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Abstract ─ In the field of electromagnetic modeling, 

whether it is the complex designs for engineered 

materials or devices and components integrated within 

their natural environments, there is a big drive for highly 

efficient numerical techniques to model the performance 

of complex structures. This often cannot be achieved by 

conventional computer systems, but rather through using 

the so-called high performance computing (HPC) 

systems that utilize hardware acceleration. We review 

recent General Purpose Graphics Processing Units 

(GPGPU) computing strategies introduced in four fields 

of computational electromagnetics: Finite-Difference 

Time-Domain (FDTD), Finite Elements Method (FEM), 

Method of Moments (MoM) and ElectroMagnetic Ray 

Tracing (EMRT). 

Index Terms ─ CUDA, ElectroMagnetic Ray Tracing 

(EMRT), Finite-Difference Time-Domain (FDTD), Finite 

Elements Method (FEM), Graphics Processing Units 

(GPUs), Method of Moments (MoM), OpenCL, parallel 

programming. 

I. INTRODUCTION
Electromagnetic simulators are essential tools in the 

analysis and the design of large and complex systems. 

The last two decades have witnessed dramatic 

improvements in both algorithms for computational 

electromagnetics and computing hardware. For the latter 

point, the use of General Purpose computing on Graphics 

Processing Units (GPGPU) has become increasingly 

prevalent. Due to their many computational cores, 

GPGPUs are indeed suitable for solving problems with a 

high degree of parallelism.  

Successful applications of GPGPU computation 

require appropriate code implementations and 

optimizations, depending on whether the problem is 

memory bound (most of the time spent in memory 

transactions) or compute bound (most of the time spent 

in using the GPU) [1]. Throughout the literature, there 

are several success stories in GPGPU computing as 

applied to computational electromagnetics. The purpose 

of this review paper is to sketch the latest GPU 

computing strategies adopted in four fields of particular 

interest; namely Finite-Difference Time Domain 

(FDTD), Finite Elements Method (FEM), Method of 

Moments (MoM) and ElectroMagnetic Ray Tracing 

(EMRT). For each of the mentioned representative 

fields, we will point out the critical aspects, which enable 

achieving high performance in computations. Also, we 

will provide relevant references, which will help the 

interested reader for further details. Finally, nowadays, 

desktop computers can easily fit four GPUs although, if 

more computational resources are required, multiple 

GPUs can be clustered together or heterogeneous 

systems can be used for large scale simulations. How 

multi-GPU and heterogeneous systems help increasing 

the computational performance for the mentioned 

applications will also be discussed. 

II. FDTD
FDTD is one of the most widely used numerical 

methods for electromagnetic simulations. From the 

computational point of view, it essentially amounts at 

stencil calculations. Therefore, the main issue of FDTD 

is the very low arithmetic intensity, which means that the 

attainable performance in terms of Floating Point 

Operations per Second (FLOPS) is limited by the 

memory bandwidth [2].  

Typical strategies like optimizing the arithmetic 

instructions or hiding the latency of the global memory 

access by maximizing the multiprocessor occupancy are 

not effective. For this reason, essentially the optimization 

approaches below have been applied to GPU-based 

FDTD implementations for different GPU architectures: 

1. Exploit shared memory;

2. Achieve global memory coalesced accesses;
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3. Use the texture cache; 

4. Use built-in arrays; 

5. Properly arrange the computation in the 3rd 

dimension. 

Concerning point #1, the calculation of field 

components depends, at each time step, on the value of 

the same component at the previous step, and on other 

field components at neighboring cells. Accordingly, it 

was proposed in [3] to use shared memory to cache  

all the needed field components, including those 

corresponding to adjacent computational tiles. In this 

way, it is possible to significantly reduce data read 

redundancy. The use of shared memory also enables to 

limit uncoalesced acceses, as for point #2, see [4]. 

Regarding point #3, texture memory buffers data in 

a suited cache, optimized for two-dimensional spatial 

locality. This leads to performance gains when threads 

read locations that are spatially close, as in FDTD [4]. 

However, this benefit appears to be less relevant for 

latest architectures due to their newly available caching 

mechanisms. 

Concerning point #4, built-in arrays have two, three 

or four components accessible which allow to best 

exploit global memory bandwidth. They are used to 

minimize the number of access operations by maximizing 

the number of bytes simultaneously transferred [4]. 

Finally, a very important point in 3D FDTD is the 

organization of the computation in the third dimension. 

An efficient solution has been proposed in [3] and a 

discussion of this topic, in particular, on different 

solutions proposed in the literature has been recently 

provided in [5]. An approach to reduce thread divergence 

when applying Convolutional Perfectly Matched Layer 

(CPML) boundary conditions has been also proposed in 

[6]. 

Compared to a typical implementation on multicore 

CPUs, an optimized parallelization on GPUs reaches  

a speedup of the order of ten times. By properly 

overlapping computation and communication, high 

parallelization efficiencies (75%) can be achieved in 

these cases [7]. 

 

III. FEM 
The Finite Element Method (FEM) is one of the 

most advanced and powerful methods for solving 

Maxwell’s equations. Although often used in 

computational electromagnetics, GPU research on FEM 

has not been yet as popular as for other numerical 

methods. Solving Maxwell’s equations using FEM 

essentially consists of three phases [8]: 

 

(i) Local Assembly: For each element e in the domain, 

an N×N matrix, Me (local matrices), and an N-length 

vector, be (local vectors), are computed, where N is 

the number of nodes per element. The computation 

of Me and be usually involves the evaluation of 

integrals over the element using Gaussian 

quadrature. Since meshes are typically unstructured, 

gathering the data associated with each element 

forces highly irregular memory accesses.  

(ii) Global Assembly: The matrices Me and the vectors 

be are used to form a global matrix M and global 

vector b by assembling the contributions of the 

elements together. Typically, M is very sparse, 

although its sparsity depends on the connectivity of 

the mesh. The Compressed Sparse Row (CSR) 

format is often used to reduce the storage 

requirement of the matrix and to eliminate 

redundant computations. 

(iii) Solution of the Relevant Linear System: The sparse 

system M x = b is solved for x. 

There are different possible ways of parallelizing the 

first two steps. Unfortunately, until now, there is no 

definite answer on which is the most promising 

approach.  Different techniques are discussed in [8] that 

are fairly general and relevant to many types of 

computations on unstructured meshes. A range of possible 

implementations is presented and recommendations to 

potential implementers are given. In particular, three 

possibilities have been considered depending on what 

each thread is assigned to: 

1. Assembly by non-zero elements (each thread is 

assigned to a different non-zero global matrix 

element); 

2. Assembly by rows (each thread is assigned to a 

different row of the global matrix); 

3. Assembly by elements (each thread is assigned to a 

different finite element). 

Some results have been published for 

electromagnetic problems in [9] using OpenCL and in 

[10] using CUDA. A speedup of 19 has been observed 

for the former case against a multi-core CPU 

implementation, while a speedup between 87 (matrix 

assembly) and 51 (solution of the linear system) has been 

reported for the latter case. 
 

IV. MOM 
Method of Moments is another powerful tool used 

widely in computational electromagnetics. Radiation 

and scattering problems can be solved numerically using 

various formulations of the MoM (e.g., EFIE, CFIE, 

etc.), which is a well-established full-wave analysis 

based on meshing the geometry into coalescent triangles. 

The technique employs the expansion of the surface 

currents of the mesh into a set of basis functions, such as 

the well-known Rao-Wilton-Glisson (RWG), [11]. The 

series expansion results in a linear system as expressed 

as
 
     . ,V Z I  where V represents the source function, 

I is the unknown current, and Z is the impedance matrix. 

The size of the linear system; i.e., NxN, depends on the 

number of non-boundary edges in the triangular mesh, 

N. In the conventional MoM approach, first the 
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impedance matrix is computed. Then it is inverted, and 

the unknown currents are calculated. The source vector 

is computed based on the geometry and the excitation 

fields at each triangle, [11]. 

The direct solution of MoM by a matrix inversion 

presents a big challenge as the object size increases. This 

is due to the computational complexity, O(N3), and 

storage requirements, O(N2) of MoM. While one way to 

address the complexity problem is the use of iterative 

solvers, MoM remains computationally expensive for 

electrically large objects. The Fast Multipole Method 

(FMM), which was first introduced by Rokhlin [12] as 

an augmentation to MoM, reduces the computational 

complexity for such problems to O(NitN2) without a 

significant loss of accuracy. In FMM, the N edges in the 

mesh are classified into M localized groups, such that 

each group supports approximately N/M edges. The 

groups are then categorized as near and far, based on 

their spatial proximity, allowing the system matrix to be 

split into, Znear and Zfar components, which describe the 

near and far interactions among the edges. A few authors 

have applied FMM for electromagnetic problems using 

a single GPU for small size problems [13], or a GPU 

cluster for larger problems [14], [15].  

Further enhancements have evolved to handle larger 

problems, such as FMM-FFT, which applies FFT at the 

translation and multipole expansion stages of FMM, 

which reduces the complexity to O(NlogN) for two-

dimensional rough surfaces, [16] and to O(N4/3 log2/3N) 

for three-dimensional objects, [17]. Recently, FMM-

FFT was implemented on a multi-node GPU cluster to 

demonstrate significant acceleration in computation time 

while preserving the scalabilty of FMM, [18]. However, 

FMM-FFT still suffers from the limitation of the GPU 

memory to solve for larger problems. Another such 

attempt to enhance FMM for larger scale problems is by 

introducing a multi-level tree structure of MLFMA, 

which reduces the computational complexity of MoM to 

O(NlogN). 

 

V. RAY TRACING 
Geometrical Optics (GO) is appealing for scenes 

with electrically large objects as it provides approximate 

solutions to Maxwell’s equations. In such cases, GO can 

benefit from the use of data structures inherited by 

computer graphics, as the Binary Bounding Volume 

Hierarchies (BBVH), to properly handle the intersections 

between rays and scene objects.  

Ray tracing for GO involves two main steps: 

searching for the intersections between rays and 

geometric primitives (for example, triangles) discretizing 

the object surfaces, and electromagnetic field transport. 

The first step can be the most time consuming, and must 

be properly managed. A simple brute force approach 

would be unfeasible due to the large number of 

intersection tests to be issued.  

This intersection problem can be faced by 

introducing objects of simple geometry helping in 

determining if the ray intersects the generic primitive or 

not, as well as organizing primitives and objects into 

proper (usually binary) tree hierarchies to reduce the 

number of intersection tests. Typically, such objects are 

Axis Aligned Bounding Boxes (AABB). An AABB 

encloses a group of geometrical primitives or even other 

bounding volumes. The leaf nodes contain the primitives 

while the inner nodes enclose the bounding volume of its 

child nodes. With such a hierarchy, a tree-search 

algorithm is used to find the nearest object that is hit by 

a ray. Generally, two schemes are the most popular to 

construct the hierarchy, namely, spatial subdivision and 

object partitioning. 

With spatial subdivision, space is recursively split. 

Each primitive is placed into all leaf nodes to which it 

overlaps and straddling primitives are copied in multiple 

nodes. Subdividing space with axis aligned planes leads 

to the so called KD-tree [19]. 

On the other side, a binary object partitioning 

scheme recursively subdivides the primitive list in two 

non-empty and disjoint sub-lists. For each sub-list, the 

minimum bounding volumes containing all the sub-list 

primitives is computed. The bounding volumes may 

partially overlap and the accelerating structure associated 

to object partitioning scheme is called BVH [20]. Unlike 

KDtree, each primitive is stored only once. 

Object partitioning and spatial subdivision can work 

together resulting in a hybrid scheme known as Split 

Bounding Volume Hierarchy (SBVH) [20, 21], see also 

[22]. Recently, the benefits and the drawbacks of the 

above schemes have been analyzed with reference to 

their GPU implementations [22]. It has emerged that:  

 The most critical drawback of KD-tree is the high 

number of primitive duplicates and the tree depth.  

 Besides leading to high memory consumption (which 

is a problem by itself in GPU computing), primitive 

duplicates and tree depth are responsible of a larger 

(as compared to BVH) number of inner-node traversal 

steps, leaf visits and ray-primitive intersection tests.  

 BVH, unlike KD-tree, poorly adapts to arbitrary 

scenes with very varying density. SBVH has shown 

to be a very satisfactory compromise. 

With SBVH, it has recently shown how thousands 

of millions of rays per second can be traced on a Kepler 

K20c card [23]. 
 

VI. CONCLUSION 
We have reviewed recent GPGPU computing 

strategies introduced in five fields of computational 

electromagnetics: FDTD, FEM, MoM and EMRT. The 

purpose has been to provide new Researchers in this field 

with initial guidelines on the dealt with topics. At 

present, research in GPU accelerated FEM for 

electromagnetics surprisingly appears to have been  
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overlooked in the literature. 
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Abstract ─ This paper discusses the benefits but also 

challenges of GPU accelerated electromagnetic solvers 

from a commercial point of view, namely using FEKO 

as example. Specifically, the effects of some of the 

complex interdependencies between different components 

are presented. It is shown that despite the advances made 

in the field of GPGPU computing, and impressive 

speedups for parts of a program or simplified problems, 

there are a number of factors to consider before these 

techniques can be applied to a commercial product that 

is expected to be robust and, most importantly, to always 

give trustworthy results for a wide variety of problems. 

 

Index Terms ─ Commercial Solvers, CUDA, FDTD, 

FEKO, FEM, GPGPU, GPU Acceleration, MoM,  

RL-GO, SBR. 
 

I. INTRODUCTION 
In the field of computational electromagnetics 

(CEM), a wide range of numerical techniques can be 

used to simulate a variety electromagnetic radiation and 

scattering problems. One of the primary reasons that 

such a wide variety of methods exists, is that no single 

method performs best for all problem types [1]. Thus, 

one of the first challenges in solving an electromagnetic 

problem is to select the method that is best or at least 

reasonably suited to the problem of interest. 

Even with the optimal method selected, there is still 

the matter of the available computational resources to 

consider. It may then be that the desired solution takes 

hours, days, or even weeks to compute. One of the ways 

in which an attempt has been made to increase the 

computational power at disposal – thereby decreasing 

the time required for a solution – has been to make use 

of graphics processing units (GPUs) to perform general 

purpose computational tasks, and not just the graphics-

related tasks for which they were originally designed for. 

This practice, called general purpose GPU (GPGPU) 

computing, has seen a remarkable increase of late, both 

in terms of hardware capability, as well as the ease with 

which these devices can be programmed [2]. 

The most common way of programming such 

devices is using the Compute Unified Device Architecture 

(CUDA) by NVIDIA. This couples a genuinely 

programmable hardware architecture with programming 

tools that can be used by any developer with a knowledge 

of C/C++. Previously, GPGPU programming involved 

convincing a GPU to do what one wanted by rewriting 

computational routines as graphics programs. Since its 

inception, CUDA's hardware/software combination has 

evolved to such an extent that the latest generation of 

devices can be found in the fastest supercomputers in the 

world, with a much more powerful set of software 

features available as well. 

There has been considerable development and a 

large number of papers were published on the GPU 

acceleration of CEM methods, for example the Method 

of Moments (MoM) [3] and [4], the Finite Element 

Method (FEM) [5] and [6], and the method of Shooting 

and Bouncing Rays (SBR) [7] and [8]. More general 

advances such as in GPU based dense linear algebra 

methods can be found, e.g., in [9]. The focus of this paper 

is not to add to this (we have done so earlier, e.g., in [10] 

or [11]), but instead to present an alternate perspective 

on these advances. That is to say the use of GPU 

technology as well as the challenges related to it are 

considered from the point of view of a commercial CEM 

software. To this end, the software package FEKO [12] 

is taken as an example. The motivation for this is that 

quite often such advances are considered from a purely 

academic standpoint, and this leads to a number of short-

comings and challenges being overlooked. 

