
Parallel Implementations of Multilevel Fast Multipole Algorithm on

Graphical Processing Unit Cluster for Large-scale Electromagnetics Objects

Nghia Tran and Ozlem Kilic

Department of Electrical Engineering and Computer Science

The Catholic University of America, Washington, DC, 20064, USA

16tran@cua.edu, kilic@cua.edu

Abstract ─ This paper investigates solving large-scale

electromagnetic scattering problems by using the Multi-

level Fast Multipole Algorithm (MLFMA). A parallel

implementation for MLFMA is performed on a 12-node

Graphics Processing Unit (GPU) cluster that populates

NVidia Tesla M2090 GPUs. The details of the

implementations and the performance achievements in

terms of accuracy, speed up, and scalability are shown

and analyzed. The experimental results demonstrate that

our MLFMA implementation on GPUs is much faster

than (up to 37x) that of the CPU implementation.

Index Terms ─ Graphics Processing Unit (GPU),

Multilevel Fast Multipole Algorithm (MLFMA).

I. INTRODUCTION
Over the past twenty years, various numerical

techniques have been developed to reduce the

computational time and memory requirements of full-

wave electromagnetic models without significant loss of

accuracy, including adaptive integral method (AIM) [1],

impedance matrix localization (IML) [2], fast multipole

method (FMM) [3], and multi-level fast multipole

algorithm [4]. Compared with the others, MLFMA is

among the most suitable techniques for large-scale

problems. It reduces the computational complexity of the

method of moments (MoM) from O(N2) to O(NlogN),

where N denotes the number of unknowns, whereas

AIM, IML and FMM have the complexities of

O(N3/2logN), O(N2logN), and O(N3/2), respectively.

Recently, many authors have investigated the

parallelization of MLFMA on CPU clusters [5] in solving

problems of hundreds of thousands to millions of

unknowns. In [6], CPU clusters were used to implement

MLFMA using Open MP and MPI library to solve a

billion unknowns. Multi-GPU implementation was also

investigated on a single node, multi-GPU computer without

using the MPI library [7]. In this paper, we demonstrate

the implementation of MLFMA for electromagnetics

problems on GPU clusters by using the MPI library.

We demonstrate the parallelization of MLFMA on a

12-node GPU cluster each of which is populated with

an NVidia Tesla M2090 GPU. An MVAPICH2

implementation of MPI is used for cluster parallel

programming. This paper is the continuation of our GPU

implementation of FMM by using GPU clusters. In [9]

and [10], GPU implementation for single level Fast

Multipole Method (FMM) solves only the maximum

problem size up to 656K unknowns on 13 nodes. In this

paper, our MLFMA implementation on GPU cluster can

solve up to 1.1 M unknowns. We demonstrate that the

implementation of MLFMA on GPUs is faster than that

of the CPU. The performance of the implementation is

analyzed by using a PEC sphere.

The rest of the paper is organized such that Section

II provides an overview of MLFMA. Section III presents

the parallel implementation of MLFMA on GPU

clusters. Experimental results are discussed in Section

IV, followed by the conclusions in Section V.

II. OVERVIEW OF THE MULTILEVEL

FAST MULTIPOLE ALGORITHM
The fundamental principles of MLFMA and its

applications in electromagnetics have been studied in

literature [4]-[5]. In this section, we provide a brief

overview to help our discussion on its parallel

implementation, which is presented in Section III.

MLFMA was invented based on the grouping

concept to accelerate the iterative solution of the linear

equation system ZI = V of the Method of Moment

(MoM), where I represents the unknown currents, V

depends on the incident field, and Z is the impedance

matrix. The main idea of the grouping concept is shown

in Fig. 1, where the M edges in the mesh of a given

structure are categorized into an N-level tree structure

connecting groups of different sizes from the finest (level

N) to the coarsest level (level 0). Based on the groups’

proximity, the impedance matrix Z can be split into two

matrices, Znear and Zfar, corresponding to near and far

interactions as shown in Equation (1):

' ' ' ' ' '

' ' '

,
M M M

near far

mm m mm m mm m m

m m m

Z I Z I Z I V

(1)

where m and m’ are observation and source edges in the

ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016 145

1054-4887 © 2016 ACES

Submitted On: February 27, 2016
Accepted On: May 10, 2016

mesh, respectively.

