETURN FORM TO: 
Dr. Atef Z. Elsherbeni 
University of Mississippi 
Dept. of Electrical Engineering 

AUTHORS(S)          Anderson Hall Box 13 
PUBLICATION TITLE/DATE:        University, MS 38677 USA 

PART A - COPYRIGHT TRANSFER FORM
(NOTE: Company or other forms may not be substituted for this form.  U.S. Government employees whose work is not subject to copyright may so certify 
by signing Part B below.  Authors whose work is subject to Crown Copyright may sign Part C overleaf). 

The undersigned, desiring to publish the above paper in a publication of ACES, hereby transfer their copyrights in the above paper to The Applied 
Computational Electromagnetics Society (ACES).  The undersigned hereby represents and warrants that the paper is original and that he/she is the author 
of the paper or otherwise has the power and authority to make and execute this assignment. 

Returned Rights: In return for these rights, ACES hereby grants to the above authors, and the employers for whom the work was performed, royalty-free 
permission to: 

1.  Retain all proprietary rights other than copyright, such as patent rights. 
2.  Reuse all or portions of the above paper in other works. 
3.  Reproduce, or have reproduced, the above paper for the author’s personal use or for internal company use provided that (a) the source and 

ACES copyright are indicated, (b) the copies are not used in a way that implies ACES endorsement of a product or service of an employer, and (c) the 
copies per se are not offered for sale. 

4.  Make limited distribution of all or portions of the above paper prior to publication. 
5.  In the case of work performed under U.S. Government contract, ACES grants the U.S. Government royalty-free permission to reproduce all 

or portions of the above paper, and to authorize others to do so, for U.S. Government purposes only. 

ACES Obligations: In exercising its rights under copyright, ACES will make all reasonable efforts to act in the interests of the authors and employers as 
well as in its own interest.  In particular, ACES REQUIRES that: 
  1.  The consent of the first-named author be sought as a condition in granting re-publication permission to others. 
  2.  The consent of the undersigned employer be obtained as a condition in granting permission to others to reuse all or portions of the paper for promotion 
or marketing purposes. 

In the event the above paper is not accepted and published by ACES or is withdrawn by the author(s) before acceptance by ACES, this agreement becomes 
null and void. 

AUTHORIZED SIGNATURE       TITLE (IF NOT AUTHOR) 

EMPLOYER FOR WHOM WORK WAS PERFORMED     DATE FORM SIGNED 

Part B - U.S. GOVERNMENT EMPLOYEE CERTIFICATION

(NOTE: if your work was performed under Government contract but you are not a Government employee, sign transfer form above and see item 5 under 
Returned Rights). 

This certifies that all authors of the above paper are employees of the U.S. Government and performed this work as part of their employment and that the 
paper is therefor not subject to U.S. copyright protection. 

AUTHORIZED SIGNATURE       TITLE (IF NOT AUTHOR) 

NAME OF GOVERNMENT ORGANIZATION      DATE FORM SIGNED



PART C - CROWN COPYRIGHT

(NOTE: ACES recognizes and will honor Crown Copyright as it does U.S. Copyright.  It is understood that, in asserting Crown Copyright, ACES in no 
way diminishes its rights as publisher.  Sign only if ALL authors are subject to Crown Copyright). 

This certifies that all authors of the above Paper are subject to Crown Copyright.  (Appropriate documentation and instructions regarding form of Crown 
Copyright notice may be attached). 

AUTHORIZED SIGNATURE       TITLE OF SIGNEE 

NAME OF GOVERNMENT BRANCH      DATE FORM SIGNED 

Information to Authors 

ACES POLICY 

ACES distributes its technical publications throughout the world, and it may be necessary to translate and abstract its publications, and articles contained 
therein, for inclusion in various compendiums and similar publications, etc.  When an article is submitted for publication by ACES, acceptance of the 
article implies that ACES has the rights to do all of the things it normally does with such an article. 

In connection with its publishing activities, it is the policy of ACES to own the copyrights in its technical publications, and to the contributions contained 
therein, in order to protect the interests of ACES, its authors and their employers, and at the same time to facilitate the appropriate re-use of this material 
by others. 