Section II gives a short introduction on the FEKO 

solution kernel and the various CEM methods that are 

supported by it. This serves as background for a 

discussion on the difficulties associated with the GPU 

acceleration of a commercial CEM software package 

such as FEKO in Section III, and a short discussion of 

GPU accelerated solvers that exist in FEKO or are under 

development in Section IV. The paper is concluded in 

Section V, where a discussion on future paths to facilitate 

further GPU acceleration is included. 
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II. THE FEKO SOLUTION KERNEL 
As already mentioned, a number of CEM methods 

exist which have their own strengths and weaknesses, 

and which can solve various problems of interest with 

varying degrees of success. It is thus important that a 

commercial CEM code such as FEKO implements a 

number of these methods to allow it to be competitive for 

a large selection of target application areas. 

Figure 1 shows the various solution techniques 

available in FEKO for the solution of RF/microwave 

problems. Two factors influencing the choice of solution 

method – the electrical size of the problem being 

considered and the complexity of the materials being 

simulated – are indicated on the axes. The possibility of 

hybridizing various methods exists, and this allows for 

the solution of more complex problems by selecting the 

best solution method for different regions of the same 

problem with full bi-directional coupling between them. 

 

 
 

Fig. 1. A diagram depicting the various computational 

methods in FEKO. The hybridization that exists between 

some of the methods is also shown by green arrows. 

 

III. CHALLENGES IN GPU 

ACCELERATION 
In any software development, it is required that the 

available resources be allocated to maximize the 

delivered value in the software project. How value is 

determined is specific to each project, and may also 

differ greatly between the academic and commercial 

environments. In the commercial environment, for 

example, the number of customers with capable 

hardware demanding or being able to use GPU 

acceleration directly influences the relative value of 

GPU accelerated extensions when compared to other 

feature extensions. Academic development may, on the 

other hand, place a high importance on novelty for use in  

academic publications. 

 

A. Versatility, reliability, and reproducibility 

Many academic publications on the topic of 

accelerated CEM codes consider a small number of 

examples to illustrate the applicability or performance 

improvements of a specific method. These examples are 

often simple or canonical problems, which may play to 

the strengths of the method being considered, and also 

may not exceed the resources – such as available 

memory – of the GPU being used for acceleration. 

In the commercial setting, there is no such control 

over which examples are being considered, and 

customers expect accurate results for a wide variety of 

problems. This not only imposes heavy resource 

requirements for additional validation and verification of 

the accelerated methods, but also in the detection of 

possible problem cases at run-time (such as running out 

of GPU memory and then switching automatically to 

block based algorithms or switching the computations on 

the fly back to the CPU), and handling these in a well-

rounded and user friendly way. 

 

B. Variety of CEM methods 

The various computational methods included in the 

FEKO solution kernel and discussed in Section II have 

their own strengths and weaknesses when it comes to the 

solution of CEM problems. In addition, each of these 

methods present its own challenges in parallelization in 

general (MPI, OpenMP, etc.), and in GPU computing 

specifically. 

Take the Methods of Moment (MoM) and the Finite 

Element Method (FEM) as examples. These are both 

matrix-based methods which require the construction, 

and (for driven problems) the subsequent solution of a 

linear system of equations. It is also possible to formulate 

certain classes of problems in each method as 

generalized eigenvalue problems. 

At this point it may seem as if these two methods 

would be amenable to similar approaches when 

considering them for GPU acceleration. The situation is, 

however, that the linear system which results as part of a 

MoM computation is dense, whereas that associated with 

the FEM is a sparse system. Although GPU tools exit for 

the solution of both types of systems, the difference in 

performance of dense and sparse computation on a GPU 

means that the realized speedup will differ significantly. 

Furthermore, the effect of the other phases in the solution 

process (e.g., matrix fill) must also be taken into 

consideration and will be discussed in Section IV. 

 

C. Software and design decisions 

Another important factor regarding the adoption of 

GPU acceleration in an existing commercial CEM 

package are design and development decisions such as 

the language of implementation and low-level program 
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flow, which if – if not selected carefully – may not map 

well to massively parallel architectures such as GPUs. 

CUDA was already mentioned as programming 

language to support NVIDIA cards. In the OpenMP 4.0 

standard, for example, provision has been made for the 

use of accelerators. OpenMP is a directive-based, open 

standard which provides a portable means to parallelize 

code over a number of threads. The inclusion of the 

concept of accelerators and the associated operations, 

means that the importance of such technologies has been 

recognized. Furthermore, since the directives are 

platform agnostic, acceleration would in theory not be 

limited to a particular set of devices – such as NVIDIA 

GPUs when using CUDA – but the same code could be 

used to run on multi-core CPUs, GPUs by other vendors, 

and other accelerator technologies such as Intel's Xeon 

Phi coprocessors. There is also OpenCL, kind of being 

in the middle between CUDA and OpenMP. In FEKO, 

all three techniques (OpenCL, OpenMP, and CUDA) are 

being explored and partially used, but all the following 

GPU discussions refer to CUDA specifically. 

Considering that many of the GPGPU programming 

tools are centered on C/C++ implementations, the options 

for the acceleration of for instance FORTRAN based 

routines generally involve rewriting large portions of 

code in C/C++, or switching to FORTRAN compilers 

that do support GPU computing. Any rewriting 

introduces the risk of introducing new bugs, increasing 

the need for proper tuning, testing and software 

verification.  

In terms of switching compilers, there are also a 

number of factors to consider. One of the biggest 

problems is the loss of productivity – possibly for a 

whole development team – due to changes required in 

build processes and utilities, the introduction of 

unforeseen bugs caused by incompatible compiler 

options, and bugs in the compilers themselves. 

IV. GPU ACCELERATION IN FEKO

A. The Method of Moments

As discussed in Section III, the MoM requires the

assembly and solution of a dense linear system with 

other steps followed like near or far field calculations. 

The run-time for the assembly of the matrix is quadratic 

in terms of the number of unknowns, whereas that of the 

solution of the linear system is cubic. The post-

processing is typically linear in terms of the number of 

unknowns and linear in terms of the number of far field 

directions/near field observation points etc. It follows 

that as the problem size gets larger, the matrix solution 

phase will dominate the overall run-time.  

The matrix solution phase can be isolated and 

accelerated using libraries such as MAGMA [9] or 

cuSOLVER (available as part of CUDA since version 

7.0). Unfortunately, even though it can be accelerated by 

up to an order of magnitude, the total simulation 

acceleration is significantly less, with the matrix 

assembly phase now dominating the run-time. Even 

though considerable speedups can be attained for this 

matrix fill phase in simplified MoM code [3], a 

considerable amount of development resources need to 

be invested for a FEKO implementation due to the 

complex nature of the code (many different basis 

functions, higher order on curvilinear meshes, 

Sommerfeld integrals for planar Green’s functions etc.). 

B. The Finite Element Method

Another matrix-based method implemented in

FEKO is the FEM. In contrast to the MoM, the matrices 

are sparse, but many of the same challenges present 

themselves when the GPU acceleration of the method is 

considered. 

Here, the phases of the solution process which 

contribute most significantly to the total simulation time 

are the construction of the relevant preconditioner and 

the subsequent solution of the sparse linear system. 

FEKO uses by default iterative solvers for a single right 

hand side which – with the right preconditioners – 

provide according to our experience faster solution times 

than direct sparse solvers and in particular use less 

memory.  

For the solution of FEM linear system, a simple 

iterative solver can be expected to show a 2-5x 

performance improvement when running on a GPU, but 

for most problem sizes where the amount of GPU 

memory is not a limitation, this translates into a 

simulation speedup of only 50% as the other phases start 

dominating. 

Further acceleration is hampered by the sheer 

number of preconditioning options available in a 

software such as FEKO. In addition, differences in 

matrix representation and the lack of complex value 

support in available third-party libraries make the use of 

a standalone approach – as was done with the MoM 

matrix solution – problematic. 

C. Ray launching Geometrical Optics

Along Uniform Theory of Diffraction (UTD) and

Physical Optics (PO), the Ray Launching Geometrical 

Optics (RL-GO) solver – which is sometimes referred to 

as Shooting and Bouncing Rays (SBR) – is ideal for the 

analysis of electrically large and complex objects. It 

is inherently parallel and is well suited to GPU 

acceleration. As an initial proof of concept, we were able 

to accelerate the calculation of the intersections of rays 

with geometry in FEKO by at least an order of magnitude 

when using CUDA. 

However, this was handwritten CUDA code. It is 

not possible to simply run the RL-GO code through 

a GPU aware compiler and obtain an accelerated 

implementation with similar performance. Furthermore, 

the complexity and recursive nature of the code means 
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that GPU specific limits such as smaller stack size must 

be addressed as well. 

 

D. Finite Difference Time Domain Method 

In much the same way that the RL-GO solver is 

algorithmically well suited to GPU acceleration, the 

Finite Difference Time Domain (FDTD) method lends 

itself well to such parallelization. Much of this stems 

from the fact that the same simple update equations are 

applied to each voxel in each time step with (almost) no 

communication required between adjacent updates. As is 

indicated in Fig. 1, one advantage of the acceleration of 

the FDTD over the RL-GO solver in FEKO is that there 

is as yet no hybridization of FDTD with other methods 

and thus, less complexity to be considered. 

The FDTD solver implemented in FEKO makes 

used of GPU acceleration to provide roughly an order  

of magnitude speedup for certain problems. One 

disadvantage of such a speedup is that from a user’s 

perspective, the relative performance of post-processing 

phases such as the calculation of far fields is significantly 

lower. 

For both CPU and GPU based FDTD solvers, the 

measured performance is greatly affected by the problem 

setup, which includes factors such as user-requested near 

fields or the far fields already mentioned. If these are in 

the frequency domain, for example, then additional 

costly computations are required during every simulation 

time step. 
 

V. CONCLUSION 
In this paper, a discussion on the challenges 

associated with the GPU acceleration of the commercial 

CEM software package FEKO was presented. This 

showed that although a method may be promising 

theoretically, its application in commercial software 

generally requires the allocation of significant 

development resources, with at this stage not always the 

necessary demand from the market. 

As examples, the acceleration of the MoM, FEM, 

and RL-GO were considered, and although certain 

phases of the computational process can be accelerated 

significantly, the total simulation speedup is limited. The 

further acceleration of these methods is hampered by the 

complexity of the numerical algorithms, e.g., through 

hybridization. As illustrated, for FDTD, the situation is 

different. 
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Abstract ─ A discontinuous Galerkin time-domain 

(DGTD) algorithm is formulated and implemented to 

model the third-order instantaneous nonlinear effect on 

electromagnetic fields due the field-dependent medium 

permittivity. The nonlinear DGTD computation is 

accelerated using graphics processing units (GPUs). 

Two nonlinear examples are presented to show the 

different Kerr effects observed through the third-order 

nonlinearity. With the acceleration using MPI + GPU 

under a large cluster environment, the solution times for 

nonlinear simulations are significantly reduced. 

Index Terms ─ Computational electromagnetics, DGTD, 

GPU acceleration, Kerr effect, nonlinear electromagnetics, 

third-order nonlinearity. 

I. INTRODUCTION
Nonlinear phenomena in electromagnetics generally 

involve changes in the material properties due to the 

presence of electromagnetic fields. The changes in the 

material properties in turn modify the state of the original 

electromagnetic fields in the medium. Since the material 

properties and the contained fields interact with each 

other constantly, it is most natural to describe and model 

these interactions in the time domain, where at each time 

instant the changes in the fields induce nonlinear 

modifications on both the material properties and the 

fields themselves. 

The nonlinear Kerr effect [1] is one of the most 

studied and exploited optical effects. It describes the 

third-order interaction between the electric field and the 

permittivity of the material, which produces a variety of 

nonlinear phenomena [1], [2], such as third-harmonic 

generation (THG), self-phase modulation (SPM), self-

focusing, and frequency mixing. Much investigation has 

been carried out for the simulation of the nonlinear 

optical effects using the finite-difference time-domain 

(FDTD) algorithms [3], due to their straightforward 

implementation. 

This work is focused on the modeling of the third-

order Kerr instantaneous nonlinearity using the 

discontinuous Galerkin time-domain (DGTD) algorithm. 

The nonlinear DGTD algorithm possesses many 

advantages of the linear DGTD algorithms over nonlinear 

FDTD algorithms, including the flexibility in complex 

geometry modeling, reduced phase shifts, and the ease to 

achieve higher order accuracy and convergence. To 

speed up the computation, the MPI + GPU framework 

developed in [4] is adapted to accelerate the nonlinear 

DGTD algorithm. 

II. FORMULATION
For a general third-order nonlinear medium, the 

relative permittivity can be written as: 
(3) 2

,L ,N L ,L( ) ,r r r r rE E          (1) 

where 
,Lr  and 

,N Lr are the linear and nonlinear parts

of the relative permittivity, respectively, (3)  is the 

third-order nonlinear polarization coefficient, and E  is 

the magnitude of the time-varying electric field. Here we 

focus on the derivation of the DGTD algorithm to model 

a nonlinear, lossless, and non-dispersive medium to 

update the electric field since the updating equation for 

the magnetic field has no nonlinear components and thus 

is identical to that in a linear medium. Testing Ampere’s 

law using the Galerkin method, substituting in the 

expansion of the fields, and applying the central flux, the 

equation after taking the time derivative on D  for 

element e becomes: 
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and { }e  and { }h  are the electric and magnetic field 

solution vectors and e

iN and
e

jN are vector basis 

functions. The terms associated with the boundary 

conditions are omitted for simplicity. Since the time-

varying permittivity is embedded in the mass matrix of 
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the DGTD algorithm, the volume integration pertaining 

to the electric field is now split into two terms by the 

product rule, where for the nonlinear medium, both the 

relative permittivity and the electric field are functions 

of time. Discretizing Equation (2) in the time domain 

using central difference gives: 
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where 1n

r
 is the field-dependent nonlinear permittivity

at the future time step, n

r is the converged permittivity

at the current time step, and 
1/2 1/2 1/2 1/2{ } [ ]({ } { } ) [ ]{ } .n n n n

eh eb F h h S h       (5) 

After rearranging the terms, Equation (4) can be cast into 

a field-marching form as: 
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Due to the variation of the field magnitude at each time 

step, ( )r E   of each element changes with time, and 

therefore the mass matrix 1[ ]n

eM   has to be reassembled 

at every time step. Note that, we have recovered the 

original expression for [ ]eM   as in the linear DGTD 

algorithm, albeit with a field- and time-dependent 

permittivity. The dependency of 1{ }ne   in 1[ ]n

eM 

renders Equation (6) a nonlinear equation. 

At each time marching step n, the fixed-point 

method is employed to solve Equation (6), where 
1/2{ }nb  is computed with the initial guess 1

0{ } { }n ne e 

and 1

0[ ] [ ]n n

e eM M  . At the thk iteration step, the mass 

matrix 1

1[ ]n

e kM 


is inverted to update the field solution

1{ }n

ke  . The updated solution is in turn used to update the

mass matrix 1[ ]n

e kM  using Equation (7). If the norm of

the residual { }n

kr of Equation (6) is smaller than a 

predefined threshold, then the nonlinear iteration is 

converged, and the equation can be marched to the next 

time step 1n . Otherwise it continues with the ( 1) thk   

iteration step. 