The Znear matrix comprises of interactions between

edges in spatially nearby groups, and is computed and

stored using the conventional MoM [8]. During the

iterative solution, the near matrix is calculated by the

regular sparse matrix-vector multiplications (MVMs).

The remaining edges, whose parents are near, constitute

the far term as shown in Fig. 1 (b). By treating the

interactions between the edges that are spatially far-away

using MLFMA, Zfar matrix does not need to be explicitly

computed and stored. Instead, the far components can

benefit from the fast MVMs during the iterative solution.

The Zfar matrix is factorized into radiation, receive and

translation functions, as explained in [4].

 (a) (b)

Fig. 1. MLFMA general concepts: (a) concept of the

MLFMA tree, and (b) MLFMA concept of far interactions.

The far component is calculated through five main

stages: aggregation, translation, and disaggregation,

interpolation and anterpolation as shown in Fig. 1 (b).

In the aggregation stage, radiated fields among the

groups from level N (the finest level) to level 2 are

calculated. At the finest level N, the radiation functions

for a group are computed by combining the radiation

patterns of the basic function of all edges in this group.

From level N-1 to level 2, the radiation functions for

each group are computed from the combination of the

radiation function of its children group of the finer level

using shifting and interpolation.

In the disaggregation stage, the receive functions at

each group are computed from level 2 to level N by

combining the local incoming waves due to translation

and the incoming waves from parent groups of the

coarser level using shifting and anterpolation.

The translation stage is identical to FMM [3], and the

details of interpolation and anterpolation can be found in [5].

III. PARALLELIZATION OF MLFMA ON

GPU CLUSTERS
In this section, we provide an overview of our

implementation on GPU. The implementation consists of

pre-processing, processing and post-processing. The

geometry mesh data resulting from the pre-processing

step is transferred to the GPU memory, and the entire

computation is performed on the GPU. The user defined

results such as radar cross section, scattered fields are

post-processed on CPU.

The GPU cluster used for our implementation

consists of 12 computing nodes. Each node has a dual 6-

core 2.66 GHz Intel Xeon processor, 48GB RAM along

with one NVidia Tesla M2090 GPU running at 1.3 GHz

supported with 6GB of GPU memory. The nodes are

interconnected through the InfiniBand interconnection.

The cluster populates CUDA v6.0 and MVAPICH2

v1.8.1 (a well-known implementation of Message Passing

Interface (MPI)).

In the processing step, the workload of the

computational task is equally distributed among the

computing nodes, and the inter-node communication is

minimized. This is achieved by uniformly distributing

the total number of groups, M, among the n computing

nodes. The parallelization of the GPU cluster

implementation is performed at two levels: (i) among the

computing nodes using MPI library, and (ii) within the

GPU per node using CUDA programming model.

Within each node, the CUDA thread-block model is

utilized to calculate the workload assigned to that node.

We only present the far interactions in this paper, since

the near field and V vector calculations implementations

can be found in [9]-[10].

All CUDA kernels are implemented to calculate

Znear matrix, and far interactions which includes the

radiation/receive functions, translation matrix, and

interpolation/anterpolation matrices. In fast matrix-vector

multiplication (MVM), CUDA kernel is also utilized to

compute the radiated fields, translation fields and received

fields in the aggregation, translation and disaggregation

stages, respectively. MPI library is also used to gather

results from each node in the end of MVM stage.

A. Far interactions calculations

This task comprises of five calculations: radiation,

and receive functions, interpolation, anterpolation and

translation matrices.

(i) Radiation and Receive Function Calculations

The first step in the far interaction calculations is the

calculation of the radiation, TE, and receive, RE, functions

for Zfar matrix. They are complex conjugates of each

other. Thus their implementations are similar. Following

the M group distribution, each node handles the calculations

of K directions for Mnode groups. Given this amount of

workload per node, the CUDA kernel is launched with

Mnode.K blocks such that each block implements Mgroup

radiation/receive function calculations at a given direction,

resulting in a total of Mnode.K blocks per node.