The new United States copyright law requires that the transfer of copyrights in each contribution from the author to ACES be confirmed in writing.  It is 
therefore necessary that you execute either Part A-Copyright Transfer Form or Part B-U.S. Government Employee Certification or Part C-Crown 
Copyright on this sheet and return it to the Managing Editor (or person who supplied this sheet) as promptly as possible. 

CLEARANCE OF PAPERS

ACES must of necessity assume that materials presented at its meetings or submitted to its publications is properly available for general dissemination to 
the audiences these activities are organized to serve.  It is the responsibility of the authors, not ACES, to determine whether disclosure of their material 
requires the prior consent of other parties and if so, to obtain it.  Furthermore, ACES must assume that, if an author uses within his/her article previously 
published and/or copyrighted material that permission has been obtained for such use and that any required credit lines, copyright notices, etc. are duly 
noted.

AUTHOR/COMPANY RIGHTS

If you are employed and you prepared your paper as a part of your job, the rights to your paper initially rest with your employer.  In that case, when you 
sign the copyright form, we assume you are authorized to do so by your employer and that your employer has consented to all of the terms and conditions 
of this form.  If not, it should be signed by someone so authorized. 

NOTE RE RETURNED RIGHTS: Just as ACES now requires a signed copyright transfer form in order to do “business as usual”, it is the 
intent of this form to return rights to the author and employer so that they too may do “business as usual”.  If further clarification is required, please 
contact: The Managing Editor, R. W. Adler, Naval Postgraduate School, Code EC/AB, Monterey, CA, 93943, USA (408)656-2352. 

Please note that, although authors are permitted to re-use all or portions of their ACES copyrighted material in other works, this does not include granting 
third party requests for reprinting, republishing, or other types of re-use. 

JOINT AUTHORSHIP

For jointly authored papers, only one signature is required, but we assume all authors have been advised and have consented to the terms of this form. 

U.S. GOVERNMENT EMPLOYEES

Authors who are U.S. Government employees are not required to sign the Copyright Transfer Form (Part A), but any co-authors outside the Government 
are.

Part B of the form is to be used instead of Part A only if all authors are U.S. Government employees and prepared the paper as part of their job. 

NOTE RE GOVERNMENT CONTRACT WORK: Authors whose work was performed under a U.S. Government contract but who are not 
Government employees are required so sign Part A-Copyright Transfer Form.  However, item 5 of the form returns reproduction rights to the U. S. 
Government when required, even though ACES copyright policy is in effect with respect to the reuse of material by the general public.
January 2002



APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL 
http://aces.ee.olemiss.edu 

INFORMATION FOR AUTHORS

PUBLICATION CRITERIA 

Each paper is required to manifest some relation to applied 
computational electromagnetics.  Papers may address 
general issues in applied computational electromagnetics, 
or they may focus on specific applications, techniques, 
codes, or computational issues.  While the following list is 
not exhaustive, each paper will generally relate to at least one 
of these areas: 

1. Code validation.  This is done using internal checks or 
experimental, analytical or other computational data.  
Measured data of potential utility to code validation 
efforts will also be considered for publication. 

2. Code performance analysis.  This usually involves 
identification of numerical accuracy or other limitations, 
solution convergence, numerical and physical modeling 
error, and parameter tradeoffs.  However, it is also 
permissible to address issues such as ease-of-use, set-up 
time, run time, special outputs, or other special features. 

3. Computational studies of basic physics.  This involves 
using a code, algorithm, or computational technique to 
simulate reality in such a way that better, or new 
physical insight or understanding, is achieved. 

4. New computational techniques or new applications for 
existing computational techniques or codes. 

5. “Tricks of the trade” in selecting and applying codes 
and techniques. 

6. New codes, algorithms, code enhancement, and code 
fixes.  This category is self-explanatory, but includes 
significant changes to existing codes, such as 
applicability extensions, algorithm optimization, problem 
correction, limitation removal, or other performance 
improvement. Note: Code (or algorithm) capability 
descriptions are not acceptable, unless they contain 
sufficient technical material to justify consideration. 

7. Code input/output issues.  This normally involves 
innovations in input (such as input geometry 
standardization, automatic mesh generation, or 
computer-aided design) or in output (whether it be 
tabular, graphical, statistical, Fourier-transformed, or 
otherwise signal-processed).  Material dealing with 
input/output database management, output interpretation, 
or other input/output issues will also be considered for 
publication. 

