
The Success of GPU Computing in Applied Electromagnetics

A. Capozzoli 1, O. Kilic 2, C. Curcio 1, and A. Liseno 1

1 Università di Napoli Federico II

Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione

via Claudio 21, I 80125 Napoli, Italy

a.capozzoli@unina.it

2 The Catholic University of America

Department of Electrical Engineering and Computer Science, Washington, DC

kilic@cua.edu

Abstract ─ In the field of electromagnetic modeling,

whether it is the complex designs for engineered

materials or devices and components integrated within

their natural environments, there is a big drive for highly

efficient numerical techniques to model the performance

of complex structures. This often cannot be achieved by

conventional computer systems, but rather through using

the so-called high performance computing (HPC)

systems that utilize hardware acceleration. We review

recent General Purpose Graphics Processing Units

(GPGPU) computing strategies introduced in four fields

of computational electromagnetics: Finite-Difference

Time-Domain (FDTD), Finite Elements Method (FEM),

Method of Moments (MoM) and ElectroMagnetic Ray

Tracing (EMRT).

Index Terms ─ CUDA, ElectroMagnetic Ray Tracing

(EMRT), Finite-Difference Time-Domain (FDTD), Finite

Elements Method (FEM), Graphics Processing Units

(GPUs), Method of Moments (MoM), OpenCL, parallel

programming.

I. INTRODUCTION
Electromagnetic simulators are essential tools in the

analysis and the design of large and complex systems.

The last two decades have witnessed dramatic

improvements in both algorithms for computational

electromagnetics and computing hardware. For the latter

point, the use of General Purpose computing on Graphics

Processing Units (GPGPU) has become increasingly

prevalent. Due to their many computational cores,

GPGPUs are indeed suitable for solving problems with a

high degree of parallelism.

Successful applications of GPGPU computation

require appropriate code implementations and

optimizations, depending on whether the problem is

memory bound (most of the time spent in memory

transactions) or compute bound (most of the time spent

in using the GPU) [1]. Throughout the literature, there

are several success stories in GPGPU computing as

applied to computational electromagnetics. The purpose

of this review paper is to sketch the latest GPU

computing strategies adopted in four fields of particular

interest; namely Finite-Difference Time Domain

(FDTD), Finite Elements Method (FEM), Method of

Moments (MoM) and ElectroMagnetic Ray Tracing

(EMRT). For each of the mentioned representative

fields, we will point out the critical aspects, which enable

achieving high performance in computations. Also, we

will provide relevant references, which will help the

interested reader for further details. Finally, nowadays,

desktop computers can easily fit four GPUs although, if

more computational resources are required, multiple

GPUs can be clustered together or heterogeneous

systems can be used for large scale simulations. How

multi-GPU and heterogeneous systems help increasing

the computational performance for the mentioned

applications will also be discussed.

II. FDTD
FDTD is one of the most widely used numerical

methods for electromagnetic simulations. From the

computational point of view, it essentially amounts at

stencil calculations. Therefore, the main issue of FDTD

is the very low arithmetic intensity, which means that the

attainable performance in terms of Floating Point

Operations per Second (FLOPS) is limited by the

memory bandwidth [2].

Typical strategies like optimizing the arithmetic

instructions or hiding the latency of the global memory

access by maximizing the multiprocessor occupancy are

not effective. For this reason, essentially the optimization

approaches below have been applied to GPU-based

FDTD implementations for different GPU architectures:

1. Exploit shared memory;

2. Achieve global memory coalesced accesses;

ACES JOURNAL, Vol. 33, No. 2, February 2018

Submitted On: July 11, 2016
Accepted On: July 13, 2016 1054-4887 © ACES

148

3. Use the texture cache;

4. Use built-in arrays;

5. Properly arrange the computation in the 3rd

dimension.

Concerning point #1, the calculation of field

components depends, at each time step, on the value of

the same component at the previous step, and on other

field components at neighboring cells. Accordingly, it

was proposed in [3] to use shared memory to cache

all the needed field components, including those

corresponding to adjacent computational tiles. In this

way, it is possible to significantly reduce data read

redundancy. The use of shared memory also enables to

limit uncoalesced acceses, as for point #2, see [4].