(ii) Translation Matrix Calculation

The second task for far interactions is the calculation

of the translation matrix, TL. The workload for the TL

calculations is also distributed across the nodes following

146 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

the group-based technique. By careful investigations,

allocating a CUDA block on a single row of the matrix

is the efficient way for the translation matrix calculation

to save memory requirements. Each CUDA block is

assigned to compute one sparse row of the TL matrix for

a given direction, and each thread computes one element

in that row.

(iii) Interpolation and Anterpolation Matrices

The third task for the far interactions is the calculation

of interpolation and anterpolation matrices. They are

transposes of each other. Thus their implementation is

similar. Each node handles the calculations of Kchildren/node

rows of KchildrenxKparent interpolation matrix, where

Kchildren is number of directions of a finer level, and Kparent

is number of directions of a coarser level. The CUDA

kernel is launched with Kchildren/node blocks per node. In

each block, the maximum number of threads (1024

threads) are utilized in order to implement the full

number of Kparent directions.

B. Fast matrix-vector multiplication

The next stage for the processing is the solution for

the linear system where we employ the iterative method

known as the biconjugate gradient stabilized method

(BiCGSTAB). The calculation of ZfarI comprises of five

stages: aggregation, translation, interpolation, anterpolation

and disaggregation, as shown in Fig. 2. Using a group-

based partitioning technique, the unknown current vector

I (Nedgesx1) is distributed across the computing nodes on

GPU clusters.

Fig. 2. Far matrix-vector-multiplication in parallel.

In the aggregation stage, at level N, each node

computes the radiated fields for Mnode groups for K

directions by multiplying the unknowns I with their

corresponding radiation functions, TE, and accumulating

within each group. After the aggregation step, an all-to-

all communication is employed by each node to

broadcast the radiated fields to all other nodes. The

radiated fields from level N-1 to level 2 are computed by

multiplying interpolation matrices with radiated fields of

children groups at lower levels.

In the translation, the radiated fields at each

direction are calculated from the sum of the multiplication

of the translation matrix and the radiated fields, and the

received fields from parent groups at upper levels using

anterpolation.

In the disaggregation stage, the received fields of all

M group at level N are multiplied with the corresponding

receive functions, and integrated over the partitioned K

directions of the unit sphere. The far components of

MVM are then incorporated with the near components of

MVM. At the end of MVM, the partial results from all

nodes are summed together and all nodes are updated.

IV. EXPERIMENTAL RESULTS

A. Accuracy

First, we verify the accuracy of our GPU

implementation by calculating the radar cross section

(RCS) of a 9 diameter (corresponding to 0.27 m and

100,000 unknowns) perfect electrically conducting (PEC)

sphere illuminated by an 1 GHz x-polarized normally

incident field. The results are compared to Mie scattering.

It can be observed in Fig. 3 that the GPU results and the

analytical solutions show a very good agreement.

Fig. 3. RCS of a 9λ diameter PEC sphere.

B. Implementation performance on GPU cluster

In the first experiment, our GPU implementation is

evaluated using the fixed-workload model (Amdahl’s

Law). A 22.4 diameter PEC sphere (650K unknowns) is

chosen such that it demands the use of at least 7 nodes to

satisfy the required memory. Two metrics are used for the

performance evaluation: speed up and scalability. The

speed up is defined as the ratio of time required by multi-

node GPU implementation with respect to the 7-node CPU

implementation. Scalability is the normalized speedup of

multiple nodes in reference to the speedup of 7 nodes. As

shown in Fig. 4, the speedup factor increases from 23.7

for 7 nodes to 37 for 12 nodes. Since each node processes

less workload, the GPU execution time decreases as the

number of nodes increases. The inter-node communication

overhead results in the difference between the speedup

of total execution time and computation time. For 7

computing nodes, the speed-up for the near-field system

matrix is over 86 (CPU computation time: 848s, GPU

computation time: 9.5s), while the speed-up of the BICGstab

iterative solution is over 22 times for 100 iterations,

which is restricted by the overhead communication between

computing nodes (CPU computation time: 9100s, GPU

TRAN, KILIC: MLFMA ON GPU CLUSTER FOR LARGE-SCALE OBJECTS 147

computation time: 415.1s).

