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Abstract ─ The implementation of Multi-level Fast 

Multipole Algorithm (MLFMA) on a 13-node Graphical 

Processing Unit (GPU) cluster using Message Passing 

Interface (MPI) and CUDA programming is presented. 

The performance achievements are investigated in terms 

of accuracy, speed up, and scalability. The experimental 

results demonstrate that our MLFMA implementation on 

GPUs is much faster than (up to 66x) that of the CPU 

implementation without trading off the accuracy. 

Index Terms ─ Graphics Processing Unit (GPU), 

Multilevel Fast Multipole Algorithm (MLFMA). 

I. INTRODUCTION
In the last two decades, many authors have been 

investigating solving large scale electromagnetics 

problems using numerical techniques such as Method 

of Moments (MoM), Fast Multipole Method (FMM) 

and Multi-level Fast Multipole Algorithm (MLFMA). 

Modeling large-scale objects requires large memory 

resources and computational time. Among these methods, 

the MLFMA has the least computational complexity 

O(NlogN), while MoM and FMM have the complexity 

of O (N3) and O(N3/2), respectively.  

MLFMA has successfully been implemented in 

parallel on CPU clusters to solve up to few hundreds 

millions of unknowns [1]. The CPU cluster-based 

parallel implementation has advantages of large memory 

resources, but their speed is relatively slow in comparison 

with GPU cluster-based implementations. In the past, 

our group has implemented a parallel version of MLFMA 

on GPUs clusters to solve for perfect electric conductor 

(PEC) objects [2]. This paper continues our efforts to 

investigate the implementation of MLFMA on GPU 

cluster platform for solving large scale dielectric objects. 

The platform we employ is a 13-node GPU cluster, which 

utilizes NVidia Tesla M2090 GPU. An MVAPICH2 

implementation of Message Passing Interface (MPI) is 

used for parallel programming. 

In this work, a workload partitioning technique, 

namely group-based distribution is investigated among 

the 13 computing nodes. This technique is applied for the 

tree structure in MLFMA as will be discussed in details 

in the implementation section. The rest of the paper is 

organized as follows. An overview of MLFMA for 

homogeneous dielectric objects is provided in Section 

2. Section 3 presents the parallel implementation of

MLFMA on GPU clusters. Simulation results are

discussed in Section 4, followed by the conclusions in

Section 5.

II. OVERVIEW OF THE MULTILEVEL

FAST MULTIPOLE ALGORITHM ON

DIELECTRIC OBJECTS 
In this section, we provide a brief overview to help 

our discussion on the parallel implementation of dielectric 

MLFMA, which is presented in Section III. Numerical 

techniques such as MoM, FMM, and MLFMA are 

invented to solve for the linear equation system ZI = V, 

where I represents the unknown currents, V depends on 

the incident field, and Z is the impedance matrix. For an 

arbitrary structure meshed with M-edges the conventional 

MoM requires the computation of all direct interactions 

among the edges (MxM), while FMM accelerates the 

matrix-vector product by using an approximate multiple 

expansion of the fields to divide structure into near and 

far group interaction concept [3]. MLFMA is based on 

FMM, but it relies on forming hierarchical groupings to 

render reactions with far groups more efficiently. The 

main idea of the grouping concept of MLFMA is shown 

in Fig. 1, where M edges are categorized into an N-level 

tree structure. For the sake of simplicity and convenience, 

the oct-tree structure is used for grouping in MLFMA 

[4]. 

The near interactions among edges in spatially 

nearby groups are computed and stored using the 

conventional MoM [5], while the far interactions are 

calculated in a group-by-group manner consisting of 

three stages, namely, aggregation, translation, and 

disaggregation. 

In our previous work on FMM for a homogeneous 

dielectric object (permittivity 
2 , permeability 

2 ) 
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immersed in an infinite homogeneous medium 

(permittivity 
1 , permeability 

1 ), the basic formulas are 

given as: 
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In the above equations, L denotes for multipole expansion 

number, (2)

lh  identifies the second kind of Hankel 

function, Pl stands for Legendre polynomial of degree l 

terms. By the changing the sub and superscripts “1” to 

“2” in Equations (1) to (7), we can complete the 2N 

linear equations. The same idea applies for MLFMA to 

solve for dielectric object [6]. 
 

