
Merging VSim’s Model Building and Visualization Tools with Custom FDTD

Engines

R. Smith 1, A. Weiss 1, R. Bollimuntha 1, S. DMello 1, M. Piket-May 1, M. Hadi 1,2,3,

and A. Elsherbeni 3

1 Department of Electrical, Computer, and

Energy Engineering

University of Colorado, Boulder, CO 80309, USA

ryan.smith-1@colorado.edu, alec.weiss@colorado.edu,

ravi.bollimuntha@colorado.edu,

sanjay.DMello@colorado.edu,

melinda.piket-may@colorado.edu

2 Department of Electrical Engineering

Kuwait University, Safat 13060, Kuwait

mohammed.hadi@ku.edu.kw

3 Department of Electrical Engineering & Computer Science

Colorado School of Mines, Golden, CO 80401, USA

aelsherb@mines.edu

Abstract ─ This work demonstrates how the graphical

user interface of VSim (electromagnetic simulation

software package) is modified and utilized to run a

custom finite difference time domain algorithm.

Commercial programs typically offer conventional

FDTD functionality. More often than not, researchers

may want to use their own code versions with proprietary

modelling tools and extensions; for example, high-order

differencing or specialized absorbing boundary

conditions. VSim offers the flexibility of integrating an

independent FDTD solver-engine that is tailored for the

end user’s needs. A detailed example is presented here

of the replacement of VSim’s own FDTD engine with a

high-order FDTD code written with CUDA Fortran.

Other custom FDTD codes could be integrated using the

presented procedure.

Index Terms ─ CUDA Fortran, FDTD, High Order

FDTD methods, VSim.

I. INTRODUCTION
The objective of this paper is to serve as a tutorial

for using the graphical user interface (GUI) of VSim

[1,2] as input/output interface, initially to define problem

parameters and later to visualize the simulation results,

while utilizing a custom-made FDTD algorithm. The

custom FDTD algorithm used here is the high order

FV24 algorithm [3,4], which has an extended unit cell

reach that requires modifying some of the standard

FDTD simulation parameters. The main constituents of

VSim are the VSimComposer and VSim Engine (Vorpal).

VSimComposer is the GUI that allows users, via its Setup

page, to define inputs and parameters such as problem

space size, material properties and sources.

The VSimComposer or VorpalComposer also

provides Run, Analyze and Visualize functionality. The

available options on VSimComposer are shown in Fig. 1.

Once the structure and behaviour of a simulation model

is set using the Setup page, we start the simulation using

the Run page. This starts the VSim’s own EM

computation engine, Vorpal, which is based on

conventional FDTD. After the simulation is complete,

the results, designated electric and magnetic fields, are

placed in HDF5 (.h5) file format [5] that can be readily

visualized using the Visualize page [6]. The main

objectives of this work are to show how the same

available interface of VSimComposer is used to initially

set the problem space, import a CAD .stl file [6,7], then

simulate the problem space by hooking a custom FDTD

code to Vorpal, so that this custom scheme is run instead

of VSim’s FDTD engine, and finally to convert the

output files to the appropriate (HDF5) format to enable

VSim to understand the data to enable visualization.

VSim offers the flexibility of integrating an independent

FDTD solver-engine that is tailored for the end user’s

needs by using Python [1,2,8] scripts.

Fig. 1. Available page options on VSimComposer.

II. THE SIMLATION INPUT FILE
The input file to any VSim simulation is created

with the .pre extension [6,9]. An already existing pre file

can be customized according to the problem. We modify

the simulation input parameters such as problem size,

VSimComposer

Setup Run Analyze Visualize

ACES JOURNAL, Vol. 32, No. 12, December 2017

Submitted On: June 3, 2015
Accepted On: January 24, 2016 1054-4887 © ACES

1144

material properties, scatterers, source location and

frequency, etc. These appear in the form of table on

Setup page and are collectively called exposed variables.

We can also view the entire pre file and edit from the

Setup page as text (using the View Input File button) or

it can be modified in any text editor. Scatterers in the

form of primitive shapes (rectangular prism, sphere, box,

…etc.) or additional wave sources can be included in the

problem space by defining their location, sizes, material

and frequency (for sources). Scatterers of complex

shapes are either formed by combining the primitive

shapes or can be imported from a CAD file in binary .stl

(STL: Stereo Lithography) format [6,9]. Some key

variables that are defined in the pre file are described in

Table 1.

Table 1: Description of key variables defined in pre file

Variable Name Description

Primary_Frequency

The frequency of the

source. Any harmonics

are defined with respect

to this frequency.

X_cells, Y_cells, Z_cells

No. of cells in each

direction define the size

of the problem.

Cells_ Per_ Wavelength

This gives the resolution

of the grid: no. of cells

that fit in one wavelength

that is calculated from

primary frequency.

Timesteps

How long the simulation

will run, which also

determines how far the

wave will propagate.

Dump_Period

How often intermediate

results of the simulation

will be saved for

visualization.

