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Abstract ─ This paper discusses the benefits but also 

challenges of GPU accelerated electromagnetic solvers 

from a commercial point of view, namely using FEKO 

as example. Specifically, the effects of some of the 

complex interdependencies between different components 

are presented. It is shown that despite the advances made 

in the field of GPGPU computing, and impressive 

speedups for parts of a program or simplified problems, 

there are a number of factors to consider before these 

techniques can be applied to a commercial product that 

is expected to be robust and, most importantly, to always 

give trustworthy results for a wide variety of problems. 

 

Index Terms ─ Commercial Solvers, CUDA, FDTD, 

FEKO, FEM, GPGPU, GPU Acceleration, MoM,  

RL-GO, SBR. 
 

I. INTRODUCTION 
In the field of computational electromagnetics 

(CEM), a wide range of numerical techniques can be 

used to simulate a variety electromagnetic radiation and 

scattering problems. One of the primary reasons that 

such a wide variety of methods exists, is that no single 

method performs best for all problem types [1]. Thus, 

one of the first challenges in solving an electromagnetic 

problem is to select the method that is best or at least 

reasonably suited to the problem of interest. 

Even with the optimal method selected, there is still 

the matter of the available computational resources to 

consider. It may then be that the desired solution takes 

hours, days, or even weeks to compute. One of the ways 

in which an attempt has been made to increase the 

computational power at disposal – thereby decreasing 

the time required for a solution – has been to make use 

of graphics processing units (GPUs) to perform general 

purpose computational tasks, and not just the graphics-

related tasks for which they were originally designed for. 

This practice, called general purpose GPU (GPGPU) 

computing, has seen a remarkable increase of late, both 

in terms of hardware capability, as well as the ease with 

which these devices can be programmed [2]. 

The most common way of programming such 

devices is using the Compute Unified Device Architecture 

(CUDA) by NVIDIA. This couples a genuinely 

programmable hardware architecture with programming 

tools that can be used by any developer with a knowledge 

of C/C++. Previously, GPGPU programming involved 

convincing a GPU to do what one wanted by rewriting 

computational routines as graphics programs. Since its 

inception, CUDA's hardware/software combination has 

evolved to such an extent that the latest generation of 

devices can be found in the fastest supercomputers in the 

world, with a much more powerful set of software 

features available as well. 

There has been considerable development and a 

large number of papers were published on the GPU 

acceleration of CEM methods, for example the Method 

of Moments (MoM) [3] and [4], the Finite Element 

Method (FEM) [5] and [6], and the method of Shooting 

and Bouncing Rays (SBR) [7] and [8]. More general 

advances such as in GPU based dense linear algebra 

methods can be found, e.g., in [9]. The focus of this paper 

is not to add to this (we have done so earlier, e.g., in [10] 

or [11]), but instead to present an alternate perspective 

on these advances. That is to say the use of GPU 

technology as well as the challenges related to it are 

considered from the point of view of a commercial CEM 

software. To this end, the software package FEKO [12] 

is taken as an example. The motivation for this is that 

quite often such advances are considered from a purely 

academic standpoint, and this leads to a number of short-

comings and challenges being overlooked. 

Section II gives a short introduction on the FEKO 

solution kernel and the various CEM methods that are 

supported by it. This serves as background for a 

discussion on the difficulties associated with the GPU 

acceleration of a commercial CEM software package 

such as FEKO in Section III, and a short discussion of 

GPU accelerated solvers that exist in FEKO or are under 

development in Section IV. The paper is concluded in 

Section V, where a discussion on future paths to facilitate 

further GPU acceleration is included. 
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II. THE FEKO SOLUTION KERNEL 
As already mentioned, a number of CEM methods 

exist which have their own strengths and weaknesses, 

and which can solve various problems of interest with 

varying degrees of success. It is thus important that a 

commercial CEM code such as FEKO implements a 

number of these methods to allow it to be competitive for 

a large selection of target application areas. 

Figure 1 shows the various solution techniques 

available in FEKO for the solution of RF/microwave 

problems. Two factors influencing the choice of solution 

method – the electrical size of the problem being 

considered and the complexity of the materials being 

simulated – are indicated on the axes. The possibility of 

hybridizing various methods exists, and this allows for 

the solution of more complex problems by selecting the 

best solution method for different regions of the same 

problem with full bi-directional coupling between them. 

 

 
 

Fig. 1. A diagram depicting the various computational 

methods in FEKO. The hybridization that exists between 

some of the methods is also shown by green arrows. 