 
 
Fig. 1. MLFMA general grouping concepts. 

 

III. GPU CLUSTER IMPLEMENTATION OF 

MLFMA 
In this section, a detailed implementation of MLFMA 

is provided. The implementation is divided into three 

main blocks, which consist of pre-processing, processing 

and post-processing.  

While the pre-processing and post processing 

processes utilize CPU, the processing are based on GPU 

cluster. The main purpose of the pre-processing step is 

to read the geometry mesh data, to set up the data 

structure, and to construct the oct-tree. Results from this 

process are transferred to the GPU memory, and the 

entire computation is performed on the GPU clusters. 

The user interested quantities such as scattered fields, 

radar cross section, are post-processing and handled on 

CPU. The processing step is the most time consuming in 

the algorithm. Hence, we focus our parallel programming 

of MLFMA on the most computationally intensive step, 

i.e., the processing. The details of this process is shown 

in Fig. 2. 

 

 
 

Fig. 2. A detail implementation of processing phase. 

 

In the processing phase, the computational tasks are 

assigned to all computing nodes in a balanced manner 

such that each node holds the same amount of workload, 

and the inter-node communication is minimized. This is 

achieved by uniformly distributing the total number of 

groups of all levels except level 1 and 2, G, among the  

n computing nodes. We define this technique of data 

distribution among computing nodes as the group-based 

distribution. Two levels of parallelization are performed 

in this stage: among the n computing nodes using MPI 

library, and within the GPU per node using CUDA 

programming model. The CUDA thread-block model is 

utilized to calculate the assigned workload within a node. 

In this paper, only the far interactions is presented, and 

the near field and V vector calculation implementations 

can be found in [7]. 

The GPU cluster used for this work has 13 

computing nodes. Each node has a dual 6-core 2.66 GHz 

Intel Xeon processor, 48 GB RAM along with one 

NVidia Tesla M2090 GPU running at 1.3 GHz supported 

with 6GB of GPU memory. The nodes are interconnected 

through the InfiniBand interconnection. The cluster 

populates CUDA v6.0 and MVAPICH2 v1.8.1 (an 

implementation of MPI). 

 

A. Far interactions calculations 

There are five main steps in this stage: radiation 

functions, receive function, interpolation, anterpolation 

and translation matrices. The group-based technique is 

performed to calculate the radiation functions, receive 

functions, and translation matrices. 

 

(i) Radiation and Receive Function Calculations 

The calculation of the radiation, TE, and receive, RE, 

functions for Zfar matrix are similar since RE is the 

complex conjugate of TE. Following the G group 

distribution as mentioned above, each computing node 

handles the calculation of K directions for Gnode groups. 

 

(ii) Translation Matrix Calculation 

The workload for the TL calculations is also 

distributed across the n nodes using the group-based 
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technique. In order to save memory, each CUDA block 

is assigned to compute one sparse row of the TL matrix 

for a given direction.  

 

(iii) Interpolation and Anterpolation Matrices 

Due to the differences of sampling frequencies 

among the levels of the oct-tree structure, the interpolation 

and anterpolation are required for the aggregation and 

disaggregation stages. In this task, each node will handle 

the calculations of Kchildren/node rows of the interpolation 

matrix Kchildren * Kparent, where Kchildren and Kparent are the 

number of directions of finer and coarser level, 

respectively. The blocks of a maximum of 1024 threads 

are utilized in the CUDA kernel once it is launched. The 

anterpolation is simply the transpose of the interpolation. 

Thus, their implementations are similar. 

 

B. Matrix-vector multiplication 

The matrix-vector multiplication (MVM) method is 

an important technique to accelerate the computational 

time, which can be found in detail in [8]. An iterative 

method; i.e., the biconjugate gradient stabilized method 

(BiCGSTAB), is used to solve for the linear system. The 

computation of ZfarI is shown in Fig. 3, where the 

unknown current vector I is distributed among the 13 

nodes using the group-based technique [9]. 
 