CAD_FILE_NAME
Name of the CAD file

example.stl)

CAD_MATERIAL

Permittivity of material

of scatterers in CAD file

(0 for metal, ≥1 for

dielectrics)

STRUCTURE_X,Y,Z

Location in the grid

where the scatterer in

CAD file needs to be

placed.

A. Calculations of simulation parameters

Once the pre file is constructed as desired, it is

validated (button in the upper right hand corner on Setup

page) to check the pre file for errors. The output window

at the bottom gives information about any syntax errors

the verifier finds. While the pre file is being validated

and saved, VSim performs some calculations so that the

.h5 files, placeholders for simulation data, are properly

set up to hold all the required EM data.

A few key calculations are given below. The length

of a cell is given by:

 ℎ = 𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 = 𝜆/𝑅, (1)

where R is cells per wavelength and,

 𝜆 = 𝑐/𝑓, (2)

where f is the frequency of the source and c is the speed

of light in free space. The extent in a direction is thus,

 𝐿𝑥,𝑦,𝑧 = ℎ𝑁𝑥,𝑦,𝑧, (3)

where Nx,y,z is the no. of cells in the x, y or z direction.

And the time step is given by:

 𝑑𝑡 = (𝑇𝐼𝑀𝐸𝑆𝑇𝐸𝑃_𝐹𝐴𝐶𝑇𝑂𝑅) ℎ/(𝑐 √3), (4)

where TIMESTEP_FACTOR is the Courant number.

Various steps involved in the implementation and

the VSimComposer page they are started from and are

given in the form of a flow diagram in Fig. 2.

Fig. 2. Various steps involved in the implementation.

III. IMPORTING A CAD FILE
A CAD file is imported by initializing a variable in

pre file with its name. As of VorpalComposer 6.0

version, the only types of CAD files available to be

imported are .stl files [7]. These files are a common

format that many CAD programs can export to. If the file

is not in this format, currently they are being converted

by importing them into a CAD program and then

exporting them as a binary .stl file. Generally, the .stl file

has no representation of unit of measure, so the exporting

units are arbitrary and need not be changed.

Since .stl file does not specify what units its

distances are in, it needs to be resized according to the

size of the problem space defined in the pre file, so that

it fits inside the problem space. This task is accomplished

by a separate C program (will be posted on ACES

website). Currently this program simply scales the files

to make each dimension less than a desired size and

places the resized file in the working directory.

It is then possible to use the following macro in pre

file to import shapes from a resized .stl file directly:

Customize .pre File

and Setup Simulation
(Setup and Run page)

Create CAD .stl

File and Resize

Run Python Script
(Analyze page)

Visualization
(Visualize page)

ACES JOURNAL, Vol. 32, No. 12, December 20171145

fillGeoCad(objectName,

example_resized.stl,SHAPE_COMPLEMENT,SHAP

E_SCALE,SHAPE_TRANSLATION)

By setting SHAPE_COMPLEMENT to zero the

complement of the shape will not be taken. The

SHAPE_SCALE is used to scale the resized CAD file

shape into meters, the default units for length in

VorpalComposer [6] for visualization purposes. The

SHAPE_TRANSLATION can then be used to translate

the .stl file relative to the location of the origin.

IV. SETTING UP THE SIMULATION
Once the pre file is customized as desired, the vorpal

engine can be run using Run page on VSimComposer.

This accomplishes two tasks: First, it creates empty .h5

files. The pre file is modified such that no actual

computations occur here; rather the empty .h5 files are

created to serve as placeholders for EM data (to be

computed by the custom FV24 engine in the next step).

This implies that the EM value for each cell at each dump

time is temporarily 0. This is accomplished by using

dummyUpdater in the FieldUpdater block in the pre file

[9].

Second, it converts the resized .stl file to .h5 file.

The pre file is also modified to capture any resized .stl

file placed in the working directory. It gets converted to

.h5 file that contains tables of information about the

scatterer used for VSim’s visualization. One of the tables

contains the coordinates of the locations the scatterer

occupies in the grid. This table is later picked and

converted to .txt file to be used by the custom FDTD

engine.

V. RUNNING THE SIMULATION
Now that the simulation has been set up, the custom

FDTD engine, is called next. This is done using the

Analyze page and selecting the Python script copied

earlier to the working directory. This script can also be

run from the command prompt after navigating to the

working directory. The following subsections give a

description of what this script does.

A. Parse the pre file

This is a string search that finds the names of

variables and grabs their values. They are saved as

python variables.

B. Convert scatterer .h5 file into text file

Converts one of the tables in the scatterer .h5 file

generated earlier into a .txt file. This text file contains the

coordinates of the scatterer elements in the grid. Material

properties of the scatterer specified in the pre file are also

added to the text file in the conversion process. This text

file is later used by the custom FDTD engine.

C. Construct object arrays

An array of integers is constructed for each

primitive object and additional source defined in pre file.