III. GPU IMPLEMENTATION
Because of the necessity to solve nonlinear equations 

in each time step, the nonlinear DGTD computation is 

very time-consuming. This computation can be effectively 

accelerated by exploiting the power of graphics 

processing units (GPUs). The GPU implementation for 

the nonlinear DGTD algorithm is similar to the approach 

described in [4], employing the same coalesced memory 

accessing pattern and thread/block allocation. Since the 

electric field update processes that are not related to 
1{ }ne   are similar to the ones found in [6], here we focus 

on the parallelization of the computation related to 
1{ }ne  , which includes the assembly of the nonlinear

mass matrix 
1[ ]n

eM 
and the inversion of this mass

matrix. 

To assemble the nonlinear mass matrix, note that 

each mass matrix entry is numerically integrated through 

quadrature, where the contribution from each weighted 

quadrature point is summed. Due to the presence of 

nonlinearity, 
r on each quadrature point changes during

each iteration step, while the other constituting terms in 

equation (7) remain identical. To parallelize the assembly 

of the mass matrix, the constituting matrices at each 

quadrature point are pre-calculated and stored, and then 

summed together at each iteration step by first multiplying 

with the updated .r The proposed parallelization

strategy and the memory access pattern are shown in 

Fig. 1, with each of the total numTets elements 

parallelized over its numTetDofs unknowns using 

CUDA threads. Each threadblock is assigned with a 

calculated number of elements to utilize all warps [4]. At 

each iteration step, the mass matrices are assembled by 

looping through numQuads quadrature points and 

summing their contribution, which is completely 

parallelizable. 

Fig. 1. Parallelization and memory access pattern for the 

assembly of the nonlinear mass matrices. 

To invert the nonlinear mass matrix, we parallelize 

the standard non-pivoting element-level Gaussian 

elimination on the GPU. Each numTetDofs threads for 

an element loops over each elemental matrix rows and 

122 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016



reduce them into row echelon form. Although the 

elimination is only semi-parallelizable, the batch 

processing of the elimination process for the nonlinear 

elements somewhat provides a decent speedup. Note 

that, the mass matrix has a small condition number, and 

therefore can be easily inverted using the standard 

Gaussian elimination without partial pivoting. This is 

beneficial for the GPU acceleration since the partial 

pivoting process involves many conditional statements 

and branches, which are undesirable for the parallelization 

on GPUs. 

IV. NUMERICAL EXAMPLES
Two examples are presented here to demonstrate the 

self-phase modulation, the third-harmonic generation, 

and the self-focusing effects captured by the extended 

DGTD algorithm and the GPU speedup. The simulation 

was carried out on the XSEDE Stampede cluster with 

NVIDIA Tesla K20 GPUs and Xeon E5-2680 CPU 

threads. 

A. Demonstration of the self-phase modulation and

the third-harmonic generation

The first example is a coaxial waveguide with an 

inner and outer radius of 1 and 2 mm, respectively, and 

a length of 40 mm. A small section of linear medium is 

placed near each end for excitation and absorption of the 

fields, and the rest of the coaxial waveguide is filled with 

either a linear or nonlinear medium, with a linear 

permittivity of 
,L 1.0r   and a third-order nonlinearity 

coefficient of (3) 4e-8.   The input signal is a modulated 

Gaussian pulse with a center frequency of 20 GHz. The 

number of finite elements is 110,715, and the solution 

marches at a time step of 0.075pst   for a total of 

10,000 time steps for both the linear and nonlinear cases. 

Mixed first-order basis functions are used for the 

computation. The time-domain response for the two 

cases is shown in  

Fig. 2. It can be observed that with a linear medium, 

the shape of the output signal is identical to the input, 

whereas with a nonlinear medium the output signal 

steepens and forms shock waves, showing the self-

steepening effect [1]. 

The frequency-domain response for the output 

signal is shown in  

Fig. 3. For the linear case, we have retained the 

frequency profile of the original input Gaussian pulse 

centered at 20 GHz. For the nonlinear case, the third-

harmonic effect generates harmonics at odd multiples of 

the original 20 GHz signal at 60 GHz, 100 GHz, 140 

GHz, and so on. In addition, the self-phase modulation 

effect broadens the input bandwidth, where the leading 

and the trailing edges shift to lower and higher 

frequencies, respectively [1]. This result is validated 

using COMSOL. Table 1 gives the average per-step CPU 

and GPU timing for the simulation. The lower speedup 

as comparing to [4] is in large due to the uneven 

nonlinearity encountered by the different elements, 

which correlates to thread idling in a warp, and the semi-

serial nature of the Gaussian elimination process. This 

thread idleness effectively lowers the number of FLOPS 

as well as the overall bandwidth. 

Fig. 2. Time-domain response of the electric field for a 

coaxial waveguide filled with a section of linear or 

nonlinear medium. 

Fig. 3. Frequency-domain response of the output signal 

for a coaxial waveguide filled with a section of linear or 

nonlinear medium. 

Table 1: Average per-step timing comparison for the 

simulation of a nonlinear coaxial waveguide 

# MPI 1 2 4 8 

CPU Time per Step (ms) 

Marching 1,482.00 741.61 369.71 183.15 

Comm. 0 35.51 33.74 38.79 

Per-Step 1,482.00 777.12 403.45 221.94 

GPU Time per Step (ms) 

Marching 47.21 23.73 12.00 6.14 

Comm. 0 2.94 1.53 4.57 

Per-Step 47.21 26.67 13.52 10.71 

Speedup 31.39 29.14 29.83 20.72 
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B. Demonstration of the self-focusing effect 

The second example demonstrates the self-focusing 

effect through beam-shaped field propagation in a 

1mm 1mm 3mm  bulk medium. The linear relative 

permittivity is 
,L 1.0r   and the third-order nonlinearity 

coefficient is (3) 8  . The excitation is a tapered TEM 

sine wave at 300 GHz, launched through a square 

aperture with a dimension of a half of the excitation 

wavelength. The number of finite elements is 664,039, 

and the solution marches at a time step of 0.01pst   

for a total of 5,000 time steps, where mixed first-order 

basis functions are used for the simulation. The field 

profiles in the bulk medium at various times for both 

linear and nonlinear cases are shown in Fig. 4. In the 

nonlinear medium, the specific electric field generates a 

strong nonlinearity, which results in a maximum 

instantaneous relative permittivity of 8.27,r   or a 

727% change to the linear relative permittivity. As can 

be seen, due to nonlinearity, the field experiences pulse 

compression which shortens the duration of each pulse. 

This effect is due to self-phase modulation. As the field 

propagates along the bulk medium, the wave is naturally 

diffracted in the linear medium, where the magnitude of 

the field decreases significantly after a couple of 

wavelengths. In the nonlinear medium, the intensity of 

the field modifies the surrounding medium into a self-

induced waveguide, which counteracts natural diffraction 

and preserves the magnitude of the propagating wave for 

a longer distance in the medium. 

 

 
       (a)          (b) 

Fig. 4. Time-domain field profile for wave propagation 

in a: (a) linear and (b) nonlinear medium at 5, 20, 25, and 

50ns, respectively. 

 

Table 2 shows the GPU average per-step timing. 

Since different elements experience different levels of 

nonlinearity at different times due to the propagation of 

the field, the CUDA threads for a converged element will 

idle and wait for the rest of the elements in the same GPU 

to synchronize before completing the kernel (a single 

time step). This results in some MPI nodes having to idle 

and wait for the others to iteratively converge before 

moving onto the next time step together. This idling time 

is taking into account in the average communication 

time, which is significantly longer for the fixed-point 

method due to the large differences in the number of 

iterations between different regions at any particular 

moment. Due to the high nonlinearity of the example, it 

is impractical to analyze the CPU performance. However, 

it is expected that higher speedup can be achieved 

comparing to the previous example, due to the increasing 

number of elements [4]. 

 

Table 2: Average GPU per-step timing (in ms) for the 

wave propagation in a bulk medium 

# MPI 1 2 4 8 

Volume 569.93 287.23 142.95 72.41 

Surface 10.01 5.04 2.55 1.31 

Comm. 0 35.51 33.74 38.79 

Per-Step 1,482.00 777.12 403.45 221.94 

 

V. CONCLUSION 
The DGTD algorithm was extended to model the 

instantaneous third-order Kerr-type nonlinearity. The 

resulting computationally intensive DGTD algorithm 

was accelerated with GPUs based on the parallelization 

framework from our prior work. Numerical examples 

demonstrated that the DGTD simulation was able to 

capture various nonlinear phenomena and the GPU 

acceleration was able to achieve a good speedup for this 

computationally intensive simulation. 
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Abstract ─ We introduce an algebraic recursive multilevel 

approximate inverse-based preconditioner, based on a 

distributed Schur complement formulation. The proposed 

preconditioner combines recursive combinatorial 

algorithms and multilevel mechanisms to maximize 

sparsity during the factorization.  

Index Terms ─ Approximate inverse preconditioners, 

computational electromagnetics, Krylov subspace 

methods, sparse matrices. 

I. INTRODUCTION
We consider multilevel approximate inverse-based 

factorization preconditioners for solving systems of 

linear equations; 

Ax = b, (1) 

where
n nA  is a typically large nonsymmetric sparse 

matrix arising from finite difference, finite element or 

finite volume discretization of systems of partial 

differential equations in electromagnetism applications. 

Approximate inverse methods directly approximate 

A−1 as the product of sparse matrices, so that the 

preconditioning operation reduces to forming one (or 

more) sparse matrix-vector product(s). Due to their 

inherent parallelism and numerical robustness, this class 

of methods are receiving renewed consideration for 

iterative solutions of large linear systems on emerging 

massively parallel computer systems. In practice, 

however, some questions need to be addressed. First of 

all the computed preconditioner could be singular. In the 

second place, these techniques usually require more 

CPU-time to compute the preconditioner than 

Incomplete LU factorization (ILU)-type methods. Third, 

the computation of the sparsity pattern of the 

approximate inverse can be problematic, as the inverse 

of a general sparse matrix is typically fairly dense. This 

leads to prohibitive computational and storage costs. 

In this paper we present experiments with an 

algebraic recursive multilevel inverse-based factorization 

preconditioner that attempts to remedy these problems. 

The solver, proposed in [1], uses recursive combinatorial 

algorithms to preprocess the structure of A and to 

produce a suitable ordering of the unknowns of the linear 

system that can maximize sparsity in the approximate 

inverse. An efficient tree-based recursive data structure 

is generated to compute and apply the multi-level 

approximate inverse fast and efficiently. We assess the 

effectiveness of the sparse approximate inverse to reduce 

the number of iterations of Krylov methods for solving 

matrix problems arising from electromagnetism 

applications, also against other popular solvers in use 

today. 

II. THE MULTILEVEL FRAMEWORK

We divide the solution of the linear system into the

following five distinct phases: 

1) a scale phase, where the matrix A is scaled by

rows and columns so that the largest entry of the

scaled matrix has magnitude smaller than one;

2) a preorder phase, where the structure of A is used

to compute a suitable ordering that maximizes

sparsity in the approximate inverse factors;

3) an analysis phase, where the sparsity preserving

ordering is analyzed and an efficient data

structure is generated for the factorization;

4) a factorization phase, where the nonzero entries

of the preconditioner are actually computed;

5) a solve phase, where all the data structures are

accessed for solving the linear system.

A. Scale phase

Prior to solving the system, we scale it by rows and
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columns to reduce its condition number. We replace 

system (1) with: 

 
1/2 1/2 1/2

1 1 2,  ,D Ay D b y D x   (2) 

where the n × n diagonal scaling matrices have the form: 
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For simplicity, we still refer to the scaled system (2) as 

Ax = b. 

 
B. Preorder phase 

We describe this step using standard notation of 

graph theory. First, we compute the undirected graph 

Ω(Ã) associated with the matrix; 

 
, if A is symmetric,

if A is unsymmetric.,T

A
Ã

A A


 


 

Then, Ω(Ã) is partitioned into p non-overlapping 

subgraphs Ωi of roughly equal size by using the 

multilevel graph partitioning algorithms available in the 

Metis package [2]. For each partition Ωi we distinguish 

two disjoint sets of nodes: interior nodes that are 

connected only to nodes in the same partition, and 

interface nodes that straddle between two different 

partitions; the set of interior nodes of Ωi form a so called 

separable or independent cluster. After renumbering the 

vertices of Ω one cluster after another, followed by the 

interface nodes as last, and permuting A according to this 

new ordering, a block bordered linear system is obtained, 

with coefficient matrix of the form: 

 

1 1

1

.T

p p

p

B F

B F
Ã P

B
A

FE C

E

P

E C

 
 

         
  
 

 (3) 

In (3), each diagonal block Bi corresponds to the interior 

nodes of Ωi; the blocks Ei and Fi correspond to the 

interface nodes of Ωi; the block C is associated to the 

mutual interactions between the interface nodes. In our 

multilevel scheme we apply the same block downward 

arrow structure to the diagonal blocks of Ã recursively, 

until a maximum number of levels is achieved or until 

the blocks at the last level are sufficiently small and easy 

to factorize. As an example, in Fig. 1 (a) we show the 

structure of the general sparse matrix rdb2048 from Tim 

Davis matrix collection [3] after three reordering levels. 

                        
(a) The structure of 

rdb2048 after permutation 

(b) The structure of the inverse 

factor (In red are displayed the 

entries actually stored) 
 

Fig. 1. Structure of the multilevel inverse-based 

factorization for the matrix rdb2048. 
 

C. Analysis phase 

The data format for storing the block bordered form 

(3) of Ã is defined, allocated and initialized using a tree 

structure. The root is the whole graph Ω and the leaves 

at each level are the independent clusters of each 

subgraph. In other terms, each node of the tree 

corresponds to one partition Ωi or equivalently to one 

block Bi of Ã. The information stored at each node are 

the entries of the off-diagonal blocks E and F of 
iB s  

father, and those of the block C of Bi after its 

permutation, except at the last level of the tree where we 

store the entire block B. These blocks are stored in sparse 

format. 
 

D. Factorization phase 

In this phase, we compute the approximate inverse 

factors 
1L   and 

1U 
of Ã, which have the following form: 
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where Bi = LiUi, and 

 
1 1 1 1 1 1, ,i i i i S i S i i iW U L F GU UL E L          (4) 

and LS, US are the triangular factors of the Schur 

complement matrix: 

 
1

1

.
p

i i i

i

S C E B F



   

During the factorization, fill-in may occur in 
1L   and 

1U   but only within the nonzero blocks. Additional 

sparsity is gained by applying the arrow structure (3) to 

the diagonal blocks recursively. This can be seen in Fig.  
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1 (b). For computing the factorization we only need to 

invert explicitly the last level blocks and the small Schur 

complements at each reordering level. The blocks Wi, Gi 
do not need to be assembled. They may be applied using 

Eq. (4). For the rdb2048 problem in Fig. 1 (b), we 

display in red the entries that we actually stored for 

computing the exact multilevel inverse factorization; 

these are only 34% of the nonzeros of A. 

E. Solve phase

In the solve phase, the multilevel factorization is

applied at every iteration step of a Krylov method for 

solving the linear system. Notice that the inverse 

factorization of Ã may be written as: 
11

1

11

0
( ) ,

0

T

SS

LU W
PAP

LU G







  
     
   

(5) 

where 
1 1 1 1 1 1, ,S SU L F G L EW U U L         and LS, 

US are the inverse factors of the Schur complement 

matrix 1 .S C EB F   
From Eq. (5), we obtain the following expression for 

the exact inverse: 
1 1 1 1 1 1

1 1 1
.

