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Abstract ─ This paper investigates solving large-scale 

electromagnetic scattering problems by using the Multi-

level Fast Multipole Algorithm (MLFMA). A parallel 

implementation for MLFMA is performed on a 12-node 

Graphics Processing Unit (GPU) cluster that populates 

NVidia Tesla M2090 GPUs. The details of the 

implementations and the performance achievements in 

terms of accuracy, speed up, and scalability are shown 

and analyzed. The experimental results demonstrate that 

our MLFMA implementation on GPUs is much faster 

than (up to 37x) that of the CPU implementation. 

 

Index Terms ─ Graphics Processing Unit (GPU), 

Multilevel Fast Multipole Algorithm (MLFMA). 
 

I. INTRODUCTION 
Over the past twenty years, various numerical 

techniques have been developed to reduce the 

computational time and memory requirements of full-

wave electromagnetic models without significant loss of 

accuracy, including adaptive integral method (AIM) [1], 

impedance matrix localization (IML) [2], fast multipole 

method (FMM) [3], and multi-level fast multipole 

algorithm [4]. Compared with the others, MLFMA is 

among the most suitable techniques for large-scale 

problems. It reduces the computational complexity of the 

method of moments (MoM) from O(N2) to O(NlogN), 

where N denotes the number of unknowns, whereas 

AIM, IML and FMM have the complexities of 

O(N3/2logN), O(N2logN), and O(N3/2), respectively. 

Recently, many authors have investigated the 

parallelization of MLFMA on CPU clusters [5] in solving 

problems of hundreds of thousands to millions of 

unknowns. In [6], CPU clusters were used to implement 

MLFMA using Open MP and MPI library to solve a 

billion unknowns. Multi-GPU implementation was also 

investigated on a single node, multi-GPU computer without 

using the MPI library [7]. In this paper, we demonstrate 

the implementation of MLFMA for electromagnetics 

problems on GPU clusters by using the MPI library. 

We demonstrate the parallelization of MLFMA on a 

12-node GPU cluster each of which is populated with  

an NVidia Tesla M2090 GPU. An MVAPICH2 

implementation of MPI is used for cluster parallel 

programming. This paper is the continuation of our GPU 

implementation of FMM by using GPU clusters. In [9] 

and [10], GPU implementation for single level Fast 

Multipole Method (FMM) solves only the maximum 

problem size up to 656K unknowns on 13 nodes. In this 

paper, our MLFMA implementation on GPU cluster can 

solve up to 1.1 M unknowns. We demonstrate that the 

implementation of MLFMA on GPUs is faster than that 

of the CPU. The performance of the implementation is 

analyzed by using a PEC sphere. 

The rest of the paper is organized such that Section 

II provides an overview of MLFMA. Section III presents 

the parallel implementation of MLFMA on GPU 

clusters. Experimental results are discussed in Section 

IV, followed by the conclusions in Section V. 

 

II. OVERVIEW OF THE MULTILEVEL 

FAST MULTIPOLE ALGORITHM 
The fundamental principles of MLFMA and its 

applications in electromagnetics have been studied in 

literature [4]-[5]. In this section, we provide a brief 

overview to help our discussion on its parallel 

implementation, which is presented in Section III.  

MLFMA was invented based on the grouping 

concept to accelerate the iterative solution of the linear 

equation system ZI = V of the Method of Moment 

(MoM), where I represents the unknown currents, V 

depends on the incident field, and Z is the impedance 

matrix. The main idea of the grouping concept is shown 

in Fig. 1, where the M edges in the mesh of a given 

structure are categorized into an N-level tree structure 

connecting groups of different sizes from the finest (level 

N) to the coarsest level (level 0). Based on the groups’ 

proximity, the impedance matrix Z can be split into two 

matrices, Znear and Zfar, corresponding to near and far 

interactions as shown in Equation (1): 
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where m and m’ are observation and source edges in the 
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mesh, respectively.  

The Znear matrix comprises of interactions between 

edges in spatially nearby groups, and is computed and 

stored using the conventional MoM [8]. During the 

iterative solution, the near matrix is calculated by the 

regular sparse matrix-vector multiplications (MVMs). 

The remaining edges, whose parents are near, constitute 

the far term as shown in Fig. 1 (b). By treating the 

interactions between the edges that are spatially far-away 

using MLFMA, Zfar matrix does not need to be explicitly 

computed and stored. Instead, the far components can 

benefit from the fast MVMs during the iterative solution. 

The Zfar matrix is factorized into radiation, receive and 

translation functions, as explained in [4]. 
 

 
 (a) (b) 
 

Fig. 1. MLFMA general concepts: (a) concept of the 

MLFMA tree, and (b) MLFMA concept of far interactions. 
 