This array identifies whether the object is sphere, box,

etc. or a source and contains information on location and

size.

D. Make a call to the custom FDTD engine

The compiled and ready-to-run custom FDTD

engine is called and also, the parameters grabbed from

the pre file and object arrays are passed to the custom

FDTD engine. This engine should also pick the text file

containing scatterer and material data. For our example,

the results of the execution are saved in .csv (comma

separated values) files as Dump_1E.csv (for electric

field), Dump_2E.csv, etc. based on the dump period

specified in pre file. There will be one electric field file

and one magnetic field file for each data dump.

E. Conversion from .csv to .h5 data format

Another python script is called that takes the data in

the .csv files generated by custom code, and populates

the .h5 placeholders that were created by Vorpal engine

earlier in the working directory.

VI. DATA VISUALIZATION
The EM data calculated by the custom FDTD engine

are now present in the .h5 files in the working directory,

and can be viewed using the Visualize page of

VSimComposer. VSim automatically detects the .h5

files. Here is a list of important features in the 3D

visualizer: “Display Contours” box in the lower left

corner needs to be checked to see the wave nature of

fields. On the left side, there are drop-down menus for

Scalar and Vector data, as well as geometric objects. In

the Scalar tab, the x, y, z component or the magnitude of

either the electric or magnetic field can be selected. In

the vector field tab, the electric or magnetic vector field

can be selected. In the Geometries section, the user can

check the primitive objects and imported CAD model to

view them.

Once the data loads, the 3D visualizer can be used

to pan and zoom around the waves. The time step bar at

the bottom of the window is used to move in time. The

number of contours shown can be changed between 2

and 20; this can be used to display every variation in the

field, or only the major ones. Using the Colors button,

the color scale of the visualizer can be changed. By

default, the scale will update for each time step. If one

wishes to keep the scale set for all time steps, the

minimum and maximum values in the color options

dialog may be fixed. This is useful for observing how the

field strength decreases over time. A 3D view of electric

field magnitude and the scatterer is shown in Fig. 3. In

SMITH, WEISS, BOLLIMUNTHA, DMELLO, ET AL.: MERGING VSIM’S MODEL BUILDING AND VISUALIZATION TOOLS 1146

addition to 3D visualization, 2D cuts can be made to

observe waves in 2D space using the Data View menu.

A 2D view of electric field and the scatterer is shown in

Fig. 4.

Fig. 3. A 3D view of electric field magnitude and shuttle

scatterer at t = 180 time steps.

Fig. 4. A 2D slice in XY plane showing magnetic field

magnitude at t = 180 time steps.

VII. SUMMARY AND CONCLUSION
A step-by-step implementation of a custom FDTD

engine using the GUI data input and data visualization

modules of a commercial EM simulation package is

presented. Problem space defining parameters are set

using the data input tool. Embedded scatterer definitions,

if simple enough, could be defined by the same tool, or

imported as a CAD file. The CAD file is then reshaped

and combined with the user provided custom FDTD

engine using a Python script. The visualization tool of

the software package is finally used to observe and

analyze collected simulation data. Although a custom

high order FDTD engine was used as an example here,

readers are at liberty to use their own FDTD engines

written in their programming language of choice. A key

data reshaping software tool will be posted to ACES

website to facilitate this process.

ACKNOWLEDGEMENT
The authors would like to thank Tech-X Corp. for

providing the license and support for the commercial

software used for this work: VSim-7.0.0.

REFERENCES
[1] VSim and VSim for Electromagnetics, [Online].

Available: http://www.txcorp.com

[2] M. Piket-May, S. DMello, R. Smith and M. Hadi,

“Using the VSim GUI to visualize high-order

FV24 simulations of electrically large systems,”

IEEE Antennas Propagat. Society Int. Symp.

(APSURSI), Memphis, TN, pp. 1632-1633, July

2014.

[3] M. F. Hadi, “A finite volumes-based 3-D low

dispersion FDTD algorithm,” IEEE Trans.

Antennas Propagat., vol. 55, no. 8, pp. 2287-2293,

Aug. 2007.

[4] M. F. Hadi, “CUDA Fortran acceleration for the

finite-difference time-domain method,” CPC, vol.

184, no. 5, pp. 1395-1400, Jan. 2013.

[5] What is HDF5?, [Online]. Available: https://www.

hdfgroup. org/HDF5

[6] VSim in Depth, Release 7.0.0, Tech-X Corporation,

Boulder, CO, July 2014.

[7] The STL Library, [Online]. Available: http://www.

eng.nus.edu.sg/LCEL/RP/u21/wwwroot/stl_librar

y.htm

[8] Beginner’s Guide to Python, [Online]. Available:

https://wiki.python.org/moin/BeginnersGuide

[9] VSim Reference Manual, Release 7.0.0, Tech-X

Corporation, Boulder, CO, July 2014.

ACES JOURNAL, Vol. 32, No. 12, December 20171147