B B FS EB B FS

S EB S

     

  

  
   

(6) 

We can derive preconditioners from Eq. (6) by computing 

approximate solvers 1B  for B and 1S  for S. Hence, 

the preconditioner M has the form: 
1 1 1 1 1 1

1 1 1
.

B B FS EB B FS
M

S EB S

     

  

  
    

III. NUMERICAL EXPERIMENTS
We show some preliminary results with the proposed 

Algebraic Multilevel Explicit Solver (AMES) for solving 

a set of matrix problems arising from electromagnetics 

applications [3]. We summarize the list of problems in 

Table 1. In our experiments, we choose ILUPACK [7] as 

the local solver in AMES to invert the diagonal blocks at 

the last level, and the Schur complements at each level. 

Notice that in this case the entries of the inverse factors 

are not computed explicitly, and the application of the 

preconditioner is carried out through a backward and 

forward substitution procedure. We solve the right 

preconditioned system ,AMy b  x My  instead of (1), 

using restarted GMRES [4] preconditioned by AMES. 

We compare AMES against two other popular algebraic 

preconditioners for linear systems, that are the Algebraic 

Recursive Multilevel Method (ARMS) by Saad and 

Suchomel [5] and the Sparse Approximate Inverse pre-

conditioner (SPAI) by Grote and Huckle [6], at roughly 

equal memory costs.1 We use the zero vector as initial 

1 We choose a combination of parameters for AMES, and tune the dropping 

threshold for ARMS and SPAI to obtain similar memory cost.

guess in our code, and we terminate the solution process 

when the norm of residual is below 10
−12 or the iterations 

count exceeds 5000. For the performance comparison, 

we report on the memory ratio  

 
,

nnz

nnz

M

A

 number of 

iterations (Its), and time costs for performing the 

preordering phase (tp), the factorization phase (tf) and the 

solving phase (ts). The experiments are run in double 

precision floating point arithmetic in Fortran95, on a PC 

equipped with an Intel(R) Core(TM) i5-3470 running at 

3.20 GHz and with 8 GB of RAM and 6144 KB of cache 

memory. 

Table 1: Set and characteristics of test matrix problems 

Matrix Problem Size nnz(A) Field 

dw2048 2,048 10,114 
Square dielectric 

waveguide 

dw8192 8,192 41,746 
Square dielectric 

waveguide 

utm3060 3,060 42,211 Uedge test matrix 

utm5940 5,940 83,842 Uedge test matrix 

2cubes_sphere 101,492 874,378 
FEM 

electromagnetics 

A. Varying number of reduction levels in AMES

We consider the dw2048, dw8192 and 2cubes_sphere 

problems for these experiments. Increasing the number 

of levels may help reduce the number of iterations at 

similar memory cost. In our experiments, varying the 

number of levels nlev from 1 to 3 for a given problem, we 

tuned the dropping threshold to keep roughly the same 

memory cost in each run, and then we studied the effect 

on convergence. The results of our experiments, reported 

in Table 2, show that using more levels enabled us to 

reduce the number of iterations at similar memory 

ratio. However, the computing time for the preordering 

phase (tp) and the solution cost per iteration tend to 

increase with the nlev. We conclude that a small number 

of reduction levels is recommended to use in AMES. 

Table 2: Performance of AMES with varying numbers of 

reduction levels 

Matrix nlev 
( )

( )

nnz M

nnz A
Its 

tp 

(sec) 

tf 

(sec) 

ts 

(sec) 

ttot 

(sec) 

dw2048 

1 2.37 24 0.023 0.025 0.008 0.056 

2 2.33 22 0.029 0.021 0.011 0.061 

3 2.38 17 0.030 0.021 0.027 0.078 

dw8192 

1 3.22 87 0.067 0.109 0.312 0.488 

2 3.27 82 0.083 0.128 0.417 0.628 

3 3.28 78 0.092 0.141 0.744 0.977 

2cubes_ 
sphere 

1 0.31 12 1.271 3.691 0.310 5.272 

2 0.31 12 1.503 2.552 0.598 4.653 

3 0.31 11 2.333 1.829 1.200 5.362 
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B. Varying the number of reduction levels for the 

Schur complement 

The Schur complement matrix S relative to the block 

C in (3) typically preserves a good deal of sparsity that 

can be exploited during the factorization by reordering S 

in a multilevel nested dissection structure, similarly to 

what is done to the upper leftmost block B. We have 

implemented this idea at the first permutation level, 

using ILU factorization as local solver for the reduced 

Schur complement matrix. We denote by ASlev the number 

of reduction levels used for the Schur complement. We 

consider again the dw2048, dw8192 and 2cubes_sphere 

problems in these experiments. For a certain test problem, 

we vary ASlev keeping all the other parameters constant, 

and we tune the drop tolerance in the ILU factorization 

to have similar memory costs. The value ASlev = 0 means 

that only the diagonal blocks of the upper-left block B 

are permuted. Clearly, the max value of ASlev is limited 

by the size of Schur complement. From Table 3, we see 

that simultaneous permutation of both the diagonal 

blocks of B and of the Schur complement S can make the 

AMES solver more robust to some extent. However, the 

implementation cost increases and thus, although useful, 

this option is problem dependent. In our experiments of 

the coming sections, we select the value for the 

parameter ASlev that minimizes the total solution cost. 

 

Table 3: Performance of AMES with varying numbers of 

reduction levels 

Matrix ASlev 
( )

( )

nnz M

nnz A

 
Its 

tp 

(sec) 

tf 

(sec) 

ts 

(sec) 

ttot 

(sec) 

dw2048 

0 2.37 24 0.023 0.025 0.008 0.056 

1 2.37 12 0.023 0.027 0.005 0.055 

2 2.37 12 0.024 0.031 0.012 0.067 

dw8192 

0 3.22 87 0.067 0.109 0.312 0.488 

1 3.26 21 0.067 0.164 0.057 0.288 

2 3.26 18 0.073 0.156 0.060 0.289 

2cubes_ 
sphere 

0 0.31 12 1.271 3.691 0.310 5.272 

1 0.31 11 1.277 3.974 0.334 5.585 

2 0.31 11 1.288 4.016 0.350 5.654 

3 0.31 11 1.298 3.985 0.355 5.638 

 

C. Comparing AMES against other preconditioners 

From Table 4, we can clearly see that the AMES 

preconditioner shows a good potential of reducing the 

number of iterations against other state-of-the-art 

preconditioning techniques at similar memory costs. 

This result demonstrates the overall good efficiency  

of the fill reducing strategies implemented in the 

preconditioner on the selected electromagnetic problems. 

One exception is the 2cubes_sphere problem, which has 

favourable properties for the SPAI method. The good 

decay of the entries away from the diagonal makes this 

problem suitable for SPAI. The AMES method still 

remains competitive. However, the pre-processing and 

solution costs for setting up and applying the multilevel 

recursive scheme do not pay off in this case. 

Table 4: Performance comparison of the multilevel 

approximate inverse preconditioner against other iterative 

solvers 

Matrix Method 
( )

( )

nnz M

nnz A

 
Its 

tp 

(sec) 

tf 

(sec) 

ts 

(sec) 

ttot 

(sec) 

dw2048 

AMES 2.37 12 0.023 0.027 0.005 0.055 

ARMS 2.39 670 0 0.009 0.081 0.090 

SPAI 2.37 2239 0 0.094 0.367 0.461 

dw8192 

AMES 3.26 21 0.067 0.164 0.057 0.288 

ARMS 3.37 +5000 0 0.040 +10.89 +10.93 

SPAI 3.33 +5000 0 0.836 +4.841 +5.677 

Utm3060 
AMES 2.79 125 0.077 0.145 0.366 0.588 

ARMS 2.93 402 0 0.030 0.763 0.793 

SPAI 2.88 +5000 0 3.131 +3.095 +6.226 

Utm5940 
AMES 3.50 267 0.147 0.409 2.738 3.294 

ARMS 3.51 1150 0 0.077 5.085 5.162 

SPAI 3.51 +5000 0 11.76 +11.02 +22.78 

2cubes_ 
sphere 

AMES 0.31 12 1.271 3.691 0.310 5.272 

ARMS 0.32 68 0 0.262 0.986 1.248 

SPAI 0.32 8 0 3.269 0.153 3.422 

 

IV. CONCLUSIONS 

In this paper we used recursive combinatorial 

techniques to remedy two typical drawbacks of explicit 

preconditioning, that are lack of robustness and high 

construction cost. The numerical experiments show that 

these strategies can improve the performance of 

conventional approximate inverse methods, yielding 

iterative solutions that can compete favourably against 

other popular solvers in use today.  
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Abstract ─ A scalable parallelization algorithm to port 

an explicit marching-on-in-time (MOT)-based time 

domain volume integral equation (TDVIE) solver onto 

multi-GPUs is described. The algorithm makes use of 

MPI and OpenACC for efficient implementation. The 

MPI processes are responsible for synchronizing and 

communicating the distributed compute kernels of the 

MOT-TDVIE solver between the GPUs, where one MPI 

task is assigned to one GPU. The compiler directives of 

the OpenACC are responsible for the data transfer and 

kernels’ offloading from the CPU to the GPU and their 

execution on the GPU. The speedups achieved against 

the MPI/OpenMP code execution on multiple CPUs and 

parallel efficiencies are presented. 

Index Terms ─ Explicit marching-on-in-time scheme, 

GPU, MPI, OpenACC, time-domain volume integral 

equation. 

I. INTRODUCTION
The use of hardware accelerators, including multi 

and many-core architectures, has been increasing in 

many emerging applications of high performance 

computing (HPC) as they provide cost effectiveness, 

power efficiency, and physical density. Nevertheless, 

one of the limiting factors to a wider spread use of multi-

core accelerators, such as GPUs, is the human-labor 

intensive porting process required by low-level 

programming models, such as CUDA [1] and OpenCL 

[2]. To overcome this limit, HPC research has focused 

on developing high-level directive based programming 

models, such as OpenACC [3], which provide compiler 

directives and clauses to annotate codes originally 

developed for CPUs in a manner similar to how OpenMP 

[4] is used on codes executed on multicore CPU

architectures. This high-level approach, when carefully

implemented, significantly reduces the re-programming 

efforts while maintaining the efficiency of the resulting 

codes.  

In this work, we report on our recent efforts on 

parallelizing a fully explicit marching-on-in-time (MOT)-

based time-domain volume integral equation (TDVIE) 

solver [5] for efficient execution on multiple GPUs. 

The MOT-TDVIE solvers are becoming attractive 

alternatives to finite difference time domain (FDTD) 

schemes for analyzing transient electromagnetic 

scattering from inhomogeneous dielectric objects [5, 6]. 

However, their effective use in practical problems of 

photonics, optoelectronics, and bio-electromagnetics, 

where electrically large scatterers need to be discretized 

with millions of degrees of freedom, relies on 

acceleration algorithms such as the plane-wave time 

domain (PWTD) method [7] and/or hardware-based 

acceleration [8-11].  

Our recent research has focused on the latter; we 

developed highly scalable parallelization algorithms [8, 

9] to enable the explicit MOT-TDVIE solver of [5] in

analyzing scattering from electrically large structures.

Additionally, we used OpenACC to enable the execution

of the same solver on GPUs [10, 11]. Significant

performance improvements with up to 30X and 11X

speedups relative to the sequential and multi-threaded

CPU codes were achieved. Furthermore, we demonstrated

that the (single) GPU-accelerated MOT-TDVIE solver

could leverage energy consumption gains on the order of

3X relative to its multi-threaded CPU version [10]. In

this paper, we describe in detail the process of porting

the same MOT-TDVIE solver onto multi-GPUs using

MPI/OpenACC. Additionally, we present numerical

results, which demonstrate that the ported code executes

up to 11.2X faster on multi-GPUs than on conventional

CPUs.
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II. MOT-TDVIE SOLVER 

A. MOT-TDVIE algorithm 

Let V  represent the volumetric support of dielectric 

scatterer with permittivity ( ) r  residing in an unbounded 

background medium with permittivity 
0 . The scatterer 

is excited by a band-limited incident electric field 

0 ( , ).tE r  Upon excitation, scattered field sca ( , )tE r   

is generated. Scattered and incident fields satisfy 

   
E(r,t) = E

0
(r,t) + E

sca (r,t), where ( , )tE r  is the unknown 

“total” field. One can construct a TDVIE as [5, 6]: 

 2

0 0( , ) ( , ) ( , ),  ,tt t c t V     E r E r A r r  (1) 

where ( , )tA r  is given by: 

 0 0

0

( )( ) ( , )
( , ) ,  .

4V

t R c
t dv V

R

 



  
  

r E r
A r r  (2) 

Here, 0c  is the speed of light in the background medium, 

and R  r r  is the distance between points r  and .r  

TDVIE (1) is solved by time marching, which makes use 

of an explicit predictor-corrector algorithm as described 

next [5]. First V is discretized using 
eN  cubic elements. 

Let kr , 
  
k = 1: N

e
, and t  represent the centers of these 

elements and time step size..Assume n  represents the 

index of the “current” time step. At the predictor step, first 

, ( , )k n k n t A A r  are computed using 
, ( , ),l m l m t E E r  

  
l = 1: N

e
, max(1, ) :gm n N n t   , in the integral given 

in (2). For this operation, 
,( , ) l mm t E r E  is assumed 

within cubic element l  and linear interpolation is used to 

approximate 
0( , / )l kln t R c E r , where 

kl k lR  r r , from 

, 1l mE  and El ,m  for 
0[ 1] / .klm t n t R c m t        Note 

that here max 0/ 2gN R c t     , where 
  
R

max
= max{R

kl
}, 

for any , .k l Vr r  Then, finite differences (FD), which 

approximate the spatial derivative operator “”, are 

applied to 
,k nA  to yield “predicted” samples , .k nE  

Differentiation “ 2t ” in (1) is approximated using 

backward FD for pairs ( , )k lr r  that satisfy 
02klR c t   

and using central FD for all other pairs. At the corrector 

step, differentiation “ 2t ” is recomputed using a central 

difference formula for pairs ( , )k lr r  that only satisfy 

02 .klR c t   Note that use of central FD is now allowed 

since field samples that are not known at the predictor 

step (due to causality) can now be replaced by the 

predicted fields’ samples. At the end of time step ,n  

,k mE  are stored as part of the “history” of field samples 

to be used in the computation of Ak ,n+1
. 

Note that FD evaluations and corrector updates are 

spatially local operations while computation of Ak ,n
, 

k = 1: Ne
, is global. Samples El ,m

 that satisfy the 

condition 
0[ ] kln m c t R    do not contribute to Ak ,n

 

since the fields radiated from point rl  at time m t  have 

not yet reached point rk  at time n t . This also means 

that for 
gn N , all fields radiated from all points reach 

to all other points. Consequently, they all contribute to 

all samples Ak ,n
, k = 1: Ne

, rendering the computational 

cost of the integral evaluation O(Ne

2 ) per time step for 

all gn N . As Ne  increases, the cost of computing Ak ,n
 

limits the solver’s applicability to electrically large 

problems. This limitation can be overcome by using 

acceleration algorithms such as the PWTD method [6-7] 

and/or highly scalable parallelization algorithms [8-11]. In 

this work, we implement and fine-tune the parallelization 

algorithm of [8, 9], which is originally developed for 

CPUs, for multi-GPUs to further increase the applicability 

of the MOT-TDVIE solver to electrically large problems. 

