
Vol. 1 No. 4

Applied Computational Electromagnetics Society

Express Journal
Special Issue On:
GPU Computing in Electromagnetics

Guest Editors: Amedeo Capozzoli, Yahya Rahmat-Samii,
and Ozlem Kilic

April 2016

Huan-Ting Meng and Jian-Ming Ji
GPU Acceleration of Nonlinear Modeling by the
Discontinuous Galerkin Time-Domain Method

APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY EXPRESS JOURNAL

http://aces-society.org

GENERAL INFORMATION

PURPOSE AND SCOPE: The Applied Computational Electromagnetics Society (ACES) Express Journal hereinafter

known as the ACES Express Journal is devoted to the timely and rapid exchange of information in computational

electromagnetics, to the advancement of the state-of-the art, and the promotion of related technical activities. The primary

objective of the information exchange is to inform the scientific community in a short amount of time on the developments

of recent computational electromagnetics tools and their use in electrical engineering, physics, or related areas. The

technical activities promoted by this publication include code validation, performance analysis, and input/output

standardization; code or technique optimization and error minimization; innovations in solution technique or in data

input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of

computational electromagnetics techniques with new computer architectures; and correlation of computational

parameters with physical mechanisms.

SUBMISSIONS: The ACES Express Journal welcomes original, previously unpublished papers, relating to applied

computational electromagnetics. Typical papers will represent the computational electromagnetics aspects of research in

electrical engineering, physics, or related disciplines as well as research in the field of applied computational

electromagnetics.

Manuscripts are to be submitted through the upload system of ACES web site http://aces-society.org Please see

“Information for Authors” on inside of back cover and at ACES web site. For additional information contact the

Editor-in-Chief:

Dr. Ozlem Kilic
Department of Electrical Engineering and Computer Science

The Catholic University of America

Washington, DC 20064

Email: kilic@cua.edu

SUBSCRIPTIONS: All members of the Applied Computational Electromagnetics Society are entitled to access and

download the ACES Express Journal of any published journal article available at http://aces-society.org. ACES Express

Journal is an online journal and printed copies are not available. Subscription to ACES is through the web site.

LIABILITY. Neither ACES, nor the ACES Express Journal editors, are responsible for any consequence of

misinformation or claims, express or implied, in any published material in an ACES Express Journal issue. This also

applies to advertising, for which only camera-ready copies are accepted. Authors are responsible for all

information contained in their papers. If any material submitted for publication includes material which has already

been published elsewhere, it is the author’s responsibility to obtain written permission to reproduce such material.

http://aces-society.org/
http://aces-society.org/

THE APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY
http://aces-society.org

EDITOR-IN-CHIEF

Ozlem Kilic
Department of Electrical Engineering and Computer Science

The Catholic University of America
Washington, DC 20064

ASSOCIATE EDITORS-IN-CHIEF
Lijun Jiang

University of Hong Kong, Dept. of EEE
Hong, Kong

Steven J. Weiss
US Army Research Laboratory

Adelphi Laboratory Center (RDRL-SER-M)
Adelphi, MD 20783, USA

Amedeo Capozzoli
Universita di Napoli Federico II, DIETI

I-80125 Napoli, Italy

Shinichiro Ohnuki
Nihon University

Tokyo, Japan

William O’Keefe Coburn
US Army Research Laboratory

Adelphi Laboratory Center (RDRL-SER-M)
Adelphi, MD 20783, USA

Yu Mao Wu
Fudan University

Shanghai 200433, China

Kubilay Sertel
The Ohio State University

Columbus, OH 43210, USA

Jiming Song
Iowa State University, ECE Dept.

Ames, IA 50011, USA

Maokun Li
Tsinghua University, EE Dept.

Beijing 100084, China

EDITORIAL ASSISTANTS
Toan K. Vo Dai

The Catholic University of America, EECS Dept.
Washington, DC 20064, USA

 Shanell Lopez
Colorado School of Mines, EECS Dept.