 

III. CHALLENGES IN GPU 

ACCELERATION 
In any software development, it is required that the 

available resources be allocated to maximize the 

delivered value in the software project. How value is 

determined is specific to each project, and may also 

differ greatly between the academic and commercial 

environments. In the commercial environment, for 

example, the number of customers with capable 

hardware demanding or being able to use GPU 

acceleration directly influences the relative value of 

GPU accelerated extensions when compared to other 

feature extensions. Academic development may, on the 

other hand, place a high importance on novelty for use in  

academic publications. 

 

A. Versatility, reliability, and reproducibility 

Many academic publications on the topic of 

accelerated CEM codes consider a small number of 

examples to illustrate the applicability or performance 

improvements of a specific method. These examples are 

often simple or canonical problems, which may play to 

the strengths of the method being considered, and also 

may not exceed the resources – such as available 

memory – of the GPU being used for acceleration. 

In the commercial setting, there is no such control 

over which examples are being considered, and 

customers expect accurate results for a wide variety of 

problems. This not only imposes heavy resource 

requirements for additional validation and verification of 

the accelerated methods, but also in the detection of 

possible problem cases at run-time (such as running out 

of GPU memory and then switching automatically to 

block based algorithms or switching the computations on 

the fly back to the CPU), and handling these in a well-

rounded and user friendly way. 

 

B. Variety of CEM methods 

The various computational methods included in the 

FEKO solution kernel and discussed in Section II have 

their own strengths and weaknesses when it comes to the 

solution of CEM problems. In addition, each of these 

methods present its own challenges in parallelization in 

general (MPI, OpenMP, etc.), and in GPU computing 

specifically. 

Take the Methods of Moment (MoM) and the Finite 

Element Method (FEM) as examples. These are both 

matrix-based methods which require the construction, 

and (for driven problems) the subsequent solution of a 

linear system of equations. It is also possible to formulate 

certain classes of problems in each method as 

generalized eigenvalue problems. 

At this point it may seem as if these two methods 

would be amenable to similar approaches when 

considering them for GPU acceleration. The situation is, 

however, that the linear system which results as part of a 

MoM computation is dense, whereas that associated with 

the FEM is a sparse system. Although GPU tools exit for 

the solution of both types of systems, the difference in 

performance of dense and sparse computation on a GPU 

means that the realized speedup will differ significantly. 

Furthermore, the effect of the other phases in the solution 

process (e.g., matrix fill) must also be taken into 

consideration and will be discussed in Section IV. 

 

C. Software and design decisions 

Another important factor regarding the adoption of 

GPU acceleration in an existing commercial CEM 

package are design and development decisions such as 

the language of implementation and low-level program 
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flow, which if – if not selected carefully – may not map 

well to massively parallel architectures such as GPUs. 

CUDA was already mentioned as programming 

language to support NVIDIA cards. In the OpenMP 4.0 

standard, for example, provision has been made for the 

use of accelerators. OpenMP is a directive-based, open 

standard which provides a portable means to parallelize 

code over a number of threads. The inclusion of the 

concept of accelerators and the associated operations, 

means that the importance of such technologies has been 

recognized. Furthermore, since the directives are 

platform agnostic, acceleration would in theory not be 

limited to a particular set of devices – such as NVIDIA 

GPUs when using CUDA – but the same code could be 

used to run on multi-core CPUs, GPUs by other vendors, 

and other accelerator technologies such as Intel's Xeon 

Phi coprocessors. There is also OpenCL, kind of being 

in the middle between CUDA and OpenMP. In FEKO, 

all three techniques (OpenCL, OpenMP, and CUDA) are 

being explored and partially used, but all the following 

GPU discussions refer to CUDA specifically. 

Considering that many of the GPGPU programming 

tools are centered on C/C++ implementations, the options 

for the acceleration of for instance FORTRAN based 

routines generally involve rewriting large portions of 

code in C/C++, or switching to FORTRAN compilers 

that do support GPU computing. Any rewriting 

introduces the risk of introducing new bugs, increasing 

the need for proper tuning, testing and software 

verification.  

In terms of switching compilers, there are also a 

number of factors to consider. One of the biggest 

problems is the loss of productivity – possibly for a 

whole development team – due to changes required in 

build processes and utilities, the introduction of 

unforeseen bugs caused by incompatible compiler 

options, and bugs in the compilers themselves. 

IV. GPU ACCELERATION IN FEKO

A. The Method of Moments

As discussed in Section III, the MoM requires the

assembly and solution of a dense linear system with 

other steps followed like near or far field calculations. 