The far component is calculated through five main 

stages: aggregation, translation, and disaggregation, 

interpolation and anterpolation as shown in Fig. 1 (b). 

In the aggregation stage, radiated fields among the 

groups from level N (the finest level) to level 2 are 

calculated. At the finest level N, the radiation functions 

for a group are computed by combining the radiation 

patterns of the basic function of all edges in this group. 

From level N-1 to level 2, the radiation functions for 

each group are computed from the combination of the 

radiation function of its children group of the finer level 

using shifting and interpolation.  

In the disaggregation stage, the receive functions at 

each group are computed from level 2 to level N by 

combining the local incoming waves due to translation 

and the incoming waves from parent groups of the 

coarser level using shifting and anterpolation.  

The translation stage is identical to FMM [3], and the 

details of interpolation and anterpolation can be found in [5]. 
 

III. PARALLELIZATION OF MLFMA ON 

GPU CLUSTERS 
In this section, we provide an overview of our 

implementation on GPU. The implementation consists of 

pre-processing, processing and post-processing. The 

geometry mesh data resulting from the pre-processing 

step is transferred to the GPU memory, and the entire 

computation is performed on the GPU. The user defined 

results such as radar cross section, scattered fields are 

post-processed on CPU. 

The GPU cluster used for our implementation 

consists of 12 computing nodes. Each node has a dual 6-

core 2.66 GHz Intel Xeon processor, 48GB RAM along 

with one NVidia Tesla M2090 GPU running at 1.3 GHz 

supported with 6GB of GPU memory. The nodes are 

interconnected through the InfiniBand interconnection. 

The cluster populates CUDA v6.0 and MVAPICH2 

v1.8.1 (a well-known implementation of Message Passing 

Interface (MPI)). 

In the processing step, the workload of the 

computational task is equally distributed among the 

computing nodes, and the inter-node communication is 

minimized. This is achieved by uniformly distributing 

the total number of groups, M, among the n computing 

nodes. The parallelization of the GPU cluster 

implementation is performed at two levels: (i) among the 

computing nodes using MPI library, and (ii) within the 

GPU per node using CUDA programming model. 

Within each node, the CUDA thread-block model is 

utilized to calculate the workload assigned to that node. 

We only present the far interactions in this paper, since 

the near field and V vector calculations implementations 

can be found in [9]-[10]. 

All CUDA kernels are implemented to calculate 

Znear matrix, and far interactions which includes the 

radiation/receive functions, translation matrix, and 

interpolation/anterpolation matrices. In fast matrix-vector 

multiplication (MVM), CUDA kernel is also utilized to 

compute the radiated fields, translation fields and received 

fields in the aggregation, translation and disaggregation 

stages, respectively. MPI library is also used to gather 

results from each node in the end of MVM stage. 

 

A. Far interactions calculations 

This task comprises of five calculations: radiation, 

and receive functions, interpolation, anterpolation and 

translation matrices. 

 

(i) Radiation and Receive Function Calculations 

The first step in the far interaction calculations is the 

calculation of the radiation, TE, and receive, RE, functions 

for Zfar matrix. They are complex conjugates of each 

other. Thus their implementations are similar. Following 

the M group distribution, each node handles the calculations 

of K directions for Mnode groups. Given this amount of 

workload per node, the CUDA kernel is launched with 

Mnode.K blocks such that each block implements Mgroup 

radiation/receive function calculations at a given direction, 

resulting in a total of Mnode.K blocks per node. 

 

(ii) Translation Matrix Calculation 

The second task for far interactions is the calculation 

of the translation matrix, TL. The workload for the TL 

calculations is also distributed across the nodes following 
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the group-based technique. By careful investigations, 

allocating a CUDA block on a single row of the matrix 

is the efficient way for the translation matrix calculation 

to save memory requirements. Each CUDA block is 

assigned to compute one sparse row of the TL matrix for 

a given direction, and each thread computes one element 

in that row. 
 

(iii) Interpolation and Anterpolation Matrices 

The third task for the far interactions is the calculation 

of interpolation and anterpolation matrices. They are 

transposes of each other. Thus their implementation is 

similar. Each node handles the calculations of Kchildren/node 

rows of KchildrenxKparent interpolation matrix, where 

Kchildren is number of directions of a finer level, and Kparent 

is number of directions of a coarser level. The CUDA 

kernel is launched with Kchildren/node blocks per node. In 

each block, the maximum number of threads (1024 

threads) are utilized in order to implement the full 

number of Kparent directions. 
 