 
B. MPI parallelization 

Operations required by the MOT-TDVIE solver at 

each time step can be grouped into two: (i) computation 

of Ak ,l
, 1: ek N , which requires access to samples 

,l n mE , l = 1: Ne
, 1: min( 1, )gm n N   and (ii) 

computation of samples Ek ,n
 by applying FD to Ak ,n

. 

The parallelization scheme used here, first, ensures the 

even distribution of the memory via application of the 

graph-based partitioning scheme to the distribution of 

the points 
kr , k = 1: Ne, representing the discretization of 

V . This results in an unstructured partitioning of the 

points 
kr  [9]. In this partitioning, each process stores 

only 
,k nE  and 

,l n mE  that belong to the partition 

assigned to it. The computational load of step (i) is 

distributed using a one-way pipeline communication 

strategy, so-called the “rotating tiles” paradigm [8]. The 

test tiles (partitions that contain test points) are initially 

same as the source titles (partitions that contain source 

points) at the beginning of the rotation but they are 

rotated among the processors during the computation of 

Ak ,l
. When a processor receives a test tile, it first adds 

the contribution from the source titles it stores to Ak ,l
 

associated with the received test tile, then it passes the 

(updated) tile to its “neighboring” processor. At the end 

of a full rotation all contributions to Ak ,l
 are computed. 

It is noted here that, this strategy eliminates the need for 

globally executed collective routines such as MPI_Reduce 

[8]. The computational load of step (ii) is distributed 

using the same grouping of the test points provided  

by the graph-partitioning algorithm. This reduces the 

communication costs associated with spatial FD 

computations by ensuring that the data communication 

only happens between points residing on the boundary of 

any two partitions [9].  

 

III. PORTING TO MULTIPLE GPUS 

The state-of-the-art GPU-nodes can include up to 8 

K80 GPUs, which is essentially equivalent to having 16 

independent GPUs. On the other hand, OpenACC 

standard, as a stand-alone programming model, provides 

very limited support for code development on multiple 

devices. Therefore, one typically relies on using 

OpenACC/OpenMP together with the MPI standard to 

port codes onto a cluster of nodes equipped with multiple 

GPUs/multicore CPUs. In this work, OpenACC is used 

to accelerate the time marching loop of the MOT-TDVIE  
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solver. Both memory- and compute-bound operations 

are executed on GPUs, which benefit from the improved 

memory bandwidth and higher flop rate, respectively. 

However, because the amount of compute-bound 

operations is significantly higher that memory-bound 

operations, benefits from increased memory bandwidth 

might be considered negligible. The main advantages of 

OpenACC over CUDA are the significantly increased 

programming efficiency and code portability on different 

hardware platforms. More specifically, OpenACC offers 

an easy way to port codes onto accelerators using simple 

descriptive compiler directives. Additionally, the same 

OpenACC-annotated code can be compiled on different 

hardware platforms, including the host itself (multicore 

CPU architecture) as well as any other accelerator 

supported by the OpenACC standard. In contrast, the 

CUDA programming model is more tedious to 

implement and can be used on only NVIDIA GPUs. 

The code is designed such that the number of MPI 

processes spawn on each node is equal to the number of 

GPUs per node. Each MPI process is assigned to a GPU 

using the runtime API function acc_set_device_num to 

set the GPU target to the MPI rank modulo the number 

of GPUs per node, as shown in the pseudo code in Fig. 

1. The data directive #pragma acc data is applied to the

outermost time loop in order to minimize data transfers

between the host and the device. Input and output arrays

are annotated with clauses present_or_copyin and

present_or_copyout, respectively. However, the arrays

needed for the MPI communications, which are of very

limited memory size, are copied in and out at each

iteration so that they are accessible to the MPI routines.

Each enclosed code block in the MOT-TDVIE solver is

annotated with #pragma acc kernels and offloaded to the

assigned GPU. The code blocks implementing the

computation of Ak ,l
 consist of two nested loops yielding

a quadratic computational complexity. The second loop

is further annotated with #pragma acc loop reduction

and the associated variables to further optimize the sum

operation of all source contributions. The OpenACC

standard offers the ability to further tune loop execution

using the gang and vector clauses, which can be used to

modify the number of blocks of threads and threads per

block to be executed, respectively. Since there are only

two nested loops in the kernels of the parallel MOT-

TDVIE solver, values assigned to these two parameters

by the compiler already result in good performance

improvements. Having said that, tuning these parameters

in the presence of three or more nested loops may

significantly increase the performance. Indeed, this was

demonstrated for the serial version of the code, with

structured grid, when executed on single GPUs. The

tuning of these two parameters improved the acceleration

performance by up to 23X [10]. For some of the loops

that are not parallelized by the compiler due to perceived

false data dependencies, the code block is annotated with

the loop pragma accompanied with the independent 

clause to avoid unnecessary synchronization between the 

loop iterations in absence of data dependencies. Note 

that, the code design using multi-GPU kernels allows for 

MPI synchronizations and communications to take place 

between the compute kernels as necessary. That is the 

case with the rotating tiles communications implemented 

to compute Ak ,l
, and the halo cells exchange

communications implemented to compute Ek ,n
using FD.

Fig. 1. Pseudo code for the implementation of the MOT-

TDVIE solver using MPI and OpenACC. 

IV. NUMERICAL EXPERIMENTS
The test bed used for performance evaluation 

consists of a system of two nodes connected using an 

Infiniband FDR high-speed network. Each node is a dual 

socket CPU system hosting four NVIDIA Kepler K20c 

GPUs. Each socket is an eight-core Sandy Bridge 

// Get number of MPI processes = # of GPUs 
MPI_Init(&argc, &argv); 
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
// Assign each MPI process to a GPU 
acc_set_device_num(rank%ngpus,acc_device_nvidia); 

#pragma acc data present_or_copyin(input 
arrays) present_or_copyout(output arrays) 

for (int t=0;  t<nt; ++t) {  // time loop 
  for(rot=0; rot<=size; ++rot){ 
    // MPI communication for rotating tiles 
    MPI_Sendrecv(); 
    MPI_Barrier(); 
    #pragma acc kernels 
    // Spatio-temporal convolutions  

   for (int k=0; k<Ne; ++k){  
#pragma acc loop reduction 
for (int l=0; l<Ne; ++l){  

A[t][k] = A[t-tkl][l] + ... 
  }   } 
  MPI_Barrier(); 
    // Loops with no data dependencies 

 #pragma acc kernels 
    #pragma acc loop independent 
    for(i=0; i<ni; ++i){ 

    } 
  } // end rotation 

  // MPI communication for Halo Exchange 
  MPI_Sendrecv(); 
  MPI_Barrier(); 
  #pragma acc kernels 
  // spatial finite difference operations 

  for (int k=0; k<Ne; ++k){   

    B[t][k] = A[t][k] + .... 
  } 
} // end time loop 
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Intel(R) Xeon(R) CPU E5-2650. 

In our performance evaluation, as shown in Fig. 2, 

a significant speedup ranging from 7.4X to 11.2X 

is recorded comparing the MPI and OpenMP 

implementation on 16 cores SandyBridge to the MPI and 

OpenACC implementation on four K20c GPUs. It is 

also observed that as Ne
 increases, higher speedup is 

achieved. This is due to the fact that the GPUs are 

supplied with larger computational loads; therefore, 

taking better advantage of its computational capacity. It 

has been shown before that the MPI implementation 

demonstrated a great scalability on large super-computers 

[8-9]. Figure 3 shows the parallel efficiency of the MPI 

and OpenACC implementation executed on two and 

eight GPUs, which ranges from 82% to 94%. Another 

advantage of using NVIDIA GPUs is their energy 

efficiency as the simulation consumed 2.4X less energy 

on GPUs than on CPUs. For all of the above, the GPUs 

are identified as the preferred computing platform in our 

overall performance analyses of the explicit MOT-

TDVIE solver. 

Fig. 2. Performance speedup of MPI and OpenACC on 

four K20c GPUs compared to MPI and OpenMP on 16 

cores SandyBridge CPU. 

Fig. 3. Parallel efficiency of the MPI and OpenACC 

implementation scaling from two to eight GPUs. 

V. CONCLUSION
The porting of the explicit MOT-TDVIE solver 

using MPI and OpenACC to multi-GPUs resulted in a 

highly efficient implementation. The simulations 

executed on multi-GPUs were faster by up to an order of 

magnitude compared to those executed on CPUs (using 

the MPI and OpenMP version of the code). The OpenACC 

API has the advantage of easily porting the MPI code 

to multi-GPU environment; therefore, increases the 

developer productivity while keeping the legacy of the 

original CPU code. Furthermore, the parallelization 

allows the explicit TDVIE solver to efficiently simulate 

transient electromagnetic wave interactions on electrically 

large structures discretized using a large number of 

spatial elements on GPUs. 
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Abstract ─ The element by element parallel finite 

element method (EbE-PFEM) applied to engineering 

eddy current problem is presented in this paper. Unlike 

classical finite element method (FEM), only element 

matrix is needed to store for EbE method. Thereby more 

storage memory saved. Element by element conjugated 

gradient (EbE-CG) method is used to solve the equations 

which are discretized from elements level. Considering 

the ill-conditioned character of system equations, highly 

parallel Jacobi preconditioned (JP) method is used to 

accelerate the convergence. Besides, the process of 

dealing with boundary condition based on EbE theory is 

introduced. To validate the method, a 2D eddy current 

problem in complex frequency domain is used. The 

numerical analysis is carried out on the graphic 

processing units (GPU) with a compute unified device 

architecture (CUDA) parallel programming model to 

accelerate the convergence. And the results demonstrate 

that the JP method and GPU platform are effective in 

solving eddy current field with improved convergence. 

Index Terms ─ Eddy current filed, element by element 

method, graphic processing unit, parallel computing. 

I. INTRODUCTION
Due to the computer resource requirements of 

classical FEM for solving the electromagnetic problems, 

the parallel finite element method (PFEM) has become 

increasingly popular in recent years. Element by element 

(EbE) method [1] is a PFEM which can execute the 

parallelism on the elements level. The advantage of EbE 

method compared to classical FEM is that it does not 

need assembling and storing system matrix. Its key idea 

is to decouple the element solution by directly solving 

element equations instead of whole equations. The 

solving process is executed in parallel, and only 

intermittent communication is needed. Initially, EbE 

method was used for heat conduction problem and then 

expanded to the field of mechanics. More recently 

however, with the development of general purpose on 

graphic processing unit (GPGPU), EbE method has 

received increasing attention as it is very suitable for 

parallel processing and with the GPU[2]-[4] being a 

multi-core device, parallel processing at element level on 

different cores can be achieved. Some good results have 

been obtained with electrostatic problem, as in [5], [6]. 

In author’s previous work, firstly EbB-CG method 

is directly used to solve 2D eddy current problem 

parallelly on the GPU, and 3.4 times speed up rate 

achieved compared with that of serial calculation with 

CPU [7]. Furthermore, TEAM problem 7 is taken as an 

example to validate the EbE method and GPU are 

effective for 3D linear eddy current problem, and the 

results have a good agreement with experiment data [8]. 

The purpose of this paper is to broaden the JP method to 

2D eddy current analysis with two different medium in 

solving domain, and a comparing analysis is fulfilled 

between EbE-CG method and EbE-JPCG method. 

II. EBE METHOD AND GPU

IMPLEMENTATION

A. Node connection matrix

The key function of node connection matrix (NCM)

is to transit the node information between local variables 

and global variables. 

Now, assume x  is global solution vector (GSV), 

e
x is the local elements solution vector (LESV), ( )e

x  is 

global elements solution vector (GESV), E  is the total 

number of elements, Q  is NCM. Then consider three 

type operations of NCM as below: 
( ) ,e

Qx = x (1) 

where  ( ) (1) (2) ( ), , , ,
T

e Ex x x x  this operation 

achieves the alternation from GSV to GESV according 

to the node number of each element: 

,T e
Q x = x (2) 

where  1 2, , , ,
T

e Ex x x x  this operation achieves 

the summation of LESV which have the same node 

number. This process alternates the LESV to GSV: 
( ) .T e e

QQ x = x (3) 
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Equation (3) achieves the alternation from LESV to 

GESV. 

NCM also can be operated with the element matrix

,e
K  and the relationship between system matrix K  

and the element matrix e
K  can be given as follows: 

 .T e
K = Q K Q  (4) 

Equations (1) to (4) provide the theoretical 

foundation for fulfilling the parallel EbE technique. 

 

B. EbE-CG method 

For the traditional FEM, the system matrix K  and 

right hand side (RHS) vector b  must be assembled from 

the element matrix e
K  and element RHS e

b , while for 

the EbE-PFEM, considering (1)-(4) the assemble process 

can be deduced as follows:  

 ( ) .T e T e T e eb = Q b = Kx = Q K Qx Q K x  (5) 

As shown in (5), the product of assembling the 

element vector is equivalent with the product of 

assembling element matrix. So, we can solve the element 

equations parallelly as below: 

 ( ) .e e e
K x = b  (6) 

As we know, CG method mainly contains two types 

of inner product calculations, i.e., ( , )r r  and ( , )p Ap  

which can be calculated by EbE method as follows: 

 ( )( , ) ( ) ( ) ,T e T T e e T e   r r r r r QQ r r r  (7) 

where ( )

( )

,e e j

j adj e

  r r r  r  is the global residual, 

e
r  is the local element residual, Q  is the NCM. ( )e

r  is 

the sum of e
r  and j

r  which are relative with .e
r  So 

this process needs the solution information of adjacent 

nodes. The calculation of ( , )p Ap  is similar with ( , ).r r  

 

C. Dealing with boundary condition 

It is not necessary to assemble the system matrix for 

EbE method, so the boundary condition (BC) has to be 

applied on the elements level. Now, taking an example 

of 2D with triangular subdivision (Fig. 1), and assume 

the value of first kind BC is 0.U  
 

 

 

Fig. 1. Partial subdivision of 2D model. 

 

Based on traditional FEM idea, we can get the 

element matrix equation of ①, as described in (8): 

 

 

 

 

1
1 1 1 1

111 12 13 1

11 1 1 1

21 22 23 2 2

1 1 1 11
31 32 33 33

.

xK K K b

K K K x b

K K K bx

    
    
     
    
     

 (8) 

Differ from classical FEM, the element matrix and 

right hand side vector must be modified with weights 

simultaneously. Taking element ① as an example, we 

can get the modified element Equation (9): 

 

0(1)

11 1
(1)22 22
2 01 2 1 2

(1)22 22 22 22

3(1) 1

33 3

1 0 0

0 0 .

0 0

U
x

K K
x U

K K K K
x

K b

   
    
         
     

      

 (9) 

In contrast to first kind BC, the second kind BC 

(node 3 and 4) can be applied on elements directly. For 

the 2D eddy current problem, the current density is easily 

applied to the elements level during the element analysis 

of RHSV. 
 

