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Abstract ─ In this paper, we proposed a high resolution 

algorithm for null broadening beamforming. The 

algorithm is based on the property of subspace orthogonal 

principle between signal and noise, and on virtual 

antenna array. By utilizing Capon spectrum estimator, 

we construct the correlation matrix to obtain projection 

transformation matrix, the width of null increases when 

original covariance matrix is processed by projection 

transformation matrix. In order to improve the depth  

of null and increase array resolution, virtual antenna 

technique is introduced. Also diagonal loading technique 

is used to form robust beam pattern. With the theoretical 

analysis and computer simulation, it’s demonstrated that 

the superiority of proposed algorithm corresponding 

other null broadening beamforming methods. 

 

Index Terms ─ Array resolution, diagonal loading, null 

broadening beamforming, remove redundancy, subspace 

projection, virtual antenna array. 
 

I. INTRODUCTION 
Adaptive beamforming can suppress the interferences 

and noises by producing null at the direction of 

interferences, so it has been widely used in radar, sonar, 

mobile communications and many other fields [1-3]. One 

of the challenges of designing such a beamformer arises 

when the interference direction may be inaccurately 

known by Direction-of-Arrival (DOA) estimation. It’s 

desired that interferences are suppressed within an 

angular region for enhancing fault tolerance. Thus many 

approaches of null broadening beamforming have been 

proposed [4-8]. 

Mailloux [4] and Zatman [5] have proposed pattern 

troughs techniques, respectively. Two methods are the 

same essentially and are unified by introducing the concept 

of covariance matrix tapers (CMT) [6]. However, the 

depth level of null degrades when a wide trough is 

obtained because of interference power dispersion. Amar 

[7] has proposed a new approach that called linear 

constraint sector suppressed (LCSS), by which the  

depth of null is improved, the performance of LCSS  

is degradation with high SNR, unfortunately. Recently, 

a novel algorithm named projection and diagonal loading 

null broadening beamforming (PDNBB) was proposed 

[8], this method has excellent performance compared 

with previous algorithms, but depth of null is not enough 

in some certain cases and array resolution degrades when 

the null is broadened. In this paper, we construct the 

projection transformation matrix by PDNBB algorithm, 

and a high resolution algorithm for null broadening 

beamforming is proposed, in which covariance matrix  

is processed by projection transformation matrix to 

enhance the orthognality of subspace and real antenna 

array is transformed into virtual antenna array by virtual 

antenna technique [9,10] to improve relative power 

distribution. Virtual antenna technique is an advanced 

array signal processing technique, array resolution could 

be improved by new virtual array elements. Compared 

with other algorithms, deeper null and higher array 

resolution can be got by proposed method when we 

broaden the null, and it’s insensitive to snapshots. 
 

II. THE SIGNAL MODEL 
We consider a uniform linear array (ULA) with N 

omnidirectional antennas with spacing half a wave length 

uniformly. Assume that there are 1M   narrowband 

far-field signals from the directions p , p=0,1,2,…, M, 

where 0  represents the direction of desired signal and 

q  (q=1,2,…, M ) are the direction of interference signal. 

The receive signal at the time index k could be expressed 

as follows: 

 ( ) ( ) ( )k k k X AS N , (1) 

where A denotes array manifold matrix, S(k) is signal 

complex envelop vector, N(k) represents a vector modeled 

as zero-mean white Gaussian noise and complex vector 

 1 2( ) ( ), ( ),..., ( )
T

Nk x k x k x kX is an observation data 

vector at the sample snapshot kth. We assume that desired 

signal, interference signals and noise are statistically 

independent of each other. So output signal of 

beamformer at the receiving terminal can be denoted as: 

 ( ) ( )Hy k k W X , (2) 

where W is a complex weight vector with dimension 
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1N   and ( )H denotes Hermitian transpose. 