8. Computer hardware issues.  This is the category for 
analysis of hardware capabilities and limitations of 
various types of electromagnetics computational 
requirements. Vector and parallel computational 
techniques and implementation are of particular interest.  

Applications of interest include, but are not limited to, 
antennas (and their electromagnetic environments), networks, 
static fields, radar cross section, inverse scattering, shielding, 
radiation hazards, biological effects, biomedical applications, 
electromagnetic pulse (EMP), electromagnetic interference 
(EMI), electromagnetic compatibility (EMC), power 
transmission, charge transport, dielectric, magnetic and 
nonlinear materials, microwave components, MEMS, RFID, 
and MMIC technologies, remote sensing and geometrical and 
physical optics, radar and communications systems, sensors, 
fiber optics, plasmas, particle accelerators, generators and 
motors, electromagnetic wave propagation, non-destructive 
evaluation, eddy currents, and inverse scattering. 

Techniques of interest include but not limited to frequency-
domain and time-domain techniques, integral equation and 
differential equation techniques, diffraction theories, physical 
and geometrical optics, method of moments, finite differences 
and finite element techniques, transmission line method, 
modal expansions, perturbation methods, and hybrid methods.   

Where possible and appropriate, authors are required to 
provide statements of quantitative accuracy for measured 
and/or computed data.  This issue is discussed in “Accuracy 
& Publication: Requiring, quantitative accuracy statements to 
accompany data,” by E. K. Miller, ACES Newsletter, Vol. 9, 
No. 3, pp. 23-29, 1994, ISBN 1056-9170. 

SUBMITTAL PROCEDURE 

All submissions should be uploaded to ACES server through 
ACES web site (http://aces.ee.olemiss.edu) by using the 
upload button, journal section. Only pdf files are accepted for 
submission. The file size should not be larger than 5MB, 
otherwise permission from the Editor-in-Chief should be 
obtained first. Automated acknowledgment of the electronic 
submission, after the upload process is successfully 
completed, will be sent to the corresponding author only. It is 
the responsibility of the corresponding author to keep the 
remaining authors, if applicable, informed. Email submission 
is not accepted and will not be processed. 

PAPER FORMAT (INITIAL SUBMISSION) 

The preferred format for initial submission manuscripts is 12 
point Times Roman font, single line spacing and single 
column format, with 1 inch for top, bottom, left, and right 
margins.  Manuscripts should be prepared for standard 8.5x11 
inch paper. 

EDITORIAL REVIEW 

In order to ensure an appropriate level of quality control,
papers are peer reviewed.  They are reviewed both for 



technical correctness and for adherence to the listed 
guidelines regarding information content and format.   

PAPER FORMAT (FINAL SUBMISSION) 

Only camera-ready electronic files are accepted for 
publication. The term “camera-ready” means that the 
material is neat, legible, reproducible, and in accordance 
with the final version format listed below.   

The following requirements are in effect for the final version 
of an ACES Journal paper: 

1. The paper title should not be placed on a separate page.  
The title, author(s), abstract, and (space permitting) 
beginning of the paper itself should all be on the first 
page. The title, author(s), and author affiliations should 
be centered (center-justified) on the first page. The title 
should be of font size 16 and bolded, the author names 
should be of font size 12 and bolded, and the author 
affiliation should be of font size 12 (regular font, neither 
italic nor bolded). 

2. An abstract is required.  The abstract should be a brief 
summary of the work described in the paper. It should 
state the computer codes, computational techniques, and 
applications discussed in the paper (as applicable) and 
should otherwise be usable by technical abstracting and 
indexing services. The word “Abstract” has to be placed 
at the left margin of the paper, and should be bolded and 
italic. It also should be followed by a hyphen (�) with 
the main text of the abstract starting on the same line. 

3. All section titles have to be centered and all the title 
letters should be written in caps. The section titles need 
to be numbered using roman numbering (I. II. ….)   

4. Either British English or American English spellings 
may be used, provided that each word is spelled 
consistently throughout the paper. 