III. NUMERICAL EXPERIMENT 
In this work, a conductor in an open slot of motor is 

taken as an example to analyze the skin effect. Two 

models are considered to verify the validity of the 

proposed method. Model I is shown in Fig. 2, it is a 

current-carrying conductor in an open slot, for which the 

analytical solution is available [9], and the domain 

contains only one conducting medium. And its 

mathematical model is shown as below: 

 

2
2

0 0 02

0 m
0

j

0 ( , , ) ,

( )

e e

x

A
A J p A J in

y

A
on AB CD BD

n

IA
H on AC

y b

  





    








  



 (10) 

where A is vector magnetic potential,  is angular 

frequency, electrical conductivity,  0 is magnetic 

conductivity, Je is electrical current density, is 

solving domain, Hx is tangential component of magnetic 

field intensity, Im is magnitude of current and b is width 

of open slot. And the analytical solution of current 

density ( J ) is shown as follows: 
 

mj ch .
sh

e

pI
J A J py

b ph
    

 

(11)

 

Additional, in order to validate the proposed method 

for eddy current problem with different mediums, Model 

II is established in this paper (as shown in Fig. 3). For 

Model II, there is 1 mm width air gap surrounding the 

conductor, for which the condition number of its system 

matrix becomes greater than that of Model I, and 

convergence of solving the equations also becomes 

worse. Both of two models are under the complex 

excited current (10000 0)m j I A. 

To test the accelerating performance of proposed 

method on different computation scales, Model I and 
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Model II have been meshed into three different sizes, 

shown in Table 1 and Table 2. The mesh of Model II in 

size B is shown in Fig. 4, and its magnetic field 

distribution is shown in Fig. 5. Furthermore, the 

convergence of equations solved using CG and JPCG has 

been researched. Both of EbE-CG and EbE-JPCG 

methods are implemented with CPU and GPU separately. 
 

      
 

Fig. 2. Current-carrying 

conductor in an open slot 

with air surrounded. 

Fig. 3. Current-carrying 

conductor in an open slot. 

 

            

 

Fig. 4. The mesh of Model 

II in size B. 

Fig. 5. Magnetic field 

distribution of Model II. 

 

All the numerical computations are carried out on a 

server with NVIDIA GTX 660 GPU clocked at 1.0 GHz 

with 960 cores and 2G DDR5 global memory, and an 

Intel Xeon E3-1230 CPU 3.3 GHz with 8G global 

memory. Programming is in C++, and compiled by 

Visual Studio 2010 and CUDA 5.5.  

To reduce the communication cost between CPU 

and GPU, the whole elements information is transferred 

to GPU global memory initially. The solving process is 

operated parallelly on GPU until computation results 

meet the convergence criterion, then result data is 

transferred from GPU to CPU. The GPU calculation is 

fulfilled on different blocks, and the threads on the same 

block are parallel running. But different block cannot 

communicate. However, during the CG iteration process, 

some kinds of steps such as the calculation of ( )e
r  need 

the information of other relative elements which are not 

in the same block. To overcome this, if the nodes on the 

boundary of memory block, the node information is 

stored on both sides concurrently. A little more memory 

needed, but high parallelism obtained. For other steps, 

all the read and write instructions for threads within same 

warp (a cluster of threads) are operated in the aligned and 

coalesced way to improve parallel performance. 

The calculation results are shown in Table 1 and 

Table 2. Table 3 is shown the comparison of memory 

required. Figure 6 is the current density comparison 

between analytical and numerical solution of Model I. 

From Fig. 6, we can see that the result calculated using 

the proposed correlates well with analytical solution, 

which validates the method. 
 

 
 

Fig. 6. Comparison of current density with EbE-CG 

method (Model I). 
 

Table 1: The numerical results of Model I 

Mesh 

Size 
Node Element 

Iterations 
CPU Time 

(ms) 

GPU Time 

(ms) 

CG JPCG CG JPCG CG JPCG 

A 90 138 56 33 78 62 23 18 

B 342 594 100 46 485 359 87 65 

C 1080 1953 175 68 1549 1231 239 173 

 

Table 2: The numerical results of Model II 

Mesh 

Size 
Node Element 

Iterations 
CPU Time 

(ms) 

GPU Time 

(ms) 

CG JPCG CG JPCG CG JPCG 

A 580 683 85 73 2578 1927 753 557 

B 905 1511 134 96 6987 5125 1215 843 

C 1384 2235 201 137 9768 7254 1441 935 

 

Table 3: Comparison of memory required (Model II) 

Mesh Size 

Memory Required 

(kB) 

Memory Saved 

(%) 

EbE FEM CG 

A 32 79 59.5 

B 72 145 50.3 

C 107 218 50.9 

 

The distribution of current density in Model II is 

shown in Fig. 7, which also shows that accurate results 

can be obtained using EbE-JPCG to eddy current 

problem with different medium. From the results shown 

in Table 1 and Table 2, we can see that the convergence 

of equations solving using JPCG is better than that using 

CG. For the same model, the GPU processor is faster 

than CPU due to its high parallelism. 

Figure 8 shows three different mesh size level’s 

speed up rate comparison of EbE-CG and EbE-JPCG 

methods which are fulfilled on GPU for Model II. Figure 

9 shows the speed up rate comparison of EbE-JPCG  
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method fulfilled on GPU for two models. 

Both EbE-CG method and EbE-JPCG method are 

applied to Model II which contains two materials. As 

shown in Table 2, the time consumed is much more than 

Model I, however, results indicate overall improved 

convergence and processing time with increasing mesh 

size as shown in Figs. 8-9. 
 

 
 

Fig. 7. Distribution of current density for EbE-JPCG 

method (Model II). 
 

 
 

Fig. 8. Comparison of speed up rate for EbE-CG method 

and EbE-JPCG method. 
 

 
 

Fig. 9. Comparison of speed up rate for EBE-JPCG 

method implementation on GPU (Model II). 
 

IV. CONCLUSION 
The EbE-JPCG technique and GPU parallel 

computing platform applied to eddy current problems are 

the main contributions of this work. This paper presents 

a comparative analysis of the performance of EbE-CG 

method and EbE-JPCG method which are fulfilled on 

CPU and GPU. As shown in Table 1, Table 2 and Fig. 8, 

EbE-JPCG method converges more quickly than the 

EbE-CG method. As well, GPU acceleration becomes 

more effective with increasing mesh size. The numerical 

results demonstrate that JP method is effective for EbE 

method and parallel computing. As shown in Table 3, 

EbE method can save approximately 50% memory space, 

it is an important contribution for GPU platform which 

just has a few GB memory. Another contribution of this 

paper is to provide basis for solving of 3D eddy current 

problem, as in [8]. The future work currently in progress 

includes applying the EbE technique and GPU parallel 

platform to 3D eddy current losses calculation of large 

power transformer. Considering its serious ill-conditioned, 

JP method will be ineffective. So a new improved JP 

method which is also convenient for parallel EbE 

implementation is included in the ongoing work. 
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Abstract ─ Strategies to accelerate MIMO channel 

capacity optimization on GPUs are outlined. The 

optimization scheme is dealt with by properly facing the 

main computational issues. In particular, the propagation 

environment is described by ultrafast Geometrical 

Optics (GO), singular values are computed by a very fast 

scheme and the optimizer is a parallel version of the 

differential evolutionary algorithm. The unknowns are 

given proper representations to reduce the number of 

optimization parameters. 

 

Index Terms ─ CUDA, differential evolutionary, 

Geometrical Optics, GPU, MIMO channel, optimization, 

singular values. 

 

I. INTRODUCTION 

Multiple Input - Multiple Output (MIMO) [1, 2] is a 

wireless communication technology using multiple 

antennas in both transmission and reception modalities 

to increase the channel capacity (CC) over that of a 

conventional SISO (Single Input - Single Output). CC is 

a crucial parameter to assess the performance of a 

communication system, and the problem arises of how 

defining the most convenient configuration of transmitting 

(TX) and receiving (RX) antennas to maximize it for a 

given SNR (Signal to Noise Ratio) and propagation 

environment. 

Different approaches have been proposed to 

optimize the MIMO CC, see [3, 4] for two representative 

examples. As it appears from [3, 4], besides signal 

processing factors (e.g., modulation), two critical aspects 

emerge when optimizing the performance of a MIMO 

channel: one is the electromagnetic environment, since 

the electromagnetic propagation influences the properties 

of the channel matrix, and the other is the optimization 

scheme itself. Since both aspects pose a significant 

computational question, the issue thus arises of how 

computationally addressing the problem of optimizing  

a MIMO channel, by firstly determining the most 

convenient computational resources and algorithms to be 

exploited and that could make the challenge feasible. 

Then, how much a MIMO channel can be improved, how 

the CC depends on the accuracy of the employed 

electromagnetic model and what can be obtained by a 

modeling grasping only the essential aspects of the 

problem should be pointed out, giving general guidelines 

at the design stage. These points have been up to now 

overlooked throughout the literature. Our purpose is 

facing the first point, namely, how much accelerated 

analysis and optimization can make the goal viable. This 

entails understanding how to push the performance of 

both, the employed algorithms and computational 

resources. Several computational key points should be 

then considered, since each performance can degrade the 

problem to unfeasibility: 

1. Properly choosing and accelerating a global 

optimizer since a local optimizer is typically not 

enough to find the best solutions; 

2. Properly choosing and accelerating the approach to 

compute the MIMO channel matrix;  

3. Being the CC related to the singular values (SVs) of 

the channel matrix, accelerating their computation 

depending on the problem size (conventional - 4x4, 

6x6 - MIMO vs. massive MIMO [5]); 

4. Properly representing the unknowns, to manage only 

the essential optimization parameters; 

5. Properly exploiting massively parallel computing 

platforms as Graphics Processing Units (GPUs). 

The paper is organized as follows. The MIMO CC 

is briefly recalled in Section II, just to provide a formal 

introduction. Section III addresses points 1) and 4), 

Section IV point 2) and Section V points 3) and 5). 

Finally, Sections VI and VII present numerical results 

and conclusions, respectively.  
 

II. CHANNEL MODEL 
Let us consider a narrowband, flat-fading channel, 

whose CC depends on the distribution of the SVs of the 

channel scattering matrix [1, 2]. Indeed, given NTX 

transmitting and NRX receiving antennas embedded in a 

complex 3D deterministic electromagnetic scenario, the 

MIMO channel can be described by its complex, NTX x 

NRX matrix H  [1]. The generic element hij of H  can be 

expressed as: 
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where TX

ir  represents the position of the i-th transmitting 

antenna, RX

jr  represents the position of the j-th receiving 

antenna, M(i, j) is the number of relevant multi-paths 
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im rrG  is proportional to 

the voltage induced on the j-th receiving antenna by the 

m-th multipath originated at the i-th transmitting 

antenna. 

Under the hypothesis of narrowband, flat-fading 

channel, AWGN noise at the receivers and equally 

distributed power among the transmitters [1], the 

Shannon CC, say C, expressed in bit/s/Hz can be 

calculated by first normalizing H  to its Frobenius norm 

as [6]: 

 

2

1 1
/

TX RXN N

ij

i j

TX RX

h

H H
N N

 



, (2) 

and then computing, 

 

















r

k TX

k

N

SNR
C

1

2

2 1log
 , (3) 

where r is the rank of H
~

 and 
2

k  is its k-th SV. 

The approach is illustrated in Fig. 1, where the flow-

chart boxes correspond to the titles of the Sections III-V. 
 

 
 

Fig. 1. Flow chart of the approach. 
 

III. THE OPTIMIZATION APPROACH 
To enable a satisfactory exploration of the objective 

functional landscape, the global optimization approach 

should be chosen to exhibit good convergence properties 

and to profit of the massive parallelization. In this sense, 

a less “complex”, but massively parallelizable algorithm 

should be preferred to a more “involved”, but “more 

sequential” scheme. The “genetic-like” differential 

evolutionary approach has been then chosen as the global 

optimization scheme due to its main features matching  

both the above mentioned requirements [7].  

The approach exploits a population of Np members, 

each member being represented by an array of D values, 

where D coincides with the number of optimization 

unknowns. At the g-th iteration (generation), the k-th 

member of the population is denoted by the D-

dimensional array ),...,,(
)()2()1( D

gkgkgkgk
pppp  . The initial 

population is randomly generated, accounting for some 

physical constraints enforced by the problem. Starting 

from the initial population, the algorithm generates a 

new one by first defining new arrays as (mutation): 
 )(

32
11 gkgkgkgk ppFpm  , (4) 

where k1, k2 and k3 belong to 1, 2, …, Np and three 

indices mutually different and different also from k, and 

F[0,2] is a user defined real and constant factor 

representing a scale factor of the differential variation 

gkgk
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where rand(j)[0,1], j=1,2,…,D, is the j-th evaluation of 

a random uniform generator, CR[0,1] is a user defined 

crossover constant and randD(k)1,2,…,D is a 

randomly chosen integer to ensure that the trial array 

contains at least a mutated element. Following the 

crossover, the cost values of 
gk

p  and 
1gkt  are compared 

and the one with the largest cost becomes the new 

population member at generation g+1 (selection).  

The operations involved in mutation, crossover and 

selection and the random number generations are 

inherently parallel. An issue of the crossover stage is the 

“random” global memory access, so that particular care 

has been given to improve memory coalescence. 

 

Unknowns representation 

The problem concerns the optimization of the TX and 

RX antenna locations to maximize the MIMO CC. To 

profit from a reduction of the number of unknowns, both 

the TX and RX antennas are assumed to be located on 

lines and their positions are indirectly searched for by 

representing them by Legendre polynomials [8] as: 

 





1

0

)(
K

k

nkkn cx  . (6) 

In Eq. (6), xn is the generic antenna coordinate on the 

optimization line, K is the number of polynomials, k is 

the k-th Legendre polynomial, the n's are uniformly 

spaced points in [-1,1] and the ck's become the actual 

unknowns to be sought for. If K is less than the involved 

antennas, the number of problem parameters is reduced. 
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Notice that the representation in Eq. (6) is also amenable 

to enforcement of constraints on minimum and maximum 

antenna spacings [9]. 

IV. CHANNEL MATRIX CALCULATION

The method exploited to calculate H
~

 should trade 

off computational accuracy and speed to execute in an 

iterative optimization. Calculating at each generation the 

matrix H
~

 for a large number of antenna configurations by 

a full wave method would be unfeasible, especially for 

large scenarios. Opposite to that, Geometrical Optics 

(GO) is very appealing to quickly provide an approximate 

solution to Maxwell’s equations. 

Nevertheless, for electrically large scenarios GO must 

be properly accelerated by adequate algorithmic structures 

capable to properly handle the intersections of the rays 

with the scene objects. Indeed, ray tracing involves two 

main steps: the search for the intersection between a ray 

and the geometric primitives (e.g., triangles), and the 

electromagnetic field transport. The first step can be 

definitely the most time consuming one, if not properly 

managed. A brute force approach would be indeed 

unfeasible due to the large number of intersection tests to 

be performed. Fortunately, the problem can be faced by 

tree-like structures which, if properly setup, managed and 

explored, can significantly reduce the computational 

complexity. Data structures like KD-tree and BVH 

(Bounding Volume Hierarchy) [10] can be effectively 

applied to this purpose and may profit from a high degree 

of parallelization. Here, the Split BVH (SBVH) scheme 

set up in [10] has been exploited. 

V. GPU-BASED SVs CALCULATION
Computing the SVs of small or large matrices

should be dealt with different approaches. Accordingly, 

the computational scheme to be employed differs if 

considering conventional or massive MIMOs. In this 

paper, we address the former case. Furthermore, the 

number of involved matrices is related to the number of 

population members of the differential optimizer. Then, 

at each generation, the SVs of a large number of small 

sized matrices have to be computed. This task can be 

efficiently and effectively performed on a GPU as in 

[11]. 