Golden, CO 80401, USA

APRIL 2016 REVIEWERS

Zsolt Badics Oleksiy Kononenko
Claudio Curcio Angelo Liseno
Vinh Dang Ozlem Ozgun
Jian Guan C.J. Reddy
Ulrich Jakobus Rachid Saadane

http://aces-society.org/

THE APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY
EXPRESS JOURNAL

Vol. 1 No. 4 April 2016

TABLE OF CONTENTS

“The Success of GPU Computing in Applied Electromagnetics”
Amedeo Capozzoli, Ozlem Kilic, Claudio Curcio, and Angelo Liseno………………...….113

“Benefits and Challenges of GPU Accelerated Electromagnetic Solvers from a
Commercial Point of View”

Ulrich Jakobus……………………………...………………………………………………117

“GPU Acceleration of Nonlinear Modeling by the Discontinuous Galerkin
Time-Domain Method”

Huan-Ting Meng and Jian-Ming Jin………………………………………………...……...121

“Multilevel Inverse-Based Factorization Preconditioner for Solving Sparse Linear
Systems in Electromagnetics”

Yiming Bu, Bruno Carpentieri, Zhaoli Shen, and Tingzhu Huang………………………...125

“Porting an Explicit Time-Domain Volume Integral Equation Solver onto Multiple
GPUs Using MPI and OpenACC”

Saber Feki, Ahmed Al-Jarro, and Hakan Bagci……………………………….……………129

“Parallel Realization of Element by Element Analysis of Eddy Current Field Based
on Graphic Processing Unit”

Dongyang Wu, Xiuke Yan, Renyuan Tang, Dexin Xie, and Ziyan Ren……..…………….133

“GPU-based Electromagnetic Optimization of MIMO Channels”
Alfonso Breglia, Amedeo Capozzoli, Claudio Curcio, Salvatore Di Donna,
and Angelo Liseno……………………………………………….…………………………137

“Fast and Parallel Computational Techniques Applied to Numerical Modeling of
RFX-mod Fusion Device”

Domenico Abata, Bruno Carpentieri, Andrea G. Chiariello, Giuseppe Marchiori,
Nicolò Marconato, Stefano Mastrostefano, Guglielmo Rubinacci, Salvatore Ventre,
and Fabio Villone……………………………………………………...……..………….….141

“Parallel Implementations of Multilevel Fast Multipole Algorithm on Graphical
Processing Unit Cluster for Large-scale Electromagnetics Objects”

Nghia Tran and Ozlem Kilic…………………………………………..……..………….….145

© 2016, The Applied Computational Electromagnetics Society

The Success of GPU Computing in Applied Electromagnetics

A. Capozzoli 1, O. Kilic 2, C. Curcio 1, and A. Liseno 1

1 Università di Napoli Federico II

Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione

via Claudio 21, I 80125 Napoli, Italy

a.capozzoli@unina.it

2 The Catholic University of America

Department of Electrical Engineering and Computer Science, Washington, DC

kilic@cua.edu

Abstract ─ In the field of electromagnetic modeling,

whether it is the complex designs for engineered

materials or devices and components integrated within

their natural environments, there is a big drive for highly

efficient numerical techniques to model the performance

of complex structures. This often cannot be achieved by

conventional computer systems, but rather through using

the so-called high performance computing (HPC)

systems that utilize hardware acceleration. We review

recent General Purpose Graphics Processing Units

(GPGPU) computing strategies introduced in four fields

of computational electromagnetics: Finite-Difference

Time-Domain (FDTD), Finite Elements Method (FEM),

Method of Moments (MoM) and ElectroMagnetic Ray

Tracing (EMRT).

Index Terms ─ CUDA, ElectroMagnetic Ray Tracing

(EMRT), Finite-Difference Time-Domain (FDTD), Finite

Elements Method (FEM), Graphics Processing Units

(GPUs), Method of Moments (MoM), OpenCL, parallel

programming.

I. INTRODUCTION
Electromagnetic simulators are essential tools in the

analysis and the design of large and complex systems.

The last two decades have witnessed dramatic

improvements in both algorithms for computational

electromagnetics and computing hardware. For the latter

point, the use of General Purpose computing on Graphics

Processing Units (GPGPU) has become increasingly

prevalent. Due to their many computational cores,

GPGPUs are indeed suitable for solving problems with a

high degree of parallelism.