According to the criterion of maximizing the  

output signal-to-interference-plus-noise ratio (SINR), 

the minimum variance distortionless response (MVDR) 

beamformer can be formulated as the following linearly 

constrained quadratic optimization problem [11,12]: 
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where 
0( )a  represents steering vector of desired signal 

and i nR  is the interference-plus-noise covariance 

matrix. The solution of optimal weight vector can be 

solved by lagrangian multiplier method and expressed as 

follows: 
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In practice, we can’t obtain the covariance matrix

i nR  because of the existence of desired signal in the 

receive signal, so interference-plus-noise matrix is 

commonly replaced by the sample covariance matrix 

(SCM) with K snapshots, SCM can be described as: 

 
1

1
= ( ) ( )

K

K
H

i

i i




R X X , (5) 

 

III. THE PDNBB APPROACH [8] 
We construct correlation matrix R  for the steering 

vector as follows: 

 ( ) ( )H d



   R a a , (6) 

where   is the angular sector that interference signals 

may appear. Because there is a high computational 

complexity in integral operation, we replace the integral 

with summation operation by selecting a series of discrete 

points within the desired null angular sector. Then R  

is decomposed with eigenvalue i  and eigenvector 
iv  as: 

 1 2i=1
=    

N H
i i i N       R v v , (7) 

We assume there are Q lager eigenvalues which 

occupy the most energy of receiving signal and they are 

satisfied with inequality as follows: 
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
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where parameter   decides the depth of null. So 

projection transformation matrix can be obtained by T: 

 1 2 = span( , , , )Q  T v v v , (9) 

where ( )span   represents the generative vector space of 

selected based vector. 

The original covariance matrix is replaced as 

follows: 

  = +H 


R TRT Ι , (10) 

where   is the diagonal loading factor and it can be 

selected in the range of 
-6 -410 10   by practical 

experience, and I is identity matrix.  

 

IV. THE PROPOSED METHOD 

A. The proposed method 

In this paper, the PDNBB algorithm is taken to 

obtain new covariance matrix which strengths the 

orthogonality between signal subspace and noise 

subspace, but array resolution degrades when wider null 

is obtained. In order to get deeper null in some certain 

circumstances, we introduce the concept of Kronecker 

product [13], by which real array is transformed into 

virtual array and the number of antenna array increases, 

therefore, both covariance matrix and steering vectors 

are transformed as follows: 

 =




R R R , (11) 

 ( ) ( ) ( )  


 a a a , (12) 

where   operator denotes Kronecker product and ( )  

is conjugate operator. 
 

B. Theoretical analysis 

According to subspace decomposition theory, we 

write covariance matrix obtained by PDNBB algorithm 

as follows: 

    

 = 

    =   

    = +

H H

Hs
s n s n

n

H H
s s s n n n



 
 
 

 

R TU U T

Σ
T U U U U

Σ

A A B B

, (13) 

where sU  represents signal subspace and it can be written 

as 1 2 1 = [ , ,..., ]s MU v v v , nU  represents noise subspace 

and it can be written as 2 3=[ , ,..., ]n M M N U v v v , sΣ  and 

nΣ  are diagonal matrixes which could be expressed as 

1 2 1 = diag( , ,..., )s M   Σ  and 2 3 = diag( , ,..., )n M M N   Σ  

corresponding eigenvalues of signal and noise subspace, 

respectively. In addition, let ,  s s n n A TU B TU , the 

latter tends to zero, ideally. Then covariance matrix of 

proposed method is expressed as: 

 
 = ( ) ( )

  ( )

H H
s s s s s s

H
s s






  
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R A A A A

V V
, (14) 

where let s s
 V A A . 

It can be seen from (14) that only signal subspace is 

retained, ideally. It is noteworthy that there are redundant 

items in covariance matrix and steering vector processed 

by Kronecker product, so it needs to be handled to remove 
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redundancy. The power of desired signal and interference 

components are enhanced furtherly so that the deeper 

null can be presented. 
 

C. The method of removing redundancy 

The dimension of covariance matrix increases after 

virtual transformation, which means there are more array 

antenna elements so that higher array resolution could be 

obtained, but many redundant items exist in covariance 

matrix processed by Kronecker product. According to the 

correspondence between steering vector and covariance 

matrix as follows: 
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 =




R R R , (17) 

where d represents the spacing between elements and  

  is signal incident direction. We can remove the 

redundant items from the covariance matrix and steering 

vector processed by Kronecker product. Figure 1 denotes 

covariance matrix after removing the redundancy. 
 

N N+1 2N+1 3N+1 N（N-2）+1 N（N-1）+1

 
 

Fig. 1. Covariance matrix after removing the redundancy. 
 