The run-time for the assembly of the matrix is quadratic 

in terms of the number of unknowns, whereas that of the 

solution of the linear system is cubic. The post-

processing is typically linear in terms of the number of 

unknowns and linear in terms of the number of far field 

directions/near field observation points etc. It follows 

that as the problem size gets larger, the matrix solution 

phase will dominate the overall run-time.  

The matrix solution phase can be isolated and 

accelerated using libraries such as MAGMA [9] or 

cuSOLVER (available as part of CUDA since version 

7.0). Unfortunately, even though it can be accelerated by 

up to an order of magnitude, the total simulation 

acceleration is significantly less, with the matrix 

assembly phase now dominating the run-time. Even 

though considerable speedups can be attained for this 

matrix fill phase in simplified MoM code [3], a 

considerable amount of development resources need to 

be invested for a FEKO implementation due to the 

complex nature of the code (many different basis 

functions, higher order on curvilinear meshes, 

Sommerfeld integrals for planar Green’s functions etc.). 

B. The Finite Element Method

Another matrix-based method implemented in

FEKO is the FEM. In contrast to the MoM, the matrices 

are sparse, but many of the same challenges present 

themselves when the GPU acceleration of the method is 

considered. 

Here, the phases of the solution process which 

contribute most significantly to the total simulation time 

are the construction of the relevant preconditioner and 

the subsequent solution of the sparse linear system. 

FEKO uses by default iterative solvers for a single right 

hand side which – with the right preconditioners – 

provide according to our experience faster solution times 

than direct sparse solvers and in particular use less 

memory.  

For the solution of FEM linear system, a simple 

iterative solver can be expected to show a 2-5x 

performance improvement when running on a GPU, but 

for most problem sizes where the amount of GPU 

memory is not a limitation, this translates into a 

simulation speedup of only 50% as the other phases start 

dominating. 

Further acceleration is hampered by the sheer 

number of preconditioning options available in a 

software such as FEKO. In addition, differences in 

matrix representation and the lack of complex value 

support in available third-party libraries make the use of 

a standalone approach – as was done with the MoM 

matrix solution – problematic. 

C. Ray launching Geometrical Optics

Along Uniform Theory of Diffraction (UTD) and

Physical Optics (PO), the Ray Launching Geometrical 

Optics (RL-GO) solver – which is sometimes referred to 

as Shooting and Bouncing Rays (SBR) – is ideal for the 

analysis of electrically large and complex objects. It 

is inherently parallel and is well suited to GPU 

acceleration. As an initial proof of concept, we were able 

to accelerate the calculation of the intersections of rays 

with geometry in FEKO by at least an order of magnitude 

when using CUDA. 

However, this was handwritten CUDA code. It is 

not possible to simply run the RL-GO code through 

a GPU aware compiler and obtain an accelerated 

implementation with similar performance. Furthermore, 

the complexity and recursive nature of the code means 
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that GPU specific limits such as smaller stack size must 

be addressed as well. 

 

D. Finite Difference Time Domain Method 

In much the same way that the RL-GO solver is 

algorithmically well suited to GPU acceleration, the 

Finite Difference Time Domain (FDTD) method lends 

itself well to such parallelization. Much of this stems 

from the fact that the same simple update equations are 

applied to each voxel in each time step with (almost) no 

communication required between adjacent updates. As is 

indicated in Fig. 1, one advantage of the acceleration of 

the FDTD over the RL-GO solver in FEKO is that there 

is as yet no hybridization of FDTD with other methods 

and thus, less complexity to be considered. 

The FDTD solver implemented in FEKO makes 

used of GPU acceleration to provide roughly an order  

of magnitude speedup for certain problems. One 

disadvantage of such a speedup is that from a user’s 

perspective, the relative performance of post-processing 

phases such as the calculation of far fields is significantly 

lower. 

For both CPU and GPU based FDTD solvers, the 

measured performance is greatly affected by the problem 

setup, which includes factors such as user-requested near 

fields or the far fields already mentioned. If these are in 

the frequency domain, for example, then additional 

costly computations are required during every simulation 

time step. 
 

V. CONCLUSION 
In this paper, a discussion on the challenges 

associated with the GPU acceleration of the commercial 

CEM software package FEKO was presented. This 

showed that although a method may be promising 

theoretically, its application in commercial software 

generally requires the allocation of significant 

development resources, with at this stage not always the 

necessary demand from the market. 

As examples, the acceleration of the MoM, FEM, 

and RL-GO were considered, and although certain 

phases of the computational process can be accelerated 

significantly, the total simulation speedup is limited. The 

further acceleration of these methods is hampered by the 

complexity of the numerical algorithms, e.g., through 

hybridization. As illustrated, for FDTD, the situation is 

different. 
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