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Abstract ─ In the field of electromagnetic modeling, 

whether it is the complex designs for engineered 

materials or devices and components integrated within 

their natural environments, there is a big drive for highly 

efficient numerical techniques to model the performance 

of complex structures. This often cannot be achieved by 

conventional computer systems, but rather through using 

the so-called high performance computing (HPC) 

systems that utilize hardware acceleration. We review 

recent General Purpose Graphics Processing Units 

(GPGPU) computing strategies introduced in four fields 

of computational electromagnetics: Finite-Difference 

Time-Domain (FDTD), Finite Elements Method (FEM), 

Method of Moments (MoM) and ElectroMagnetic Ray 

Tracing (EMRT). 

Index Terms ─ CUDA, ElectroMagnetic Ray Tracing 

(EMRT), Finite-Difference Time-Domain (FDTD), Finite 

Elements Method (FEM), Graphics Processing Units 

(GPUs), Method of Moments (MoM), OpenCL, parallel 

programming. 

I. INTRODUCTION
Electromagnetic simulators are essential tools in the 

analysis and the design of large and complex systems. 

The last two decades have witnessed dramatic 

improvements in both algorithms for computational 

electromagnetics and computing hardware. For the latter 

point, the use of General Purpose computing on Graphics 

Processing Units (GPGPU) has become increasingly 

prevalent. Due to their many computational cores, 

GPGPUs are indeed suitable for solving problems with a 

high degree of parallelism.  

Successful applications of GPGPU computation 

require appropriate code implementations and 

optimizations, depending on whether the problem is 

memory bound (most of the time spent in memory 

transactions) or compute bound (most of the time spent 

in using the GPU) [1]. Throughout the literature, there 

are several success stories in GPGPU computing as 

applied to computational electromagnetics. The purpose 

of this review paper is to sketch the latest GPU 

computing strategies adopted in four fields of particular 

interest; namely Finite-Difference Time Domain 

(FDTD), Finite Elements Method (FEM), Method of 

Moments (MoM) and ElectroMagnetic Ray Tracing 

(EMRT). For each of the mentioned representative 

fields, we will point out the critical aspects, which enable 

achieving high performance in computations. Also, we 

will provide relevant references, which will help the 

interested reader for further details. Finally, nowadays, 

desktop computers can easily fit four GPUs although, if 

more computational resources are required, multiple 

GPUs can be clustered together or heterogeneous 

systems can be used for large scale simulations. How 

multi-GPU and heterogeneous systems help increasing 

the computational performance for the mentioned 

applications will also be discussed. 

II. FDTD
FDTD is one of the most widely used numerical 

methods for electromagnetic simulations. From the 

computational point of view, it essentially amounts at 

stencil calculations. Therefore, the main issue of FDTD 

is the very low arithmetic intensity, which means that the 

attainable performance in terms of Floating Point 

Operations per Second (FLOPS) is limited by the 

memory bandwidth [2].  

Typical strategies like optimizing the arithmetic 

instructions or hiding the latency of the global memory 

access by maximizing the multiprocessor occupancy are 

not effective. For this reason, essentially the optimization 

approaches below have been applied to GPU-based 

FDTD implementations for different GPU architectures: 

1. Exploit shared memory;

2. Achieve global memory coalesced accesses;
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3. Use the texture cache; 

4. Use built-in arrays; 

5. Properly arrange the computation in the 3rd 

dimension. 

Concerning point #1, the calculation of field 

components depends, at each time step, on the value of 

the same component at the previous step, and on other 

field components at neighboring cells. Accordingly, it 

was proposed in [3] to use shared memory to cache  

all the needed field components, including those 

corresponding to adjacent computational tiles. In this 

way, it is possible to significantly reduce data read 

redundancy. The use of shared memory also enables to 

limit uncoalesced acceses, as for point #2, see [4]. 

Regarding point #3, texture memory buffers data in 

a suited cache, optimized for two-dimensional spatial 

locality. This leads to performance gains when threads 

read locations that are spatially close, as in FDTD [4]. 

However, this benefit appears to be less relevant for 

latest architectures due to their newly available caching 

mechanisms. 

Concerning point #4, built-in arrays have two, three 

or four components accessible which allow to best 

exploit global memory bandwidth. They are used to 

minimize the number of access operations by maximizing 

the number of bytes simultaneously transferred [4]. 