Successful applications of GPGPU computation

require appropriate code implementations and

optimizations, depending on whether the problem is

memory bound (most of the time spent in memory

transactions) or compute bound (most of the time spent

in using the GPU) [1]. Throughout the literature, there

are several success stories in GPGPU computing as

applied to computational electromagnetics. The purpose

of this review paper is to sketch the latest GPU

computing strategies adopted in four fields of particular

interest; namely Finite-Difference Time Domain

(FDTD), Finite Elements Method (FEM), Method of

Moments (MoM) and ElectroMagnetic Ray Tracing

(EMRT). For each of the mentioned representative

fields, we will point out the critical aspects, which enable

achieving high performance in computations. Also, we

will provide relevant references, which will help the

interested reader for further details. Finally, nowadays,

desktop computers can easily fit four GPUs although, if

more computational resources are required, multiple

GPUs can be clustered together or heterogeneous

systems can be used for large scale simulations. How

multi-GPU and heterogeneous systems help increasing

the computational performance for the mentioned

applications will also be discussed.

II. FDTD
FDTD is one of the most widely used numerical

methods for electromagnetic simulations. From the

computational point of view, it essentially amounts at

stencil calculations. Therefore, the main issue of FDTD

is the very low arithmetic intensity, which means that the

attainable performance in terms of Floating Point

Operations per Second (FLOPS) is limited by the

memory bandwidth [2].

Typical strategies like optimizing the arithmetic

instructions or hiding the latency of the global memory

access by maximizing the multiprocessor occupancy are

not effective. For this reason, essentially the optimization

approaches below have been applied to GPU-based

FDTD implementations for different GPU architectures:

1. Exploit shared memory;

2. Achieve global memory coalesced accesses;

ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016 113

1054-4887 © 2016 ACES

Submitted On: July 11, 2016
Accepted On: July 13, 2016

3. Use the texture cache;

4. Use built-in arrays;

5. Properly arrange the computation in the 3rd

dimension.

Concerning point #1, the calculation of field

components depends, at each time step, on the value of

the same component at the previous step, and on other

field components at neighboring cells. Accordingly, it

was proposed in [3] to use shared memory to cache

all the needed field components, including those

corresponding to adjacent computational tiles. In this

way, it is possible to significantly reduce data read

redundancy. The use of shared memory also enables to

limit uncoalesced acceses, as for point #2, see [4].

Regarding point #3, texture memory buffers data in

a suited cache, optimized for two-dimensional spatial

locality. This leads to performance gains when threads

read locations that are spatially close, as in FDTD [4].

However, this benefit appears to be less relevant for

latest architectures due to their newly available caching

mechanisms.

Concerning point #4, built-in arrays have two, three

or four components accessible which allow to best

exploit global memory bandwidth. They are used to

minimize the number of access operations by maximizing

the number of bytes simultaneously transferred [4].

Finally, a very important point in 3D FDTD is the

organization of the computation in the third dimension.

An efficient solution has been proposed in [3] and a

discussion of this topic, in particular, on different

solutions proposed in the literature has been recently

provided in [5]. An approach to reduce thread divergence

when applying Convolutional Perfectly Matched Layer

(CPML) boundary conditions has been also proposed in

[6].

Compared to a typical implementation on multicore

CPUs, an optimized parallelization on GPUs reaches

a speedup of the order of ten times. By properly

overlapping computation and communication, high

parallelization efficiencies (75%) can be achieved in

these cases [7].

III. FEM
The Finite Element Method (FEM) is one of the

most advanced and powerful methods for solving

Maxwell’s equations. Although often used in

computational electromagnetics, GPU research on FEM

has not been yet as popular as for other numerical

methods. Solving Maxwell’s equations using FEM

essentially consists of three phases [8]:

(i) Local Assembly: For each element e in the domain,

an N×N matrix, Me (local matrices), and an N-length

vector, be (local vectors), are computed, where N is

the number of nodes per element. The computation

of Me and be usually involves the evaluation of

integrals over the element using Gaussian

quadrature. Since meshes are typically unstructured,

gathering the data associated with each element

forces highly irregular memory accesses.