In the Fig. 1, large square box represents a matrix 

with dimension 2 2N N , small square box denotes a 

matrix which dimension is N N , the rectangle boxes 

denote vector with dimension 1N  , and circles are 

elements extracted from original covariance matrix.  

The original covariance matrix with dimension 2 2N N  

becomes a new covariance matrix with dimension 

(2 1) (2 1)N N    after using the method of removing 

redundancy. 

In the proposed method, the main computational 

complexity lies in construction of R  and matrix 

inversion operation, the former is 
2( )O PSN  where P 

denotes the number of null broadening and S is the 

number of samples taken in the summation with S N , 

the latter is 
3((2 1) )O N  , so the overall computational 

complexity is 
2 3(max( ,(2 1) ))O PSN N  . The PDNBB 

and LCSS have same computational complexity with
2 3( , )O PSN N . CMT has a lower complexity of 

3( )O N . 

Although the proposed method has higher complexity 

than other algorithms, deeper null and higher array 

resolution can be got in practical application. 
 

D. The summary of proposed method 

The proposed algorithm can be implemented by 

several steps and summarized as follows: 

Step 1) Construct steering vector correlation matrix 

R  as Equation (6); 

Step 2) Eigen decomposition of R  as Equation (7); 

Step 3) Construct projection transformation matrix T as 

Equation (8); 

Step 4) Projection and diagonal loading as Equation (10); 

Step 5) Kronecker product transforms as Equation (11) 

and Equation (12); 

Step 6) Removing the redundant items as Fig. 1; 

Step 7) Calculate optimal weight value as Equation (4). 
 

V. SIMULATION RESULTS 
We consider a uniform linear array (ULA) with 10 

omnidirectional antennas spaced half a wave length 

uniformly. The direction-of-arrival of desired signal is 

0 . The DOAs of the two interferences are - 40  and 

50 , respectively. The interference to noise ratio (INR) 

is 30 dB, SNR is 0 dB unless it’s specified. The number 

of snapshot is 200. The width of null is 10 , so projection 

angular sector selects as [ 45 , 35 ]   and [45 ,55 ] . The 

parameter   decides the depth level of null, we select   

as -66 10 or -106 10 . The beam patterns of proposed 

method and other algorithms are compared in Fig. 2. 

From the Fig. 2 (a) and Fig. 2 (b), it can be seen that 

there are deeper null and higher array resolution when 

null is broadened in proposed algorithm. In addition, 

there are different depth of null when parameter 

selected different values, the reason is that orthogonality 

between signal subspace and noise subspace increases 

when we select smaller  . Figure 3 (a) demonstrates the 

output SINR performance versus SNR where the number 

of antenna array is 19, except from proposed method, it’s 

consistent with what have been said before, the reason is 

that the proposed method has changed the number of 

array elements from N to 2N-1 after Kronecker product 

transformation, where N takes 10. Figure 3 (b) shows 

beam patterns of proposed method when the number of 

snapshot takes different values, and K=20, K=200 and 

K=500 are used in the simulations. For each scenario, 
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there are Monte-Carlo simulations performed with the 

number of 200 and diagonal loading factor   is -410 . 

We can see that the proposed method have deeper null, 

high resolution and good robustness which verifies the 

feasibility of the algorithm. 
 

     
 (a)    (b) 
 

Fig. 2. (a) Normalized beampatterns of different 

algorithms when parameter   is equal to -66 10 , and (b) 

normalized beampatterns of different algorithms when 

parameter   is equal to -106 10 . 
 

     
        (a)      (b) 
 

Fig. 3. (a) Output SINR versus the input SNR when 

parameter   is equal to -106 10 , and (b) beam patterns 

of the proposed method when the number of snapshot 

takes different values and   is equal to -66 10 . 
 

VI. CONCLUSION 
A high resolution algorithm for null broadening 

beamforming based on subspace projection and virtual 

antenna array is presented in this paper. The proposed 

method expands the direction of interference incidence 

through the projection transformation technique, deepens 

the depth of null, and improves the orthogonality 

between signal subspace and the noise subspace. At  

the same time, through the virtual antenna technology, 

the proposed method furtherly deepens the depth of null 

while achieving higher array resolution. Theoretical 

analysis and simulation results show that the proposed 

method has a good performance on null broadening, 

array resolution and robustness, it can still work steadily 

with a small number of snapshots, which enhances its 

practicality and saves the hardware storage resources. 
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