Regarding point #3, texture memory buffers data in

a suited cache, optimized for two-dimensional spatial

locality. This leads to performance gains when threads

read locations that are spatially close, as in FDTD [4].

However, this benefit appears to be less relevant for

latest architectures due to their newly available caching

mechanisms.

Concerning point #4, built-in arrays have two, three

or four components accessible which allow to best

exploit global memory bandwidth. They are used to

minimize the number of access operations by maximizing

the number of bytes simultaneously transferred [4].

Finally, a very important point in 3D FDTD is the

organization of the computation in the third dimension.

An efficient solution has been proposed in [3] and a

discussion of this topic, in particular, on different

solutions proposed in the literature has been recently

provided in [5]. An approach to reduce thread divergence

when applying Convolutional Perfectly Matched Layer

(CPML) boundary conditions has been also proposed in

[6].

Compared to a typical implementation on multicore

CPUs, an optimized parallelization on GPUs reaches

a speedup of the order of ten times. By properly

overlapping computation and communication, high

parallelization efficiencies (75%) can be achieved in

these cases [7].

III. FEM
The Finite Element Method (FEM) is one of the

most advanced and powerful methods for solving

Maxwell’s equations. Although often used in

computational electromagnetics, GPU research on FEM

has not been yet as popular as for other numerical

methods. Solving Maxwell’s equations using FEM

essentially consists of three phases [8]:

(i) Local Assembly: For each element e in the domain,

an N×N matrix, Me (local matrices), and an N-length

vector, be (local vectors), are computed, where N is

the number of nodes per element. The computation

of Me and be usually involves the evaluation of

integrals over the element using Gaussian

quadrature. Since meshes are typically unstructured,

gathering the data associated with each element

forces highly irregular memory accesses.

(ii) Global Assembly: The matrices Me and the vectors

be are used to form a global matrix M and global

vector b by assembling the contributions of the

elements together. Typically, M is very sparse,

although its sparsity depends on the connectivity of

the mesh. The Compressed Sparse Row (CSR)

format is often used to reduce the storage

requirement of the matrix and to eliminate

redundant computations.

(iii) Solution of the Relevant Linear System: The sparse

system M x = b is solved for x.

There are different possible ways of parallelizing the

first two steps. Unfortunately, until now, there is no

definite answer on which is the most promising

approach. Different techniques are discussed in [8] that

are fairly general and relevant to many types of

computations on unstructured meshes. A range of possible

implementations is presented and recommendations to

potential implementers are given. In particular, three

possibilities have been considered depending on what

each thread is assigned to:

1. Assembly by non-zero elements (each thread is

assigned to a different non-zero global matrix

element);

2. Assembly by rows (each thread is assigned to a

different row of the global matrix);

3. Assembly by elements (each thread is assigned to a

different finite element).

Some results have been published for

electromagnetic problems in [9] using OpenCL and in

[10] using CUDA. A speedup of 19 has been observed

for the former case against a multi-core CPU

implementation, while a speedup between 87 (matrix

assembly) and 51 (solution of the linear system) has been

reported for the latter case.

IV. MOM
Method of Moments is another powerful tool used

widely in computational electromagnetics. Radiation

and scattering problems can be solved numerically using

various formulations of the MoM (e.g., EFIE, CFIE,

etc.), which is a well-established full-wave analysis

based on meshing the geometry into coalescent triangles.

The technique employs the expansion of the surface

currents of the mesh into a set of basis functions, such as

the well-known Rao-Wilton-Glisson (RWG), [11]. The

series expansion results in a linear system as expressed

as

     . ,V Z I where V represents the source function,

I is the unknown current, and Z is the impedance matrix.

The size of the linear system; i.e., NxN, depends on the

number of non-boundary edges in the triangular mesh,

N. In the conventional MoM approach, first the

CAPOZZOLI, KILIC, CURCIO, LISENO: THE SUCCESS OF GPU COMPUTING IN APPLIED ELECTROMAGNETICS 149

impedance matrix is computed. Then it is inverted, and

the unknown currents are calculated. The source vector

is computed based on the geometry and the excitation

fields at each triangle, [11].