(ii) Global Assembly: The matrices Me and the vectors

be are used to form a global matrix M and global

vector b by assembling the contributions of the

elements together. Typically, M is very sparse,

although its sparsity depends on the connectivity of

the mesh. The Compressed Sparse Row (CSR)

format is often used to reduce the storage

requirement of the matrix and to eliminate

redundant computations.

(iii) Solution of the Relevant Linear System: The sparse

system M x = b is solved for x.

There are different possible ways of parallelizing the

first two steps. Unfortunately, until now, there is no

definite answer on which is the most promising

approach. Different techniques are discussed in [8] that

are fairly general and relevant to many types of

computations on unstructured meshes. A range of possible

implementations is presented and recommendations to

potential implementers are given. In particular, three

possibilities have been considered depending on what

each thread is assigned to:

1. Assembly by non-zero elements (each thread is

assigned to a different non-zero global matrix

element);

2. Assembly by rows (each thread is assigned to a

different row of the global matrix);

3. Assembly by elements (each thread is assigned to a

different finite element).

Some results have been published for

electromagnetic problems in [9] using OpenCL and in

[10] using CUDA. A speedup of 19 has been observed

for the former case against a multi-core CPU

implementation, while a speedup between 87 (matrix

assembly) and 51 (solution of the linear system) has been

reported for the latter case.

IV. MOM
Method of Moments is another powerful tool used

widely in computational electromagnetics. Radiation

and scattering problems can be solved numerically using

various formulations of the MoM (e.g., EFIE, CFIE,

etc.), which is a well-established full-wave analysis

based on meshing the geometry into coalescent triangles.

The technique employs the expansion of the surface

currents of the mesh into a set of basis functions, such as

the well-known Rao-Wilton-Glisson (RWG), [11]. The

series expansion results in a linear system as expressed

as

 . ,V Z I where V represents the source function,

I is the unknown current, and Z is the impedance matrix.

The size of the linear system; i.e., NxN, depends on the

number of non-boundary edges in the triangular mesh,

N. In the conventional MoM approach, first the

114 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

impedance matrix is computed. Then it is inverted, and

the unknown currents are calculated. The source vector

is computed based on the geometry and the excitation

fields at each triangle, [11].

The direct solution of MoM by a matrix inversion

presents a big challenge as the object size increases. This

is due to the computational complexity, O(N3), and

storage requirements, O(N2) of MoM. While one way to

address the complexity problem is the use of iterative

solvers, MoM remains computationally expensive for

electrically large objects. The Fast Multipole Method

(FMM), which was first introduced by Rokhlin [12] as

an augmentation to MoM, reduces the computational

complexity for such problems to O(NitN2) without a

significant loss of accuracy. In FMM, the N edges in the

mesh are classified into M localized groups, such that

each group supports approximately N/M edges. The

groups are then categorized as near and far, based on

their spatial proximity, allowing the system matrix to be

split into, Znear and Zfar components, which describe the

near and far interactions among the edges. A few authors

have applied FMM for electromagnetic problems using

a single GPU for small size problems [13], or a GPU

cluster for larger problems [14], [15].

Further enhancements have evolved to handle larger

problems, such as FMM-FFT, which applies FFT at the

translation and multipole expansion stages of FMM,

which reduces the complexity to O(NlogN) for two-

dimensional rough surfaces, [16] and to O(N4/3 log2/3N)

for three-dimensional objects, [17]. Recently, FMM-

FFT was implemented on a multi-node GPU cluster to

demonstrate significant acceleration in computation time

while preserving the scalabilty of FMM, [18]. However,

FMM-FFT still suffers from the limitation of the GPU

memory to solve for larger problems. Another such

attempt to enhance FMM for larger scale problems is by

introducing a multi-level tree structure of MLFMA,

which reduces the computational complexity of MoM to

O(NlogN).

V. RAY TRACING
Geometrical Optics (GO) is appealing for scenes

with electrically large objects as it provides approximate

solutions to Maxwell’s equations. In such cases, GO can

benefit from the use of data structures inherited by

computer graphics, as the Binary Bounding Volume

Hierarchies (BBVH), to properly handle the intersections

between rays and scene objects.