The problem of computing the SVs can be recast to 

the computation of the SVs of a real-valued matrix A . To 

this end, the approach in [7] consists of three steps. The 

first step amounts at reducing A  to a bidiagonal matrix, 

say B , as: 

T
Q B PA  , (7) 

where B  is a NTX x NRX upper bidiagonal matrix, and 

P and Q  are NTX x NTX and NRX x NRX orthogonal 

Householder matrices, respectively. The bidiagonalization 

step consist of applying a sequence of Householder 

transformations [12] to the matrix A , which zero the 

elements below the diagonal and to the right of the first 

superdiagonal. In the second step, B  is transformed to a 

tridiagonal matrix BBT
T

 . Finally, in the third step, the

symmetric tridiagonal eigenvalue problem is solved by a 

bisection method based on the use of Sturm sequences by 

restricting the search range using the Gershgoring circle 

theorem [11]. 

The motivation for computing the tridiagonal matrix 

T  as above is due to the fact that the explicit formation 

of T  should be avoided for numerical reasons since it 

may introduce non-negligible relative errors, especially 

in the computation of the smallest SVs [12]. However, 

the exploited approach is meant for those applications, 

as the one at hand, in which the smallest SVs have very 

low relative weight and may be considered irrelevant. 

In summary, the problem of computing the SVs is 

recast as a “guided” bisection, which is amenable to 

parallelization. 

VI. NUMERICAL RESULTS
The optimizer, the ray tracer and the SVs calculation 

have been implemented in parallel GPU (CUDA) and 

multi-core CPU (C++ with OpenMP directives) languages. 

For the CPU case, the SVs have been achieved using the 

third party Eigen library. 

We consider a circular cylinder with radius 10 

centered at the origin of the Oxyz reference system and a 

plate of width 50, parallel to the yz plane and located at 

x=30. The cylinder and the plate are perfectly conducting 

and have a height of 15. The scene has been discretized 

with 95458 triangles. This example points out how much 

computation time can be saved by the approach and 

provides an answer to the points raised in Section I and 

a perspective to design tools. 

The optimizer can position an arbitrary number of 

transmitting and receiving antennas on lines with 

arbitrary spatial orientations. Here, NTX = 4 and NRX = 4. 

The TX and RX antennas have been located on lines 

lying on the xy plane, parallel to the x-axis and passing 

by (15, -40, 0) for the TX and by (15, 40, 0) for 

the RX antenna. The antenna positions have been 

represented using K=3 and minimum and maximum 

spacing of /4 and 2, respectively, have been enforced 

to control the maximum array size and mutual coupling. 

The SNR has been fixed to 20 dB. 

For computational convenience, the optimization 

has been run with a population of 1000 elements, 

grouped in 10 subgroups including those configurations 

sharing the same positions of the TX antennas and 

different positions of the RX ones. The optimization has 

been run for a number of 50 generations, with CR=0.4 

and F=0.7. 
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The code has been run on a workstation equipped 

with two Intel Xeon E5-2650 2.00GHz, Eight core 

processors each and four NVIDIA Kepler K20c cards, 

but with multi-GPU disabled. Figure 2 displays an 

OpenGL rendering of the MIMO channel with the 

optimized antenna locations. The figure also depicts the 

GO rays connecting the TX antennas (the pink dots) with 

the RX ones (not appearing in the image). As it can be 

seen, multiple interactions have been accounted for as 

well as diffraction from the plate border. Diffraction 

from the plate corners and the cylinder ends have  

been neglected for simplicity. The optimized antenna 

positions are reported in Table 1. As it can be seen, the 

TX and RX antennas occupy almost symmetric locations 

due to the problem symmetry. The GPU code has run in 

about 4.5 hours, gaining a speedup of about 5 as 

compared to the CPU execution obtained by running 32 

CPU threads. The optimized channel capacity has been 

22.3 bps/Hz, a value which well agrees with the statistical 

distribution of channel capacities for random channels 

with 4 transmitting and 4 receiving antennas reported in 

[2, Fig. 7].  

 

 
 

Fig. 2. OpenGL rendering of the MIMO channel with 

optimized antenna locations. 

 

Table 1: Optimized TX and RX antenna positions 

Antenna x-coord. Antenna x-coord. 

TX 1  RX 1  

TX 2 12.6 RX 2  

TX 3 18.0 RX 3  

TX 4 20.9 RX 4  

 

VII. CONCLUSIONS 
A GPU-based approach to accelerate MIMO CC 

optimization has been presented using ultrafast 

Geometrical Optics (GO), a very fast SV calculation 

scheme and a parallel version of the differential 

evolutionary algorithm. A speedup of 5 has been achieved 

against a multi-core CPU implementation.  
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Abstract ─ This paper presents fast computational 

techniques applied to modelling the RFX-mod fusion 

device. An integral equation model is derived for the 

current distribution on the active coils of the conducting 

structures, and the input-output transfer functions are 

computed. Speed-up factors of about 200 can be 

obtained on hybrid CPU-GPU parallelization against 

uniprocessor computation. 

 

Index Terms ─ Fusion plasma devices, GPUs, HPC, 

integral formulation, parallelism. 
 

I. INTRODUCTION 
Modelling fusion devices is computationally very 

challenging due to the electromagnetic interaction of the 

fusion plasma and the surrounding conducting structures, 

which makes the problem inherently multiphysics. The 

evolution of the plasma may exhibit unstable modes, thus 

exacerbating the aforementioned problems and requiring 

a feedback controller. The design of such control system 

requires rather accurate response model of the overall 

system plasma plus conductors. Therefore, fast parallel 

techniques are often required to make the computations 

affordable [1, 2]. In this paper, we analyze the RFX-mod 

device [3], a medium size (major radius R = 2 m, minor 

radius a = 0.46 m) toroidal device particularly suited to 

explore innovative concepts in plasma control. Passive 

and active conductors are very important to determine the 

overall properties and performances of such feedback 

system and therefore they should also be adequately 

represented in any realistic model. The main conducting 

structures are the vessel (needed to have the vacuum 

inside the machine), the shells (highly conducting sheets 

needed for passive stabilization), the mechanical 

structure, hosting the active control coils. Figure 1 shows 

the 3D hexahedral mesh used. 

In particular, RFX-mod is equipped with a state-of-

the-art control system made by 192 (4 poloidal x 48 

toroidal) independently fed active coils (Fig. 1), with 

more than 600 magnetic sensors acquired in real time. 

This makes RFX-mod on the one hand very challenging 

for numerical modelling but on the other hand an ideal 

test-bed for validating the predicting capabilities of 

computational tools. We compute the input-output 

transfer functions of the system, assuming as input the 

currents or the voltages of the active coils and as output 

suitable magnetic measures [4]. The presence of an 

axisymmetric plasma evolving through equilibrium states 

is self-consistently taken into account [1].  

The computer solution of such a problem is very 

expensive, due to the complexity of the 3D geometry and 

the plasma contribution. The use of High Performance 

Computing (HPC) cluster is mandatory. The GPU 

architecture has a large amount of cores designed to run 

a large number of execution threads at the same time; the 

computational model used is the single instruction, 
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multiple data (SIMD), where concurrent threads execute 

the same code (called Kernel) on different data. In the 

present work, we focus our attention on a hybrid multi-

node system for modeling RFX-mod devices. 

The paper is organized as follows. Section II 

describes the model, while in Section III we illustrate the 

computational technique. Section IV reports the results 

and draws the conclusions. 

 

 
 
Fig. 1. Mesh used for the analysis of the problem. 

 

II. MODEL 
We consider a system of 3D conductors Vc 

discretized with a finite elements mesh. We use an 

integral formulation, which assumes as primary 

unknown the current density in Vc. We introduce the 

electric vector potential T, such that TJ  , and then 

we expanded T in terms of edge elements kN , we have: 

 

k

kkI NJ . (1) 

Imposing Ohm’s law in weak form, we get [1,2,8]: 
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In these equations, I  is the vector of degrees of 

freedom Ik in (1), V  is the vector of externally applied 

voltages and  is the resistivity tensor. Matrix L is a fully 

populated square matrix, which is the 3D analogue of 

mutual inductance of a system of magnetically coupled 

conductors; conversely, R matrix is sparse and represents 

the resistance matrix of the 3D conductors. The quantity 

U is the magnetic flux due to plasma currents [1, 8]: 

S
jMU  , 

eS
Sj ̂ , IQ

e
̂ , (5) 

where 
S

j  are equivalent currents located on a coupling 

surface, M is a mutual inductance matrix between the 

equivalent current and the 3D conducting structures, 
e

̂

is the external magnetic flux, Q is a matrix representing 

Biot-Savart integral [1] and S is the plasma response 

matrix [8].  

Combining (2)-(5), finally we get [8]: 

VIR
dt

Id
L 

* ,    
*

,L L M SQ   (6) 

to which we can add the expression for the magnetic field 

and flux perturbations y at given points, linearly related 

to 3D currents through a suitable matrix C [1,8]: 

ICy  . (7) 

Equations (6)-(7) represent the model; they can be 

easily recast in standard state space form. In the present 

paper, they are used to get the frequency-domain transfer 

functions between the inputs (voltages or currents in 

active coils) and the outputs (linear combinations of 

magnetic measurements). In doing so, the inversion of  

a complex matrix is required. Indeed, we split the 

unknowns into three subsets; the corresponding subset  

of indices of the various matrices are identified with  

the following suffix: “p” (passive structures), “m” 

(measurement coils), “a” (active coils), so that Equation 

(6) reads as: 

 * *

* *

0,

,

p app pp pa

p a mmp ma

j L R I j L I

L I L I

   

  

 
(8) 

where 
m represent the fluxes induced at measurements 

coils (i.e., the output of the system). After some simple 

algebraic manipulations it turns out: 
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 (9) 

Equation (9) can be used to evaluate 
m  for a given 

assigned unitary current flowing in excitation coil. This 

transfer function can be used to design the feedback 

control. For each frequency and each active coil, we set 

Ia to 1 (the known terms in the Eq. (9)) and find the Flux 

for all measurement coils (unknowns variables). 

 

III. FAST TECHNIQUES 
In order to speed up the overall computation we 

move in two directions: 

 parallelize the matrix assembly phase;  

 accelerate the inversion of system (9). 

 

A. Parallel assembly strategies 

Matrices L and Q are very expensive to assemble. 

For L matrix, parallelization can be achieved grouping 

elements of nodes into boxes, distributing boxes among 

processors, and performing the element-element 

integration independently on each processor. The locally 

assembled matrix is then compressed (see [2]).  

The computation of matrix Q is the most time 

consuming part of the assembly algorithm. In order to 

reduce this cost, in the present work, parallel assembly  

is implemented on multi CPUs and multi GPUs 

environment. Here we take advantage of the fact that 
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Biot-Savart integral computation for elements and field 

points, are independent from each other. Of course, 

different implementations are necessary to adapt the 

parallel computation to the two different hardware 

architectures. In the following, we briefly recall the main 

features of the two algorithms. 

In multi CPUs environment we propose a standard 

parallel strategy using a simple domain decomposition 

approach that distributes the field points equally among 

the processors. After the local computations, a reduction 

operation is required to retrieve the complete matrix 

from each MPI process. This strategy scales linearly with 

the number of the processors.  

In multi GPUs environment we propose to assign  

to each computational thread the evaluation of a 

contribution of the Biot-Savart integral corresponding to 

a given element and a given field point. All the 

contributions are summed on the CPU. The algorithm is 

briefly summarized in the follow, see [1] for details: 

1) Allocate temporary data for storing the local 

contribute (CPU). 

2) Compute the considered element and source point 

from the thread and block index (GPU). 

3) Compute the shape function related to the considered 

element (GPU). 

4) Compute the local contribution (GPU). 

5) Return the partial matrix to the host memory (CPU). 

6) Scatter the output data on the complete matrix on the 

host (CPU). 

The final step is due to uncoalescent memory access 

needed to store the results in the final matrix and possible 

race conditions when two different contributions are 

summed in the same location. The dimension of the 

matrix can be huge compared to the on board GPU 

memory (which is typically of a few GB). Step 5 

involves memory transfer from GPU to Host memory, 

but fortunately this has no impact on the overall 

performance of the code. We point to [9] for more 

sophisticated approaches not considered here. 

 

B. Speed up of the linear system inversion 

As far as the inversion of the linear system involved 

in (9) is concerned, it is worth noting that *

xy
L  are fully 

populated submatrices of matrix *
L  and 

pp
R  is a sparse 

positive definite matrix. Using a direct solver, the cost of 

the inversion procedure is O(N3), N being the number of 

unknowns present in the passive part of the device. When 

geometric details are added and/or a great accuracy is 

required in the computation, it is easy to exceed quickly 

the computational resources available on a uniprocessor 

system. The use of powerful computing facilities can 

help in the search of additional speed and increase the 

size of the solvable problems [5]. 

Nevertheless, there are cases in which parallelization 

fails poorly. For this problem, an approximated 

compression technique is mandatory. The authors 

successfully applied these methods for the study of 

plasma fusion devices [2] as well as in other fields (e.g., 

NDT [6]). These techniques are based on an effective 

low-rank approximation of the submatrix representing 

the far interaction between well separated parts of the 

device. The matrix-by-vector product 
jij

IL
*  related to 

these parts is replaced by an accurate low cost operator 

(the complexity is asymptotically only O(N)). Finally, 

the inversion in (9) can be performed by an iterative 

method (such as the GMRES method). It is worth noting 

that the preconditioner (essential for any iterative solver) 

is 1

pp
R , which can be computed in fast and accurate way 

by the means of Cholesky decomposition. It is important 

to stress that its factorization and back substitution  

is very cheap using a single CPU. Moreover the 

preconditioner turns out to be very effective, being the 

number of iterations required to converge very small. 

 

IV. RESULTS 
The computational cluster used for the evaluation of 

the numerical performances is made by two nodes. Each 

node consist of 16x cores Intel Xeon CPU E5-2690  

(@ 2.90 GHz processor, 20 MB L2), 128 GB RAM, 

2×NVIDIA Kepler K20 (2496 cores, 6 GB VRAM). 

 

A. 2D validation and transfer function computation 

First of all, a numerical validation of the procedure 

is carried out. We generated a 3D mesh which fictitiously 

reproduce an axisymmetric geometry, so that a 2D  

code (CREATE_L [7]) can be used as benchmark. We 

computed the transfer function T defined in the previous 

section with the two codes, finding a very good 

agreement, as shown in Fig. 2. This confirms the 

correctness of the procedure. 

In order to show the actual effect due to the presence 

of the plasma, we compare the results obtained with and 

without plasma on the full 3D mesh described above. 

The plasmaless computation is in fact a purely magneto-

quasi-static calculation. The number of elements of the 

mesh is equal to 30907, the number of nodes is 81550. 

The number of unknowns in the passive structure (i.e., 

the dimension of the matrix to invert) is 22619. The 

results are reported in Fig. 3. Evidently, the presence of 

the plasma has an effect not only on the dynamical 

properties of the model (e.g., the phase behavior at high 

frequencies), but also on the static gain (amplitude at 

zero frequency limit). This is not surprising, since the 

plasma affects also the magnetostatic coupling between 

active coils and sensors, because it reacts to external 

static magnetic field perturbations, so as to reach a 

different equilibrium configuration and hence, modifying 

the whole magnetic field map in the surrounding regions. 
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Fig. 2. Comparison of one element of the transfer 

function T: proposed approach and reference 2D code. 

 

 
 

Fig. 3. Effect of plasma on the transfer function. 
 