5. Internal consistency of references format should be 
maintained. As a guideline for authors, we recommend 
that references be given using numerical numbering in 
the body of the paper (with numerical listing of all 
references at the end of the paper). The first letter of the 
authors’ first name should be listed followed by a period, 
which in turn, followed by the authors’ complete last 
name. Use a coma (,) to separate between the authors’ 
names. Titles of papers or articles should be in quotation 
marks (“ ”), followed by the title of journal, which 
should be in italic font. The journal volume (vol.), issue 
number (no.), page numbering (pp.), month and year of 
publication should come after the journal title in the 
sequence listed here. 

6. Internal consistency shall also be maintained for other 
elements of style, such as equation numbering.  As a 
guideline for authors who have no other preference, we 
suggest that equation numbers be placed in parentheses 
at the right column margin. 

7. The intent and meaning of all text must be clear.  For 
authors who are not masters of the English language, the 
ACES Editorial Staff will provide assistance with 
grammar (subject to clarity of intent and meaning). 
However, this may delay the scheduled publication date. 

8. Unused space should be minimized.  Sections and 
subsections should not normally begin on a new page. 

ACES reserves the right to edit any uploaded material, 
however, this is not generally done. It is the author(s) 
responsibility to provide acceptable camera-ready pdf files.  
Incompatible or incomplete pdf files will not be processed for 
publication, and authors will be requested to re-upload a 
revised acceptable version.  

COPYRIGHTS AND RELEASES 

Each primary author must sign a copyright form and obtain a 
release from his/her organization vesting the copyright with 
ACES. Copyright forms are available at ACES, web site 
(http://aces.ee.olemiss.edu). To shorten the review process 
time, the executed copyright form should be forwarded to the 
Editor-in-Chief immediately after the completion of the 
upload (electronic submission) process.  Both the author and 
his/her organization are allowed to use the copyrighted 
material freely for their own private purposes.

Permission is granted to quote short passages and reproduce 
figures and tables from and ACES Journal issue provided the 
source is cited.  Copies of ACES Journal articles may be 
made in accordance with usage permitted by Sections 107 or 
108 of the U.S. Copyright Law.  This consent does not extend 
to other kinds of copying, such as for general distribution, for 
advertising or promotional purposes, for creating new 
collective works, or for resale.  The reproduction of multiple 
copies and the use of articles or extracts for commercial 
purposes require the consent of the author and specific 
permission from ACES.  Institutional members are allowed to 
copy any ACES Journal issue for their internal distribution 
only.

PUBLICATION CHARGES 

All authors are allowed for 8 printed pages per paper without 
charge.  Mandatory page charges of $75 a page apply to all 
pages in excess of 8 printed pages. Authors are entitled to 
one, free of charge, copy of the journal issue in which their 
paper was published. Additional reprints are available for a 
nominal fee by submitting a request to the managing editor or 
ACES Secretary. 

Authors are subject to fill out a one page over-page charge 
form and submit it online along with the copyright form 
before publication of their manuscript.  

ACES Journal is abstracted in INSPEC, in Engineering 
Index, DTIC, Science Citation Index Expanded, the 
Research Alert, and to Current Contents/Engineering, 
Computing & Technology. 