The direct solution of MoM by a matrix inversion

presents a big challenge as the object size increases. This

is due to the computational complexity, O(N3), and

storage requirements, O(N2) of MoM. While one way to

address the complexity problem is the use of iterative

solvers, MoM remains computationally expensive for

electrically large objects. The Fast Multipole Method

(FMM), which was first introduced by Rokhlin [12] as

an augmentation to MoM, reduces the computational

complexity for such problems to O(NitN2) without a

significant loss of accuracy. In FMM, the N edges in the

mesh are classified into M localized groups, such that

each group supports approximately N/M edges. The

groups are then categorized as near and far, based on

their spatial proximity, allowing the system matrix to be

split into, Znear and Zfar components, which describe the

near and far interactions among the edges. A few authors

have applied FMM for electromagnetic problems using

a single GPU for small size problems [13], or a GPU

cluster for larger problems [14], [15].

Further enhancements have evolved to handle larger

problems, such as FMM-FFT, which applies FFT at the

translation and multipole expansion stages of FMM,

which reduces the complexity to O(NlogN) for two-

dimensional rough surfaces, [16] and to O(N4/3 log2/3N)

for three-dimensional objects, [17]. Recently, FMM-

FFT was implemented on a multi-node GPU cluster to

demonstrate significant acceleration in computation time

while preserving the scalabilty of FMM, [18]. However,

FMM-FFT still suffers from the limitation of the GPU

memory to solve for larger problems. Another such

attempt to enhance FMM for larger scale problems is by

introducing a multi-level tree structure of MLFMA,

which reduces the computational complexity of MoM to

O(NlogN).

V. RAY TRACING
Geometrical Optics (GO) is appealing for scenes

with electrically large objects as it provides approximate

solutions to Maxwell’s equations. In such cases, GO can

benefit from the use of data structures inherited by

computer graphics, as the Binary Bounding Volume

Hierarchies (BBVH), to properly handle the intersections

between rays and scene objects.

Ray tracing for GO involves two main steps:

searching for the intersections between rays and

geometric primitives (for example, triangles) discretizing

the object surfaces, and electromagnetic field transport.

The first step can be the most time consuming, and must

be properly managed. A simple brute force approach

would be unfeasible due to the large number of

intersection tests to be issued.

This intersection problem can be faced by

introducing objects of simple geometry helping in

determining if the ray intersects the generic primitive or

not, as well as organizing primitives and objects into

proper (usually binary) tree hierarchies to reduce the

number of intersection tests. Typically, such objects are

Axis Aligned Bounding Boxes (AABB). An AABB

encloses a group of geometrical primitives or even other

bounding volumes. The leaf nodes contain the primitives

while the inner nodes enclose the bounding volume of its

child nodes. With such a hierarchy, a tree-search

algorithm is used to find the nearest object that is hit by

a ray. Generally, two schemes are the most popular to

construct the hierarchy, namely, spatial subdivision and

object partitioning.

With spatial subdivision, space is recursively split.

Each primitive is placed into all leaf nodes to which it

overlaps and straddling primitives are copied in multiple

nodes. Subdividing space with axis aligned planes leads

to the so called KD-tree [19].

On the other side, a binary object partitioning

scheme recursively subdivides the primitive list in two

non-empty and disjoint sub-lists. For each sub-list, the

minimum bounding volumes containing all the sub-list

primitives is computed. The bounding volumes may

partially overlap and the accelerating structure associated

to object partitioning scheme is called BVH [20]. Unlike

KDtree, each primitive is stored only once.

Object partitioning and spatial subdivision can work

together resulting in a hybrid scheme known as Split

Bounding Volume Hierarchy (SBVH) [20, 21], see also

[22]. Recently, the benefits and the drawbacks of the

above schemes have been analyzed with reference to

their GPU implementations [22]. It has emerged that:

 The most critical drawback of KD-tree is the high

number of primitive duplicates and the tree depth.