B. Numerical issues 

Regarding the speedup of the matrix assembly, using 

25 cores the time required to compute the compressed 

matrix L is about 90 s, the total time required to compute 

the plasma matrices is about 549 s (540 s of this time is 

due to the computation of Q matrix ). In Fig. 4 we report 

the speedup for assembling Q matrix, defined as the 

assembly time required by one CPU divided by the time 

obtained using a parallel multi GPUs. Using standard 

parallel strategy (multi CPUs) the maximum achievable 

speed up on the proposed computational system is 

limited to 32.  
 

 
 

Fig. 4. Speedup for Q-matrix assembly 

 

The time required for each single inversion is about 

17.5 s. The total time for all inversions is about 7000s. 

The number of iterations required by GMRES to 

converge increases with the excitation frequency. 

Without the plasma (i.e., the response due to only the 

passive structures) the number of iterations required by 

GMRES to converge is 21 at a frequency of 100 Hz and 

9 at 10 Hz. If the plasma is present the number of iteration 

is 41 at frequency of 100 Hz and 9 at 10 Hz. This is 

coherent with the general expectation that the used 

preconditioner is more effective at lower frequencies and 

without plasma. 

 

V. CONCLUSIONS 
We have presented fast parallel techniques for the 

computation of input-output transfer functions on the 

RFX-mod fusion devices on hybrid architectures, 

featuring multiple CPUs and GPUs. The peculiarities of 

fusion devices make this approach particularly effective 

in significantly improving the performances of the 

computation, allowing speed-ups up to almost 200 with 

respect to standard computations.  
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Abstract ─ This paper investigates solving large-scale 

electromagnetic scattering problems by using the Multi-

level Fast Multipole Algorithm (MLFMA). A parallel 

implementation for MLFMA is performed on a 12-node 

Graphics Processing Unit (GPU) cluster that populates 

NVidia Tesla M2090 GPUs. The details of the 

implementations and the performance achievements in 

terms of accuracy, speed up, and scalability are shown 

and analyzed. The experimental results demonstrate that 

our MLFMA implementation on GPUs is much faster 

than (up to 37x) that of the CPU implementation. 

 

Index Terms ─ Graphics Processing Unit (GPU), 

Multilevel Fast Multipole Algorithm (MLFMA). 
 

I. INTRODUCTION 
Over the past twenty years, various numerical 

techniques have been developed to reduce the 

computational time and memory requirements of full-

wave electromagnetic models without significant loss of 

accuracy, including adaptive integral method (AIM) [1], 

impedance matrix localization (IML) [2], fast multipole 

method (FMM) [3], and multi-level fast multipole 

algorithm [4]. Compared with the others, MLFMA is 

among the most suitable techniques for large-scale 

problems. It reduces the computational complexity of the 

method of moments (MoM) from O(N2) to O(NlogN), 

where N denotes the number of unknowns, whereas 

AIM, IML and FMM have the complexities of 

O(N3/2logN), O(N2logN), and O(N3/2), respectively. 

Recently, many authors have investigated the 

parallelization of MLFMA on CPU clusters [5] in solving 

problems of hundreds of thousands to millions of 

unknowns. In [6], CPU clusters were used to implement 

MLFMA using Open MP and MPI library to solve a 

billion unknowns. Multi-GPU implementation was also 

investigated on a single node, multi-GPU computer without 

using the MPI library [7]. In this paper, we demonstrate 

the implementation of MLFMA for electromagnetics 

problems on GPU clusters by using the MPI library. 

We demonstrate the parallelization of MLFMA on a 

12-node GPU cluster each of which is populated with  

an NVidia Tesla M2090 GPU. An MVAPICH2 

implementation of MPI is used for cluster parallel 

programming. This paper is the continuation of our GPU 

implementation of FMM by using GPU clusters. In [9] 

and [10], GPU implementation for single level Fast 

Multipole Method (FMM) solves only the maximum 

problem size up to 656K unknowns on 13 nodes. In this 

paper, our MLFMA implementation on GPU cluster can 

solve up to 1.1 M unknowns. We demonstrate that the 

implementation of MLFMA on GPUs is faster than that 

of the CPU. The performance of the implementation is 

analyzed by using a PEC sphere. 

The rest of the paper is organized such that Section 

II provides an overview of MLFMA. Section III presents 

the parallel implementation of MLFMA on GPU 

clusters. Experimental results are discussed in Section 

IV, followed by the conclusions in Section V. 

 

II. OVERVIEW OF THE MULTILEVEL 

FAST MULTIPOLE ALGORITHM 
The fundamental principles of MLFMA and its 

applications in electromagnetics have been studied in 

literature [4]-[5]. In this section, we provide a brief 

overview to help our discussion on its parallel 

implementation, which is presented in Section III.  

MLFMA was invented based on the grouping 

concept to accelerate the iterative solution of the linear 

equation system ZI = V of the Method of Moment 

(MoM), where I represents the unknown currents, V 

depends on the incident field, and Z is the impedance 

matrix. The main idea of the grouping concept is shown 

in Fig. 1, where the M edges in the mesh of a given 

structure are categorized into an N-level tree structure 

connecting groups of different sizes from the finest (level 

N) to the coarsest level (level 0). Based on the groups’ 

proximity, the impedance matrix Z can be split into two 

matrices, Znear and Zfar, corresponding to near and far 

interactions as shown in Equation (1): 

 
' ' ' ' ' '

' ' '

,
M M M

near far

mm m mm m mm m m

m m m

Z I Z I Z I V    
 

(1) 

where m and m’ are observation and source edges in the 
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mesh, respectively.  

The Znear matrix comprises of interactions between 

edges in spatially nearby groups, and is computed and 

stored using the conventional MoM [8]. During the 

iterative solution, the near matrix is calculated by the 

regular sparse matrix-vector multiplications (MVMs). 

The remaining edges, whose parents are near, constitute 

the far term as shown in Fig. 1 (b). By treating the 

interactions between the edges that are spatially far-away 

using MLFMA, Zfar matrix does not need to be explicitly 

computed and stored. Instead, the far components can 

benefit from the fast MVMs during the iterative solution. 

The Zfar matrix is factorized into radiation, receive and 

translation functions, as explained in [4]. 
 

 
 (a) (b) 
 

Fig. 1. MLFMA general concepts: (a) concept of the 

MLFMA tree, and (b) MLFMA concept of far interactions. 
 

The far component is calculated through five main 

stages: aggregation, translation, and disaggregation, 

interpolation and anterpolation as shown in Fig. 1 (b). 

In the aggregation stage, radiated fields among the 

groups from level N (the finest level) to level 2 are 

calculated. At the finest level N, the radiation functions 

for a group are computed by combining the radiation 

patterns of the basic function of all edges in this group. 

From level N-1 to level 2, the radiation functions for 

each group are computed from the combination of the 

radiation function of its children group of the finer level 

using shifting and interpolation.  

In the disaggregation stage, the receive functions at 

each group are computed from level 2 to level N by 

combining the local incoming waves due to translation 

and the incoming waves from parent groups of the 

coarser level using shifting and anterpolation.  

The translation stage is identical to FMM [3], and the 

details of interpolation and anterpolation can be found in [5]. 
 

III. PARALLELIZATION OF MLFMA ON 

GPU CLUSTERS 
In this section, we provide an overview of our 

implementation on GPU. The implementation consists of 

pre-processing, processing and post-processing. The 

geometry mesh data resulting from the pre-processing 

step is transferred to the GPU memory, and the entire 

computation is performed on the GPU. The user defined 

results such as radar cross section, scattered fields are 

post-processed on CPU. 

The GPU cluster used for our implementation 

consists of 12 computing nodes. Each node has a dual 6-

core 2.66 GHz Intel Xeon processor, 48GB RAM along 

with one NVidia Tesla M2090 GPU running at 1.3 GHz 

supported with 6GB of GPU memory. The nodes are 

interconnected through the InfiniBand interconnection. 

The cluster populates CUDA v6.0 and MVAPICH2 

v1.8.1 (a well-known implementation of Message Passing 

Interface (MPI)). 

In the processing step, the workload of the 

computational task is equally distributed among the 

computing nodes, and the inter-node communication is 

minimized. This is achieved by uniformly distributing 

the total number of groups, M, among the n computing 

nodes. The parallelization of the GPU cluster 

implementation is performed at two levels: (i) among the 

computing nodes using MPI library, and (ii) within the 

GPU per node using CUDA programming model. 

Within each node, the CUDA thread-block model is 

utilized to calculate the workload assigned to that node. 

We only present the far interactions in this paper, since 

the near field and V vector calculations implementations 

can be found in [9]-[10]. 

All CUDA kernels are implemented to calculate 

Znear matrix, and far interactions which includes the 

radiation/receive functions, translation matrix, and 

interpolation/anterpolation matrices. In fast matrix-vector 

multiplication (MVM), CUDA kernel is also utilized to 

compute the radiated fields, translation fields and received 

fields in the aggregation, translation and disaggregation 

stages, respectively. MPI library is also used to gather 

results from each node in the end of MVM stage. 

 

A. Far interactions calculations 

This task comprises of five calculations: radiation, 

and receive functions, interpolation, anterpolation and 

translation matrices. 

 

(i) Radiation and Receive Function Calculations 

The first step in the far interaction calculations is the 

calculation of the radiation, TE, and receive, RE, functions 

for Zfar matrix. They are complex conjugates of each 

other. Thus their implementations are similar. Following 

the M group distribution, each node handles the calculations 

of K directions for Mnode groups. Given this amount of 

workload per node, the CUDA kernel is launched with 

Mnode.K blocks such that each block implements Mgroup 

radiation/receive function calculations at a given direction, 

resulting in a total of Mnode.K blocks per node. 

 

(ii) Translation Matrix Calculation 

The second task for far interactions is the calculation 

of the translation matrix, TL. The workload for the TL 

calculations is also distributed across the nodes following 
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the group-based technique. By careful investigations, 

allocating a CUDA block on a single row of the matrix 

is the efficient way for the translation matrix calculation 

to save memory requirements. Each CUDA block is 

assigned to compute one sparse row of the TL matrix for 

a given direction, and each thread computes one element 

in that row. 
 

(iii) Interpolation and Anterpolation Matrices 

The third task for the far interactions is the calculation 

of interpolation and anterpolation matrices. They are 

transposes of each other. Thus their implementation is 

similar. Each node handles the calculations of Kchildren/node 

rows of KchildrenxKparent interpolation matrix, where 

Kchildren is number of directions of a finer level, and Kparent 

is number of directions of a coarser level. The CUDA 

kernel is launched with Kchildren/node blocks per node. In 

each block, the maximum number of threads (1024 

threads) are utilized in order to implement the full 

number of Kparent directions. 
 

B. Fast matrix-vector multiplication 

The next stage for the processing is the solution for 

the linear system where we employ the iterative method 

known as the biconjugate gradient stabilized method 

(BiCGSTAB). The calculation of ZfarI comprises of five 

stages: aggregation, translation, interpolation, anterpolation 

and disaggregation, as shown in Fig. 2. Using a group-

based partitioning technique, the unknown current vector 

I (Nedgesx1) is distributed across the computing nodes on 

GPU clusters.  
 

 
 

Fig. 2. Far matrix-vector-multiplication in parallel. 
 

In the aggregation stage, at level N, each node 

computes the radiated fields for Mnode groups for K 

directions by multiplying the unknowns I with their 

corresponding radiation functions, TE, and accumulating 

within each group. After the aggregation step, an all-to-

all communication is employed by each node to 

broadcast the radiated fields to all other nodes. The 

radiated fields from level N-1 to level 2 are computed by 

multiplying interpolation matrices with radiated fields of 

children groups at lower levels.  

In the translation, the radiated fields at each 

direction are calculated from the sum of the multiplication 

of the translation matrix and the radiated fields, and the 

received fields from parent groups at upper levels using  

anterpolation.  

In the disaggregation stage, the received fields of all 

M group at level N are multiplied with the corresponding 

receive functions, and integrated over the partitioned K 

directions of the unit sphere. The far components of 

MVM are then incorporated with the near components of 

MVM. At the end of MVM, the partial results from all 

nodes are summed together and all nodes are updated. 
 

IV. EXPERIMENTAL RESULTS 

A. Accuracy 

First, we verify the accuracy of our GPU 

implementation by calculating the radar cross section 

(RCS) of a 9 diameter (corresponding to 0.27 m and 

100,000 unknowns) perfect electrically conducting (PEC) 

sphere illuminated by an 1 GHz x-polarized normally 

incident field. The results are compared to Mie scattering. 

It can be observed in Fig. 3 that the GPU results and the 

analytical solutions show a very good agreement. 
 

 
 

Fig. 3. RCS of a 9λ diameter PEC sphere. 
 

B. Implementation performance on GPU cluster 

In the first experiment, our GPU implementation is 

evaluated using the fixed-workload model (Amdahl’s 

Law). A 22.4 diameter PEC sphere (650K unknowns) is 

chosen such that it demands the use of at least 7 nodes to 

satisfy the required memory. Two metrics are used for the 

performance evaluation: speed up and scalability. The 

speed up is defined as the ratio of time required by multi-

node GPU implementation with respect to the 7-node CPU 

implementation. Scalability is the normalized speedup of 

multiple nodes in reference to the speedup of 7 nodes. As 

shown in Fig. 4, the speedup factor increases from 23.7 

for 7 nodes to 37 for 12 nodes. Since each node processes 

less workload, the GPU execution time decreases as the 

number of nodes increases. The inter-node communication 

overhead results in the difference between the speedup 

of total execution time and computation time. For 7 

computing nodes, the speed-up for the near-field system 

matrix is over 86 (CPU computation time: 848s, GPU 

computation time: 9.5s), while the speed-up of the BICGstab 

iterative solution is over 22 times for 100 iterations, 

which is restricted by the overhead communication between 

computing nodes (CPU computation time: 9100s, GPU  
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computation time: 415.1s). 

In order to investigate the scalability of this 

implementation, we compare how the speedup improves 

with increasing number of computing nodes as we keep 

the problem size constant, as observed in Fig. 5. The 

computation speedup scales similar to the theoretical 

linear behavior, demonstrating our efficient hardware 

implementation. The total speedup scales closely to the 

theoretical expectation demonstrating our efficiency in 

reducing the inter-node communication overhead. 
 

 
 

Fig. 4. Speedup analysis for the fixed-workload model 

(vs. 7 nodes CPU implementation, 100 iterations). 

Computational CPU exec time = 5573 sec, total CPU 

exec time = 5627 sec. 
 

 
 

Fig. 5. Scalability analysis for the fixed-workload model. 
 

In the second experiment, we investigate the largest 

problem size our GPU implementation can handle. As 

the number of nodes increases, the problem size is also 

increased so that the GPU memory in each node in fully 

utilized. As shown in Fig. 6, the GPU implementation 

can process a maximum problem size of 1.1 M unknowns 

with a speed up factor of 25.2. 
 

 
 

Fig. 6. Speedup analysis when the number of nodes 

increases along with problem size increases (vs. multi-

node CPU, 100 iterations).  

VI. CONCLUSION 
In this paper, the GPU implementation of MLFMA 

for electromagnetic scattering problems up to 1.1 million 

unknowns using our 12-node GPU cluster is demonstrated. 

The maximum problem size is determined by the available 

on-board GPU memory. For the same degree of 

accuracy, the GPU implementation outperforms the CPU 

implementation. Moreover, the GPU implementation has 

a good scalability as the number of computing nodes 

increases. 
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