Finally, a very important point in 3D FDTD is the 

organization of the computation in the third dimension. 

An efficient solution has been proposed in [3] and a 

discussion of this topic, in particular, on different 

solutions proposed in the literature has been recently 

provided in [5]. An approach to reduce thread divergence 

when applying Convolutional Perfectly Matched Layer 

(CPML) boundary conditions has been also proposed in 

[6]. 

Compared to a typical implementation on multicore 

CPUs, an optimized parallelization on GPUs reaches  

a speedup of the order of ten times. By properly 

overlapping computation and communication, high 

parallelization efficiencies (75%) can be achieved in 

these cases [7]. 

 

III. FEM 
The Finite Element Method (FEM) is one of the 

most advanced and powerful methods for solving 

Maxwell’s equations. Although often used in 

computational electromagnetics, GPU research on FEM 

has not been yet as popular as for other numerical 

methods. Solving Maxwell’s equations using FEM 

essentially consists of three phases [8]: 

 

(i) Local Assembly: For each element e in the domain, 

an N×N matrix, Me (local matrices), and an N-length 

vector, be (local vectors), are computed, where N is 

the number of nodes per element. The computation 

of Me and be usually involves the evaluation of 

integrals over the element using Gaussian 

quadrature. Since meshes are typically unstructured, 

gathering the data associated with each element 

forces highly irregular memory accesses.  

(ii) Global Assembly: The matrices Me and the vectors 

be are used to form a global matrix M and global 

vector b by assembling the contributions of the 

elements together. Typically, M is very sparse, 

although its sparsity depends on the connectivity of 

the mesh. The Compressed Sparse Row (CSR) 

format is often used to reduce the storage 

requirement of the matrix and to eliminate 

redundant computations. 

(iii) Solution of the Relevant Linear System: The sparse 

system M x = b is solved for x. 

There are different possible ways of parallelizing the 

first two steps. Unfortunately, until now, there is no 

definite answer on which is the most promising 

approach.  Different techniques are discussed in [8] that 

are fairly general and relevant to many types of 

computations on unstructured meshes. A range of possible 

implementations is presented and recommendations to 

potential implementers are given. In particular, three 

possibilities have been considered depending on what 

each thread is assigned to: 

1. Assembly by non-zero elements (each thread is 

assigned to a different non-zero global matrix 

element); 

2. Assembly by rows (each thread is assigned to a 

different row of the global matrix); 

3. Assembly by elements (each thread is assigned to a 

different finite element). 

Some results have been published for 

electromagnetic problems in [9] using OpenCL and in 

[10] using CUDA. A speedup of 19 has been observed 

for the former case against a multi-core CPU 

implementation, while a speedup between 87 (matrix 

assembly) and 51 (solution of the linear system) has been 

reported for the latter case. 
 

IV. MOM 
Method of Moments is another powerful tool used 

widely in computational electromagnetics. Radiation 

and scattering problems can be solved numerically using 

various formulations of the MoM (e.g., EFIE, CFIE, 

etc.), which is a well-established full-wave analysis 

based on meshing the geometry into coalescent triangles. 

The technique employs the expansion of the surface 

currents of the mesh into a set of basis functions, such as 

the well-known Rao-Wilton-Glisson (RWG), [11]. The 

series expansion results in a linear system as expressed 

as
 
     . ,V Z I  where V represents the source function, 

I is the unknown current, and Z is the impedance matrix. 

The size of the linear system; i.e., NxN, depends on the 

number of non-boundary edges in the triangular mesh, 

N. In the conventional MoM approach, first the 
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impedance matrix is computed. Then it is inverted, and 

the unknown currents are calculated. The source vector 

is computed based on the geometry and the excitation 

fields at each triangle, [11]. 

The direct solution of MoM by a matrix inversion 

presents a big challenge as the object size increases. This 

is due to the computational complexity, O(N3), and 

storage requirements, O(N2) of MoM. While one way to 

address the complexity problem is the use of iterative 

solvers, MoM remains computationally expensive for 

electrically large objects. The Fast Multipole Method 

(FMM), which was first introduced by Rokhlin [12] as 

an augmentation to MoM, reduces the computational 

complexity for such problems to O(NitN2) without a 

significant loss of accuracy. In FMM, the N edges in the 

mesh are classified into M localized groups, such that 

each group supports approximately N/M edges. The 

groups are then categorized as near and far, based on 

their spatial proximity, allowing the system matrix to be 

split into, Znear and Zfar components, which describe the 

near and far interactions among the edges. A few authors 

have applied FMM for electromagnetic problems using 

a single GPU for small size problems [13], or a GPU 

cluster for larger problems [14], [15].  