Ray tracing for GO involves two main steps:

searching for the intersections between rays and

geometric primitives (for example, triangles) discretizing

the object surfaces, and electromagnetic field transport.

The first step can be the most time consuming, and must

be properly managed. A simple brute force approach

would be unfeasible due to the large number of

intersection tests to be issued.

This intersection problem can be faced by

introducing objects of simple geometry helping in

determining if the ray intersects the generic primitive or

not, as well as organizing primitives and objects into

proper (usually binary) tree hierarchies to reduce the

number of intersection tests. Typically, such objects are

Axis Aligned Bounding Boxes (AABB). An AABB

encloses a group of geometrical primitives or even other

bounding volumes. The leaf nodes contain the primitives

while the inner nodes enclose the bounding volume of its

child nodes. With such a hierarchy, a tree-search

algorithm is used to find the nearest object that is hit by

a ray. Generally, two schemes are the most popular to

construct the hierarchy, namely, spatial subdivision and

object partitioning.

With spatial subdivision, space is recursively split.

Each primitive is placed into all leaf nodes to which it

overlaps and straddling primitives are copied in multiple

nodes. Subdividing space with axis aligned planes leads

to the so called KD-tree [19].

On the other side, a binary object partitioning

scheme recursively subdivides the primitive list in two

non-empty and disjoint sub-lists. For each sub-list, the

minimum bounding volumes containing all the sub-list

primitives is computed. The bounding volumes may

partially overlap and the accelerating structure associated

to object partitioning scheme is called BVH [20]. Unlike

KDtree, each primitive is stored only once.

Object partitioning and spatial subdivision can work

together resulting in a hybrid scheme known as Split

Bounding Volume Hierarchy (SBVH) [20, 21], see also

[22]. Recently, the benefits and the drawbacks of the

above schemes have been analyzed with reference to

their GPU implementations [22]. It has emerged that:

 The most critical drawback of KD-tree is the high

number of primitive duplicates and the tree depth.

 Besides leading to high memory consumption (which

is a problem by itself in GPU computing), primitive

duplicates and tree depth are responsible of a larger

(as compared to BVH) number of inner-node traversal

steps, leaf visits and ray-primitive intersection tests.

 BVH, unlike KD-tree, poorly adapts to arbitrary

scenes with very varying density. SBVH has shown

to be a very satisfactory compromise.

With SBVH, it has recently shown how thousands

of millions of rays per second can be traced on a Kepler

K20c card [23].

VI. CONCLUSION
We have reviewed recent GPGPU computing

strategies introduced in five fields of computational

electromagnetics: FDTD, FEM, MoM and EMRT. The

purpose has been to provide new Researchers in this field

with initial guidelines on the dealt with topics. At

present, research in GPU accelerated FEM for

electromagnetics surprisingly appears to have been

CAPOZZOLI, KILIC, CURCIO, LISENO: THE SUCCESS OF GPU COMPUTING IN APPLIED ELECTROMAGNETICS 115

overlooked in the literature.

REFERENCES
[1] P. Micikevicius, “Identifying performance limiters,”

GTC Technology Conf., 2011.

[2] K.-H. Kim, K. H. Kim, and Q.-H. Park,

“Performance analysis and optimization of three-

dimensional FDTD on GPU using roofline model,”

Computer Phys. Commun., vol. 182, no. 6, pp.

1201-1207, June 2011.

[3] P. Micikevicius, “3D finite difference computation

on GPUs using CUDA,” Proc. of 2nd Workshop

on General Purpose Processing on GPUs,

Washington, DC, USA, pp. 79-84, Mar. 8, 2009.

[4] D. De Donno, A. Esposito, L. Tarricone, and L.

Catarinucci, “Introduction to GPU computing and

CUDA programming: a case study,” IEEE

Antennas Prop. Mag., vol. 52, no. 3, pp. 116-122,

June 2010.

[5] M. Livesey, J. F. Stack Jr., F. Costen, T. Nanri, N.