 Besides leading to high memory consumption (which

is a problem by itself in GPU computing), primitive

duplicates and tree depth are responsible of a larger

(as compared to BVH) number of inner-node traversal

steps, leaf visits and ray-primitive intersection tests.

 BVH, unlike KD-tree, poorly adapts to arbitrary

scenes with very varying density. SBVH has shown

to be a very satisfactory compromise.

With SBVH, it has recently shown how thousands

of millions of rays per second can be traced on a Kepler

K20c card [23].

VI. CONCLUSION
We have reviewed recent GPGPU computing

strategies introduced in five fields of computational

electromagnetics: FDTD, FEM, MoM and EMRT. The

purpose has been to provide new Researchers in this field

with initial guidelines on the dealt with topics. At

present, research in GPU accelerated FEM for

electromagnetics surprisingly appears to have been

ACES JOURNAL, Vol. 33, No. 2, February 2018150

overlooked in the literature.

REFERENCES
[1] P. Micikevicius, “Identifying performance limiters,”

GTC Technology Conf., 2011.

[2] K.-H. Kim, K. H. Kim, and Q.-H. Park,

“Performance analysis and optimization of three-

dimensional FDTD on GPU using roofline model,”

Computer Phys. Commun., vol. 182, no. 6, pp.

1201-1207, June 2011.

[3] P. Micikevicius, “3D finite difference computation

on GPUs using CUDA,” Proc. of 2nd Workshop

on General Purpose Processing on GPUs,

Washington, DC, USA, pp. 79-84, Mar. 8, 2009.

[4] D. De Donno, A. Esposito, L. Tarricone, and L.

Catarinucci, “Introduction to GPU computing and

CUDA programming: a case study,” IEEE

Antennas Prop. Mag., vol. 52, no. 3, pp. 116-122,

June 2010.

[5] M. Livesey, J. F. Stack Jr., F. Costen, T. Nanri, N.

Nakashima, and S. Fujino, “Development of a

CUDA implementation of the 3D FDTD method,”

IEEE Antennas Prop. Mag., vol. 54, no. 5, pp. 186-

195, Oct. 2012.

[6] J. I. Toivanen, T. P. Stefanski, N. Kuster, and N.

Chavannes, “Comparison of CPML implementations

for the GPU-accelerated FDTD solver,” Progr.

Electromagn. Res., vol. 19, pp. 61-75, 2011.

[7] R. Shams and P. Sadeghi, “On optimization of

finite-difference time-domain (FDTD) computation

on heterogeneous and GPU clusters,” J. Parallel

Distrib. Comput., vol. 71, no. 4, pp. 584-593, Apr.

2011.

[8] C. Cecka, A. J. Lew, and E. Darve, “Assembly of

finite element methods on graphics processors,”

Int. J. Numer. Meth., vol. 85, no. 5, pp. 640-669,

Feb. 2011.

[9] A. Dziekonski, P. Sypek, A. Lamecki, and M.

Mrozowski, “Finite element matrix generation on a

GPU,” Progr. in Electromagn. Res., vol. 128, pp.

249-265, 2012.

[10] Z. Fu, T. J. Lewis, R. M. Kirby, and R. T. Whitaker,

“Architecting the finite element method pipeline

for the GPU,” J. Comput. Appl. Math., vol. 256, pp.

195-211, Feb. 2014.

[11] S. M. Rao, D. R. Wilton, and A. W. Glisson,

“Electromagnetic scattering by surfaces of

arbitrary shape,” IEEE Trans. Antennas Prop., vol.

AP-30, no. 3. pp. 409-418, May 1982.

[12] R. Coifman, V. Rokhlin, and S. Wandzura, “The

fast multipole method for the wave equation: A

pedestrian prescription,” IEEE Antennas Prop.

Mag., vol. 35, no. 3, pp. 7-12, June 1993.

[13] K. Xu, D. Z. Ding, Z. H. Fan, and R. S. Chen,

“Multilevel fast multipole algorithm enhanced by

GPU parallel technique for electromagnetic

scattering problems,” Microw. Opt. Technol. Lett.,

vol. 52, pp. 502-507, 2010.