Further enhancements have evolved to handle larger 

problems, such as FMM-FFT, which applies FFT at the 

translation and multipole expansion stages of FMM, 

which reduces the complexity to O(NlogN) for two-

dimensional rough surfaces, [16] and to O(N4/3 log2/3N) 

for three-dimensional objects, [17]. Recently, FMM-

FFT was implemented on a multi-node GPU cluster to 

demonstrate significant acceleration in computation time 

while preserving the scalabilty of FMM, [18]. However, 

FMM-FFT still suffers from the limitation of the GPU 

memory to solve for larger problems. Another such 

attempt to enhance FMM for larger scale problems is by 

introducing a multi-level tree structure of MLFMA, 

which reduces the computational complexity of MoM to 

O(NlogN). 

 

V. RAY TRACING 
Geometrical Optics (GO) is appealing for scenes 

with electrically large objects as it provides approximate 

solutions to Maxwell’s equations. In such cases, GO can 

benefit from the use of data structures inherited by 

computer graphics, as the Binary Bounding Volume 

Hierarchies (BBVH), to properly handle the intersections 

between rays and scene objects.  

Ray tracing for GO involves two main steps: 

searching for the intersections between rays and 

geometric primitives (for example, triangles) discretizing 

the object surfaces, and electromagnetic field transport. 

The first step can be the most time consuming, and must 

be properly managed. A simple brute force approach 

would be unfeasible due to the large number of 

intersection tests to be issued.  

This intersection problem can be faced by 

introducing objects of simple geometry helping in 

determining if the ray intersects the generic primitive or 

not, as well as organizing primitives and objects into 

proper (usually binary) tree hierarchies to reduce the 

number of intersection tests. Typically, such objects are 

Axis Aligned Bounding Boxes (AABB). An AABB 

encloses a group of geometrical primitives or even other 

bounding volumes. The leaf nodes contain the primitives 

while the inner nodes enclose the bounding volume of its 

child nodes. With such a hierarchy, a tree-search 

algorithm is used to find the nearest object that is hit by 

a ray. Generally, two schemes are the most popular to 

construct the hierarchy, namely, spatial subdivision and 

object partitioning. 

With spatial subdivision, space is recursively split. 

Each primitive is placed into all leaf nodes to which it 

overlaps and straddling primitives are copied in multiple 

nodes. Subdividing space with axis aligned planes leads 

to the so called KD-tree [19]. 

On the other side, a binary object partitioning 

scheme recursively subdivides the primitive list in two 

non-empty and disjoint sub-lists. For each sub-list, the 

minimum bounding volumes containing all the sub-list 

primitives is computed. The bounding volumes may 

partially overlap and the accelerating structure associated 

to object partitioning scheme is called BVH [20]. Unlike 

KDtree, each primitive is stored only once. 

Object partitioning and spatial subdivision can work 

together resulting in a hybrid scheme known as Split 

Bounding Volume Hierarchy (SBVH) [20, 21], see also 

[22]. Recently, the benefits and the drawbacks of the 

above schemes have been analyzed with reference to 

their GPU implementations [22]. It has emerged that:  

 The most critical drawback of KD-tree is the high 

number of primitive duplicates and the tree depth.  

 Besides leading to high memory consumption (which 

is a problem by itself in GPU computing), primitive 

duplicates and tree depth are responsible of a larger 

(as compared to BVH) number of inner-node traversal 

steps, leaf visits and ray-primitive intersection tests.  

 BVH, unlike KD-tree, poorly adapts to arbitrary 

scenes with very varying density. SBVH has shown 

to be a very satisfactory compromise. 

With SBVH, it has recently shown how thousands 

of millions of rays per second can be traced on a Kepler 

K20c card [23]. 
 

VI. CONCLUSION 
We have reviewed recent GPGPU computing 

strategies introduced in five fields of computational 

electromagnetics: FDTD, FEM, MoM and EMRT. The 

purpose has been to provide new Researchers in this field 

with initial guidelines on the dealt with topics. At 

present, research in GPU accelerated FEM for 

electromagnetics surprisingly appears to have been  
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overlooked in the literature. 
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