Nakashima, and S. Fujino, “Development of a

CUDA implementation of the 3D FDTD method,”

IEEE Antennas Prop. Mag., vol. 54, no. 5, pp. 186-

195, Oct. 2012.

[6] J. I. Toivanen, T. P. Stefanski, N. Kuster, and N.

Chavannes, “Comparison of CPML implementations

for the GPU-accelerated FDTD solver,” Progr.

Electromagn. Res., vol. 19, pp. 61-75, 2011.

[7] R. Shams and P. Sadeghi, “On optimization of

finite-difference time-domain (FDTD) computation

on heterogeneous and GPU clusters,” J. Parallel

Distrib. Comput., vol. 71, no. 4, pp. 584-593, Apr.

2011.

[8] C. Cecka, A. J. Lew, and E. Darve, “Assembly of

finite element methods on graphics processors,”

Int. J. Numer. Meth., vol. 85, no. 5, pp. 640-669,

Feb. 2011.

[9] A. Dziekonski, P. Sypek, A. Lamecki, and M.

Mrozowski, “Finite element matrix generation on a

GPU,” Progr. in Electromagn. Res., vol. 128, pp.

249-265, 2012.

[10] Z. Fu, T. J. Lewis, R. M. Kirby, and R. T. Whitaker,

“Architecting the finite element method pipeline

for the GPU,” J. Comput. Appl. Math., vol. 256, pp.

195-211, Feb. 2014.

[11] S. M. Rao, D. R. Wilton, and A. W. Glisson,

“Electromagnetic scattering by surfaces of

arbitrary shape,” IEEE Trans. Antennas Prop., vol.

AP-30, no. 3. pp. 409-418, May 1982.

[12] R. Coifman, V. Rokhlin, and S. Wandzura, “The

fast multipole method for the wave equation: A

pedestrian prescription,” IEEE Antennas Prop.

Mag., vol. 35, no. 3, pp. 7-12, June 1993.

[13] K. Xu, D. Z. Ding, Z. H. Fan, and R. S. Chen,

“Multilevel fast multipole algorithm enhanced by

GPU parallel technique for electromagnetic

scattering problems,” Microw. Opt. Technol. Lett.,

vol. 52, pp. 502-507, 2010.

[14] Q. Nguyen, V. Dang, O. Kilic, and E. El-Araby,

“Parallelizing fast multipole method for large-scale

electromagnetic problems using GPU clusters,”

IEEE Antennas Wireless Prop. Lett., vol. 12, pp.

868-871, 2013.

[15] V. Dang, Q. Nguyen, and O. Kilic, “Fast multipole

method for large-scale electromagnetic scattering

problems on GPU cluster and FPGA accelerated

platforms,” Applied Comp. Electromag. Soc.

Journal, Special Issue, vol. 28, no. 12, pp. 1187-

1198, 2013.

[16] R. L. Wagner, J. Song, and W. C. Chew, “Monte

Carlo simulation of electromagnetic scattering

from two-dimensional random rough surfaces,”

IEEE Trans. Antennas Prop., vol. 45, no. 2, pp.

235-245, 1997.

[17] C. Waltz, K. Sertel, M. A Carr, B. C. Usner, and J.

L. Volakis, “Massively parallel fast multipole

method solutions of large electromagnetic

scattering problems,” IEEE Trans. Antennas Prop.,

vol. AP-55, no. 6, pp. 1810-1816, 2007.

[18] V. Dang, Q. Nguyen, and O. Kilic, “GPU cluster

implementation of FMM-FFT for large-scale

electromagnetic problems,” IEEE Antennas

Wireless Prop. Lett., vol. 13, pp. 1259-1262, 2014.

[19] Y. Tao, H. Lin, and H. Bao, “GPU-based shooting

and bouncing ray method for fast RCS prediction,”

IEEE Trans. Antennas Prop., vol. 58, no. 2, pp.

494-502, Feb. 2010.

[20] T. Aila and S. Laine, “Understanding the efficiency

of ray traversal on GPUs,” Proc. of the Conf.

on High Performance Graphics, Saarbrucken,

Germany, pp. 145-150, June 25-27, 2009.

