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Abstract ─ Rank-structured matrices such as -matrix, 

2-matrix and hierarchically semi-separable (HSS) have 

be applied to solve integral equation problems in some 

engineering applications. In Method of Moment (MoM), 

the discretization of electric field integral equation 

(EFIE) usually leads to a dense matrix. However, by 

considering the low-rank properties of off-diagonal 

blocks, the rank-structured theory provides a novel 

sparse representation for the resulting matrix. In this 

paper, we propose a direct solver based on one-level 

rank-structured matrix to analysis the electromagnetic 

characteristics of large arrays. The memory requirements 

are compared to those of direct solver and advantages 

of the proposed method are validated by numerical 

examples. 

 

Index Terms ─ Direct solver, large arrays, rank-

structured matrix. 

 

I. INTRODUCTION 
Method of Moment (MoM) is a typical numerical 

method to obtain the electromagnetic characteristics 

based on the solution of surface integral equation (SIE) 

[1]. Unknowns and test functions by discretization 

generally result in dense impedance matrix. The memory 

requirement of direct solver is proportional to O(N2), 

with N being the matrix size. In most engineering 

applications, the iterative solver is commonly used 

owing to its high efficiency. The iterative methods 

based on Krylov subspace such as GMRES, BiCGStab 

and others depend on fast matrix-vector products. A 

typical application is the fast multiple method (FMM) 

which speeds up the matrix-vector product from O(N2) 

to O(N1.5) and its improvement multilevel fast multi-

pole (MLFMA) algorithm which reduces the complexity 

to O(NlogN) [2]. 

Another branch of methodology is the fast direct 

solver which focuses on reducing the scale of the 

impedance matrix. Compared to iterative method, direct 

method does well with multiple right hand sides, which 

means once an efficient factorization is obtained, all 

right hand sides can be solved with relatively low 

computational cost [3]. One type of mature method 

based on the physical and geometrical features of targets 

applies fewer high order synthetic basis functions to 

approximate the properties of targets. The characteristic 

basis function method (CBF) and the synthetic basis 

function method (SBF) are two typical representatives 

[4]. Another method is based on the low-rank property 

of the matrix itself. Matrix compression technique like 

Adaptive Cross Approximation (ACA) is applied to 

reduce the memory requirement [5]. 

Hierarchical Semi-separable (HSS) matrix is a 

typical theory in rank-structured matrices. The term 

‘semi-separable’ originated in the theory that if an 

integral kernel is approximated by an outer sum, then 

the system could be with a number of operations 

essentially determined by the order of the approximation 

[6]. In the same period, Greengard and Rokhlin proposed 

the FMM which was limited to the solution of Green’s 

function. To some extent, HSS can be thought as the 

algebraic counterpart of FMM [7]. In this paper, we 

develop a direct solver based on one-level rank-structure 

matrix to analyze the electromagnetic properties of 

large arrays. Specifically, we maintain the information 

of diagonal blocks and compress the off-diagonal 

blocks based on the low-rank properties. The size of  

the compressed matrix depends on the numerical rank 

and influences the accuracy of solution. Finally, the 

remaining matrix is solved directly after ULV 

factorization with modest memory consumption. 

 

II. COMPRESSION ANALYSIS 
Consider the electric field integral equation (EFIE): 
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 represents Green’s function, 

J is the induced surface current density and Einc is the 

imposed electric field. Discretize J with a series of 
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RWG basis functions and get the following linear 

system of equations: 

 .ZI V  (2) 
The impedance matrix Z, although dense, can  

be thought of “data-sparse” in HSS theory. The HSS 

representation is a hierarchical structure and based on a 

recursive row or column partitioning of the matrix. The 

resulting matrix can be approximated in form of the 

multiplication of the several low dimension matrices [6, 

8]. 

Considering a target consists of M blocks, the 

resulting matrix based on traditional MoM can be written 

as: 
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The sub-block Zi,j(i=1,2,…,M) represents the 

interaction of RWGs on block i while Zi,j(i,j=1,2,…,M, 

i≠j) represents the mutual relationship between block i 

and block j. As mentioned above, the sub-block Zi,j has 

low-rank properties and can be written approximately 

as: 

 '

, , , .c H

i j i j i jZ UZ UU Z   (4) 

The U matrix is called generator which is “tall and 

skinny” and Zc
i,j is “short and wide”. 

In this work, we apply one-level HSS matrix theory 

and use the singular value decomposition (SVD) to 

generate the compressed form. This work is based on 

two facts: the numerical rank of the iterative matrix is 

rather small for large array and thus the storage of off-

diagonal blocks can be significantly reduced. Second, 

the computation complexity for compression of one 

level HSS form is rather small compared with multiple 

levels of HSS. For each column, apply SVD factorization 

to obtain the generator U. Here, we use numerical  

rank r to represent the size of U and r depends on  

the characteristics of the normalized singular values. 

The whole matrix can be compressed in this form: 
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In the following step, we will show how to solve 

the equation by applying the ULV factorization method.  

 

III. ULV FACTRORIZATION 

ULV theory arose in an effort to stabilize the fast 

solver for matrices characterized by a hierarchical low 

numerical rank structure, where U and V are orthogonal 

matrices and L is a lower-triangular matrix [8]. And it 

belongs to backward stable algorithm. 