In order to investigate the scalability of this

implementation, we compare how the speedup improves

with increasing number of computing nodes as we keep

the problem size constant, as observed in Fig. 5. The

computation speedup scales similar to the theoretical

linear behavior, demonstrating our efficient hardware

implementation. The total speedup scales closely to the

theoretical expectation demonstrating our efficiency in

reducing the inter-node communication overhead.

Fig. 4. Speedup analysis for the fixed-workload model

(vs. 7 nodes CPU implementation, 100 iterations).

Computational CPU exec time = 5573 sec, total CPU

exec time = 5627 sec.

Fig. 5. Scalability analysis for the fixed-workload model.

In the second experiment, we investigate the largest

problem size our GPU implementation can handle. As

the number of nodes increases, the problem size is also

increased so that the GPU memory in each node in fully

utilized. As shown in Fig. 6, the GPU implementation

can process a maximum problem size of 1.1 M unknowns

with a speed up factor of 25.2.

Fig. 6. Speedup analysis when the number of nodes

increases along with problem size increases (vs. multi-

node CPU, 100 iterations).

VI. CONCLUSION
In this paper, the GPU implementation of MLFMA

for electromagnetic scattering problems up to 1.1 million

unknowns using our 12-node GPU cluster is demonstrated.

The maximum problem size is determined by the available

on-board GPU memory. For the same degree of

accuracy, the GPU implementation outperforms the CPU

implementation. Moreover, the GPU implementation has

a good scalability as the number of computing nodes

increases.

REFERENCES
[1] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz,

“AIM: Adaptive integral method for solving large‐
scale electromagnetic scattering and radiation

problems,” Radio Science, vol. 31, no. 5, pp. 1225-

1251, 1996.

[2] F. X. Canning, “The impedance matrix localization

(IML) method for moment-method calculations,”

IEEE Ant. Prop. Mag., vol. 32, no. 5, pp. 18-30, 1990.

[3] R. Coifman, V. Rokhlin, and S. Wandzura, “The

fast multipole method for the wave equation: A

pedestrian prescription,” IEEE Antennas Propagat.

Mag., vol. 35, no. 3, pp. 7-12, June 1993.

[4] J. M. Song and W. C. Chew, “Multilevel fast multipole

algorithm for solving combined field integral

equations of electromagnetic scattering,” Microw.

Opt. Tech. Lett., vol. 10, pp. 14-19, Sep. 1995.

[5] O. Ergul and L. Gurel, “Efficient parallelization of

the multilevel fast multipole algorithm for the

solution of large-scale scattering problems,” IEEE

Trans. Antennas Propag., vol. 56, no. 8, pp. 2335-

2345, Aug. 2008.

[6] X.-M. Pan, W.-C. Pi, M.-L. Yang, Z. Peng, and X.-

Q. Sheng, “Solving problems with over one billion

unknowns by the MLFMA,” Antennas and Propaga.

IEEE Trans. on, vol. 60, no. 5, pp. 2571-2574, 2012.

[7] J. Guan, S. Yan, and J.-M. Jin, “An OpenMP-CUDA

implementation of multilevel fast multipole algorithm

for electromagnetic simulation on multi-GPU

computing systems,” Antennas and Propaga.,

IEEE Trans. on, vol. 61, no. 7, pp. 3607-3616, 2013.

[8] S. M. Rao, D. R. Wilton, and A. W. Glisson,

“Electromagnetic scattering by surfaces of

arbitrary shape,” IEEE Trans. Antennas Propag.,

vol. AP-30, no. 3, pp. 409-418, May 1982.

[9] Q. M. Nguyen, V. Dang, O. Kilic, and E. El-Araby,

“Parallelizing fast multipole method for large-scale

electromagnetic problems using GPU clusters,”

Antennas and Wireless Propagation Letters, IEEE,

vol. 12, pp. 868-871, 2013.

[10] V. Dang, Q. Nguyen, and O. Kilic, “Fast multipole

method for large-scale electromagnetic scattering

problems on GPU cluster and FPGA-accelerated

platforms,” Applied Computational Electromagnetics

Society Journal, vol. 28, no. 12, 2013.

148 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