[14] Q. Nguyen, V. Dang, O. Kilic, and E. El-Araby,

“Parallelizing fast multipole method for large-scale

electromagnetic problems using GPU clusters,”

IEEE Antennas Wireless Prop. Lett., vol. 12, pp.

868-871, 2013.

[15] V. Dang, Q. Nguyen, and O. Kilic, “Fast multipole

method for large-scale electromagnetic scattering

problems on GPU cluster and FPGA accelerated

platforms,” Applied Comp. Electromag. Soc.

Journal, Special Issue, vol. 28, no. 12, pp. 1187-

1198, 2013.

[16] R. L. Wagner, J. Song, and W. C. Chew, “Monte

Carlo simulation of electromagnetic scattering

from two-dimensional random rough surfaces,”

IEEE Trans. Antennas Prop., vol. 45, no. 2, pp.

235-245, 1997.

[17] C. Waltz, K. Sertel, M. A Carr, B. C. Usner, and J.

L. Volakis, “Massively parallel fast multipole

method solutions of large electromagnetic

scattering problems,” IEEE Trans. Antennas Prop.,

vol. AP-55, no. 6, pp. 1810-1816, 2007.

[18] V. Dang, Q. Nguyen, and O. Kilic, “GPU cluster

implementation of FMM-FFT for large-scale

electromagnetic problems,” IEEE Antennas

Wireless Prop. Lett., vol. 13, pp. 1259-1262, 2014.

[19] Y. Tao, H. Lin, and H. Bao, “GPU-based shooting

and bouncing ray method for fast RCS prediction,”

IEEE Trans. Antennas Prop., vol. 58, no. 2, pp.

494-502, Feb. 2010.

[20] T. Aila and S. Laine, “Understanding the efficiency

of ray traversal on GPUs,” Proc. of the Conf.

on High Performance Graphics, Saarbrucken,

Germany, pp. 145-150, June 25-27, 2009.

[21] I. Wald and V. Havran, “On building fast KD-

Trees for ray tracing, and on doing that in

O(NlogN),” Proc. of the IEEE Symposium on

Interactive Ray Tracing, Salt Lake City, UT, pp.

61-69, Sept. 18-20, 2006.

[22] A. Breglia, A. Capozzoli, C. Curcio, and A. Liseno,

“GPU-based shooting and bouncing ray method for

fast RCS prediction,” IEEE Antennas Prop. Mag.,

vol. 57, no. 5, pp. 159-176, Oct. 2015.

[23] A. Breglia, A. Capozzoli, C. Curcio, and A. Liseno,

“Why does SBVH outperform KD-tree on parallel

platforms?,” Proc. of the IEEE/ACES Int. Conf. on

Wireless Inf. Tech. and Syst. and Appl. Comput.

Electromagn., Honolulu, HI, pp. 1-2, Mar. 13-18,

2016.

CAPOZZOLI, KILIC, CURCIO, LISENO: THE SUCCESS OF GPU COMPUTING IN APPLIED ELECTROMAGNETICS 151

	FRONTAL PAGE ONE ONLY.pdf
	JOURNAL
	ISSN 1054-4887

 HistoryItem_V1
 DelPageNumbers

 Range: all pages

 1
 640
 293

 AllDoc

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 4
 3
 4

 1

 HistoryItem_V1
 AddNumbers

 Range: all odd numbered pages
 Font: Times-Roman 8.0 point
 Origin: top right
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 TR

 123
 TR
 1
 0
 629
 187
 0
 8.0000

 Odd
 128
 1
 AllDoc

 CurrentAVDoc

 43.2000
 26.6400

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 128
 126
 64

 1

 HistoryItem_V1
 AddNumbers

 Range: all even numbered pages
 Font: Times-Roman 8.0 point
 Origin: top left
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 TL

 123
 TR
 1
 0
 629
 187

 0
 8.0000

 Even
 128
 1
 AllDoc

 CurrentAVDoc

 43.2000
 26.6400

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 128
 127
 64

 1

 HistoryList_V1
 qi2base