We firstly introduce the main step in ULV 

factorization. The generator U has the special structure: 
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where matrix Π and Er can be obtained in advance. 

Construct the transformation matrix: 
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We can observe that 
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. Apply Ω to both off-

diagonal and diagonal blocks in corresponding row 

blocks. Take the first row for example, we can get: 
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 where 
2W  has r 

rows. We perform an LQ factorization:  1  0W L Q . 

For 2 2  equation ZI=b, it can be transformed as: 
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For each row i, right hand sides relate to L can be 

solved directly: 

 .Ly b   (10) 

Then, we need to update the right-hand side by 

eliminated the unknowns corresponding to L: 

 * *
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The remaining unknowns can be merged together to be 

solved in a rather small scale. The whole process is 

illustrated in Fig. 1. 

In the end, we discuss the memory requirement  

in this method, which consists of two main parts: one is 

the main remaining unknowns and the other is the 

backward matrix Q for each column. Consider a linear 

system of N unknowns, the memory requirement of 

conventional MoM is O(N2). If the proposed method is 

applied and the system is divided into M2 sub-blocks, 

the total memory requirement is O(N2/M+r2M2) in 

which r is numerical rank and generally far less than  
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N. Moreover, we use the compression ratio, defined as 

Mr/N, to measure the low rank properties of the off-

diagonal blocks. 
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Fig. 1. Illustration of LUV factorization process. 

 

IV. NUMERICAL RESULTS AND 

VALIDATION  
To illustrate the validity and accuracy of the 

proposed method, we present several numerical examples 

based on EFIE. Firstly, consider a 3×3 PEC cylinder 

arrays as is shown in Fig. 2. 
 

 
 

Fig. 2. Geometry of a 3×3 PEC cylinder arrays. 

 

The excitation source is a +z polarized plane wave 

coming from x axis with frequency f=300 MHz. The 

array elements are geometrically isolated and thus  

the matrix will be divided into 81 sub-blocks. After 

discretization of the surface, 2628 triangular patches 

and 3942 RWG functions are defined. The size of the 

sub-block is 438. Before proceeding further, we first 

determine the numerical rank for off-diagonal blocks by 

setting the threshold ρ after SVD factorization. To be 

specific, the formulation 
r MoM F

MoM F

I I
Err

I


  is used to 

illustrate the compression accuracy of the generator U, 

where “
F

 ” denotes the Frobenius norm. In Table 1, 

we compare the current coefficient in this method with  

the one obtained by conventional MoM. Besides, we 

also show the changing tendency of current coefficients 

with the compression ratio. 

 

Table 1: Relationship between compression ratio and 

Err 

Threshold ρ 10-2 10-3 10-4 10-5 

Compression ratio 0.05 0.14 0.22 0.32 

Err 7.2e-3 1.4e-3 9.1e-5 1.7e-5 

 

It is obvious that the numerical rank of the off-

diagonal blocks can be much smaller than the original 

dimension, which means the memory can be reduced 

significantly. From the solution results, the accuracy 

meets the demand. Bistatic RCS of the example are 

calculated using the proposed method with p=10-2,  

and results of Feko and MoM are also given here for 

comparison in Fig. 3. The memory requirement of 

original matrix Z is 237.1 MB. In contrast, the whole 

memory cost in this method is 27.4 MB. 

 

 
 

Fig. 3. Bistatic RCS of the cylinder arrays. 

 

In fact, the rank-structured method, as purely 

algebraic method, is also adaptive to a single target, 

although the strength in memory reduction is not apparent. 

The second example is a PEC sphere with radius of 1 m. 

The excitation source is a +z polarized plane wave 

coming from x axis with frequency f=420 MHz A total 

of 7272 RWGs are defined on sphere surface. To use 

rank-structured method, the RWGs on the space is 

equally divided into 8 sub-blocks as is shown in Fig. 4. 

The RWGs on the connection zone are randomly 

distributed to sub-blocks, which has little influence on 

the final consequence. 

 

Here, we just show the relationship between 

numerical rank and Err in Fig. 5. Usually, RCS results 

can achieve satisfying accuracy if the current coefficient 

error is no more than 1%. 
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Fig. 4. Geometry of a PEC sphere after separation. 

 

 
 
Fig. 5. Relationship between the compression ratio and 

Err. 

 

We observe that to satisfy the accuracy of 1%,  

the size of reduced matrix should be about 30% of  

the origin matrix. In contrast, for large array in first 

example, the ratio of reduction can be 5% to meet the 

same accuracy. The reason lies in the fact that as all the 

groups are touching for a single target, the low-rank 

property is not apparent in just one-level structure. To 

achieve a better performance, a hierarchical and nested 

structure should be applied such as 2-matrix or HSS 

representation, which is our future research topic. 

 

V. CONCLUSION 
The paper proposes a memory-reduced direct 

method to deal with the electromagnetic problem of 

large scale arrays based on rank-structured theory. The 

method takes advantage of the low-rank properties of 

the impedance matrix and factorizes the matrix in form 

of multiplication of several low dimension matrices. 

The approach is perfectly suitable to the MoM and we 

validate this idea by two kinds of numerical results. In 

the end, we recommend randomized sampling algorithm 

[9] to generate the HSS matrix. The main advantage of 

this approach is that the original matrix does not need to 

be explicitly formed and only requires some selected 

elements and fast matrix-vector produce routine.  
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