	02_200903009_Atef.pdf
	I. INTRODUCTION
	II. THE GPU ON ELECTROMAGNETIC SIMULATIONS
	The GPU has been extensively used in scientific computing over the past five years, but the degree of success has been different depending on algorithm features and how they meet GPU hardware idiosyncrasies. Nvidia [13,24] has reported a list of illus...
	In general, expectations for a particular algorithm to reach certain levels of speedup factor when running on GPUs depend on a number of features which conform a list of requirements to be fulfilled. From less to more important, we have:
	1. Small local data requirements (memory and registers).
	2. Stream computing (non-recursive algorithms).
	3. Arithmetic intensity (high data reuse).
	4. Bandwidth (fast data movement).
	5. Data parallelism (data independency).
	The two key factors are analyzed in Fig. 1, where some of the most popular applications are placed in conjunction with electromagnetic simulations to quantify the memory bandwidth and data parallelism each algorithm can benefit from. This gives us an ...
	Simulations usually consists of a mixture of fundamentally serial control logic and inherently parallel computation. Furthermore, those computations are often data-parallel in nature, which matches the programming model that CUDA adopts (see Section I...
	In our case of a typical electromagnetic simulation, the same executable is invoked multiple times on each parallel processor by a job-queuing algorithm and the results are then reassembled. This constitutes an embarrassingly parallel computing model,...
	to graphics processing in this respect: Million of operations can be performed in parallel exhibiting a speed which can reach up to two orders of magnitude when compared to the computational power shown on typical quad-core CPUs.
	On the other hand, simulations often deal with a large amount of data, which are responsible for the realism and accuracy of the simulated physics. GPUs reach data bandwidth with video memory around ten times higher than CPUs with main memory, and bec...
	A third issue is also worth mentioning: Arithmetic intensity. Electromagnetic simulations usually require the computation of complex mathematical formulas, which are efficiently mapped to the GPU platform due to the presence of those units devoted to ...
	Finally, we leave on the CPU those parts of our simulation that do not have high arithmetic intensity or do not expose substantial amounts of data or  thread-level parallelism. This way, that tough part of our application remains unchanged and can ben...
	For the GPU to succeed as the favourite platform to run electromagnetic simulations in the future, we still envision two main challenges in the horizon: Accuracy and memory capacity.
	Accuracy. The lack of 32-bit floating-point precision was a major drawback in many application areas during the first half of this decade. Starting in 2008 with the GT 200 series from Nvidia, the situation has reversed and all major GPU vendors now of...
	The problem arises when you look at execution times, since in most cases performance drops from five to ten times when you migrate your algorithm from single to double precision. This is mainly due to the reduced degree of parallelism we can exp...
	E. Memory size
	Some of the large scale simulations are not necessary complicated in nature, but they require a large amount of memory space. For example, modelling of the near electromagnetic fields around antennas fall into this category, and more in general, f...

	III. CUDA
	IV. OPTIMIZATIONS

	V. CONCLUDING REMARKS
	REFERENCES

	03_20091205_Atef.pdf
	I. INTRODUCTION
	II. COMPUTE UNIFIED DEVICE ARCHITECTURE
	A. CUDA Concepts
	B. Performance Optimization Strategies

	III. THE FDTD FORMULATION
	IV. FDTD USING CUDA
	V. PERFORMANCE ANALYSIS
	VI. CONCLUSION

	04_20100302_Atef.pdf
	I. INTRODUCTION
	II. FUNDAMENTALS OF  FDTD PERFORMANCE ON GPU
	III. PERFECTLY MATCHED LAYERS
	(PML)
	IV. NUMBER OF UNIQUE MATERIALS
	V. DISPERSIVE MATERIALS
	VI. READS AND READ REGIONS  (WRITES AND WRITES REGIONS)
	Moving field data between GPU and CPU system memory during a simulation can dramatically impact performance and has been discussed as a limitation of GPU FDTD implementations.  For the purpose of this discussion we will refer to these data moves as re...
	The two critical factors affecting performance for reads and writes are: how much of the volume is read/written and how frequently. Figure 5 below shows performance for different read volumes based on a percentage of the total volume.  All six fields ...
	/
	The above volume reads are made for contiguous volumes within the simulation space which is a simplified though still realistic case.  The other extreme would be a large number of individual point reads dispersed evenly through a volume or plane.  Ind...
	The general suggestions to manage the impact of field observations are relevant in all cases.  They are: keep the read volume to a minimum, only observe the region (volume) that is of direct interest, and read only as frequently as is necessary to ach...

	VII. SIMULATION ORIENTATION
	VIII. MULTI-GPU SYSTEMS
	REFERENCES

	05_20100112_Atef.pdf
	I. INTRODUCTION
	II. FDTD USING CUDA
	III. STACKING SCHEMES
	IV. ALIGNMENT OF GEOMETRIES 
	V. OTHER ADVANTAGES OF STACKING
	VI. CONCLUSION

	09_20100103_Atef.pdf
	I. INTRODUCTION
	II. Radiation by 2D IRREGULAR ARRAYS
	III. IMPLEMENTATION OF THE ALGORITHMS
	IV. COMPUTATIONAL PERFORMANCE
	Speed-up
	>10
	Speed-up
	1
	V. ACCURACY
	Erased
	elements [%]
	0
	VI. CONCLUSIONS
	APPENDIX A: THE nufft algorithm
	APPENDIX B: C-STYLE LISTING OF THE SEQUENTIAL nufft algorithm
	APPENDIX C: CUDA-STYLE LISTING OF THE PARALLEL nufft algorithm
	REFERENCES