B. Fast matrix-vector multiplication 

The next stage for the processing is the solution for 

the linear system where we employ the iterative method 

known as the biconjugate gradient stabilized method 

(BiCGSTAB). The calculation of ZfarI comprises of five 

stages: aggregation, translation, interpolation, anterpolation 

and disaggregation, as shown in Fig. 2. Using a group-

based partitioning technique, the unknown current vector 

I (Nedgesx1) is distributed across the computing nodes on 

GPU clusters.  
 

 
 

Fig. 2. Far matrix-vector-multiplication in parallel. 
 

In the aggregation stage, at level N, each node 

computes the radiated fields for Mnode groups for K 

directions by multiplying the unknowns I with their 

corresponding radiation functions, TE, and accumulating 

within each group. After the aggregation step, an all-to-

all communication is employed by each node to 

broadcast the radiated fields to all other nodes. The 

radiated fields from level N-1 to level 2 are computed by 

multiplying interpolation matrices with radiated fields of 

children groups at lower levels.  

In the translation, the radiated fields at each 

direction are calculated from the sum of the multiplication 

of the translation matrix and the radiated fields, and the 

received fields from parent groups at upper levels using  

anterpolation.  

In the disaggregation stage, the received fields of all 

M group at level N are multiplied with the corresponding 

receive functions, and integrated over the partitioned K 

directions of the unit sphere. The far components of 

MVM are then incorporated with the near components of 

MVM. At the end of MVM, the partial results from all 

nodes are summed together and all nodes are updated. 
 

IV. EXPERIMENTAL RESULTS 

A. Accuracy 

First, we verify the accuracy of our GPU 

implementation by calculating the radar cross section 

(RCS) of a 9 diameter (corresponding to 0.27 m and 

100,000 unknowns) perfect electrically conducting (PEC) 

sphere illuminated by an 1 GHz x-polarized normally 

incident field. The results are compared to Mie scattering. 

It can be observed in Fig. 3 that the GPU results and the 

analytical solutions show a very good agreement. 
 

 
 

Fig. 3. RCS of a 9λ diameter PEC sphere. 
 

B. Implementation performance on GPU cluster 

In the first experiment, our GPU implementation is 

evaluated using the fixed-workload model (Amdahl’s 

Law). A 22.4 diameter PEC sphere (650K unknowns) is 

chosen such that it demands the use of at least 7 nodes to 

satisfy the required memory. Two metrics are used for the 

performance evaluation: speed up and scalability. The 

speed up is defined as the ratio of time required by multi-

node GPU implementation with respect to the 7-node CPU 

implementation. Scalability is the normalized speedup of 

multiple nodes in reference to the speedup of 7 nodes. As 

shown in Fig. 4, the speedup factor increases from 23.7 

for 7 nodes to 37 for 12 nodes. Since each node processes 

less workload, the GPU execution time decreases as the 

number of nodes increases. The inter-node communication 

overhead results in the difference between the speedup 

of total execution time and computation time. For 7 

computing nodes, the speed-up for the near-field system 

matrix is over 86 (CPU computation time: 848s, GPU 

computation time: 9.5s), while the speed-up of the BICGstab 

iterative solution is over 22 times for 100 iterations, 

which is restricted by the overhead communication between 

computing nodes (CPU computation time: 9100s, GPU  
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computation time: 415.1s). 

In order to investigate the scalability of this 

implementation, we compare how the speedup improves 

with increasing number of computing nodes as we keep 

the problem size constant, as observed in Fig. 5. The 

computation speedup scales similar to the theoretical 

linear behavior, demonstrating our efficient hardware 

implementation. The total speedup scales closely to the 

theoretical expectation demonstrating our efficiency in 

reducing the inter-node communication overhead. 
 

 
 

Fig. 4. Speedup analysis for the fixed-workload model 

(vs. 7 nodes CPU implementation, 100 iterations). 

Computational CPU exec time = 5573 sec, total CPU 

exec time = 5627 sec. 
 

 
 

Fig. 5. Scalability analysis for the fixed-workload model. 
 

In the second experiment, we investigate the largest 

problem size our GPU implementation can handle. As 

the number of nodes increases, the problem size is also 

increased so that the GPU memory in each node in fully 

utilized. As shown in Fig. 6, the GPU implementation 

can process a maximum problem size of 1.1 M unknowns 

with a speed up factor of 25.2. 
 

 
 

Fig. 6. Speedup analysis when the number of nodes 

increases along with problem size increases (vs. multi-

node CPU, 100 iterations).  

VI. CONCLUSION 
In this paper, the GPU implementation of MLFMA 

for electromagnetic scattering problems up to 1.1 million 

unknowns using our 12-node GPU cluster is demonstrated. 

The maximum problem size is determined by the available 

on-board GPU memory. For the same degree of 

accuracy, the GPU implementation outperforms the CPU 

implementation. Moreover, the GPU implementation has 

a good scalability as the number of computing nodes 

increases. 
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