 
 

Fig. 3. The parallelization of matrix-vector multiplication 

for ZfarI. 

 

First, in the aggregation stage, at level max, (N), 

each node computes the radiated fields for its assigned 

groups by multiplying the current I with the radiation 

functions, TE, and accumulating within each group. 

Then, all-to-all communication is required to broadcast 

the data to all nodes. For the remaining levels (up to level 

2), the radiated field is the result of multiplying 

interpolation matrices with radiated fields of its direct 

children groups. 

In the translation stage, at each level (except levels 

0 and l) the radiated fields for each group are calculated 

by multiplying the translation matrix with the radiated 

fields. 

In the disaggregation stage, going down from level 

2 to level N, the radiated fields at each group are  

added with the inherited fields from its parents using 

anterpolation. At the maximum level (N), the received 

fields are multiplied with their corresponding receive 

functions, and integrated over K directions. Then, the 

near components and far components of MVM are 

incorporated to complete the full matrix. In the end of 

this process, the results from all nodes are summed and 

updated. 
 

IV. EXPERIMENTAL RESULTS 

A. Accuracy 

The accuracy of the method is verified by comparing 

the Radar Cross Sections (RCSs) of 9-diameter dielectric 

sphere with analytical technique, Mie scattering, and a 

10-height by 4-radius dielectric cone with commercial 

simulation software, FEKO. In two cases, the results 

verify our method’s accuracy, as observed in Fig. 4 and 

Fig. 5, respectively. 
 

 
 

Fig. 4. RCS of a 9 diameter dielectric sphere  

(ε = 4 – 0.1i) with 105,000 unknowns. 
 

 
 

Fig. 5. RCS of 10 height and 4 radius dielectric cone 

(ε = 4 – 0.1i) with 109,000 unknowns. 
 

B. Performance on GPU cluster 

We conducted two experiments to investigate the 

speed-up, scalability using a fixed-workload model 

(Amdahl’s Law) and maximum problem size. The speed-

up is defined as the ratio of time required by multi-node 

GPU implementation with respect to the 8-node CPU 

implementation. The scalability is the normalized speed-

up of multiple nodes in reference to the speed-up of 8 

nodes. Finally, we fully utilized the memory available of 

13 nodes to investigate the maximum number of 

unknowns we can handle.  

In the first experiment, a 16.74 -diameter dielectric  
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sphere (320k unknowns) which requires the memory of 

at least 8 nodes is used. The results are evaluated in terms 

of speed-up and scalability. As shown in Fig. 6, the 

speed-up for process of matrix-vector products and 

matrix fill increases from 45.6 for 8 nodes to 66.4 for 13 

nodes. The GPU execution time decreases as the number 

of nodes increases because of less workload per node. 
 

 
 

Fig. 6. Speedup analysis for the fixed-workload model 

(vs. 8 nodes CPU implementation, 100 iterations). 
 

For the scalability, we keep the problem size constant 

and compare how the speed-up improves with increasing 

number of nodes, Fig. 7. It shows a good agreement 

between our implementation and the theoretical 

expectation. 

In the second experiment, we try to solve for the 

largest problem size using the maximum memory 

available to us in each node. As the number of nodes 

increases, we increase the problem size to fully utilize 

the available memory. As shown in Fig. 8, we can 

process a maximum problem size of 439k unknowns 

with a speed-up of 46. 
 

 
 

Fig. 7. Scalability analysis for the fixed-workload model. 
 

 
 

Fig. 8. Speed-up analysis for increasing number of nodes 

along with problem size increases. 

V. CONCLUSION 
In this paper,MLFMA for homogeneous dielectric 

objects has bee implemented using GPU clusters. Our 

13-node GPU cluster is able to solve 426k unknowns 

utilizing the available on-board GPU memory. It 

demonstrates that the GPU implementation is much 

faster than CPU implementation while keeping a same 

degree of accuracy. 
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