[21] I. Wald and V. Havran, “On building fast KD-

Trees for ray tracing, and on doing that in

O(NlogN),” Proc. of the IEEE Symposium on

Interactive Ray Tracing, Salt Lake City, UT, pp.

61-69, Sept. 18-20, 2006.

[22] A. Breglia, A. Capozzoli, C. Curcio, and A. Liseno,

“GPU-based shooting and bouncing ray method for

fast RCS prediction,” IEEE Antennas Prop. Mag.,

vol. 57, no. 5, pp. 159-176, Oct. 2015.

[23] A. Breglia, A. Capozzoli, C. Curcio, and A. Liseno,

“Why does SBVH outperform KD-tree on parallel

platforms?,” Proc. of the IEEE/ACES Int. Conf. on

Wireless Inf. Tech. and Syst. and Appl. Comput.

Electromagn., Honolulu, HI, pp. 1-2, Mar. 13-18,

2016.

116 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

Benefits and Challenges of GPU Accelerated

Electromagnetic Solvers from a Commercial Point of View

Ulrich Jakobus

Altair Development S.A. (Pty) Ltd.

Stellenbosch, 7600, South Africa

jakobus@altair.com

Abstract ─ This paper discusses the benefits but also

challenges of GPU accelerated electromagnetic solvers

from a commercial point of view, namely using FEKO

as example. Specifically, the effects of some of the

complex interdependencies between different components

are presented. It is shown that despite the advances made

in the field of GPGPU computing, and impressive

speedups for parts of a program or simplified problems,

there are a number of factors to consider before these

techniques can be applied to a commercial product that

is expected to be robust and, most importantly, to always

give trustworthy results for a wide variety of problems.

Index Terms ─ Commercial Solvers, CUDA, FDTD,

FEKO, FEM, GPGPU, GPU Acceleration, MoM,

RL-GO, SBR.

I. INTRODUCTION
In the field of computational electromagnetics

(CEM), a wide range of numerical techniques can be

used to simulate a variety electromagnetic radiation and

scattering problems. One of the primary reasons that

such a wide variety of methods exists, is that no single

method performs best for all problem types [1]. Thus,

one of the first challenges in solving an electromagnetic

problem is to select the method that is best or at least

reasonably suited to the problem of interest.

Even with the optimal method selected, there is still

the matter of the available computational resources to

consider. It may then be that the desired solution takes

hours, days, or even weeks to compute. One of the ways

in which an attempt has been made to increase the

computational power at disposal – thereby decreasing

the time required for a solution – has been to make use

of graphics processing units (GPUs) to perform general

purpose computational tasks, and not just the graphics-

related tasks for which they were originally designed for.

This practice, called general purpose GPU (GPGPU)

computing, has seen a remarkable increase of late, both

in terms of hardware capability, as well as the ease with

which these devices can be programmed [2].

The most common way of programming such

devices is using the Compute Unified Device Architecture

(CUDA) by NVIDIA. This couples a genuinely

programmable hardware architecture with programming

tools that can be used by any developer with a knowledge

of C/C++. Previously, GPGPU programming involved

convincing a GPU to do what one wanted by rewriting

computational routines as graphics programs. Since its

inception, CUDA's hardware/software combination has

evolved to such an extent that the latest generation of

devices can be found in the fastest supercomputers in the

world, with a much more powerful set of software

features available as well.

There has been considerable development and a

large number of papers were published on the GPU

acceleration of CEM methods, for example the Method

of Moments (MoM) [3] and [4], the Finite Element

Method (FEM) [5] and [6], and the method of Shooting

and Bouncing Rays (SBR) [7] and [8]. More general

advances such as in GPU based dense linear algebra

methods can be found, e.g., in [9]. The focus of this paper

is not to add to this (we have done so earlier, e.g., in [10]

or [11]), but instead to present an alternate perspective

on these advances. That is to say the use of GPU

technology as well as the challenges related to it are

considered from the point of view of a commercial CEM

software. To this end, the software package FEKO [12]

is taken as an example. The motivation for this is that

quite often such advances are considered from a purely

academic standpoint, and this leads to a number of short-

comings and challenges being overlooked.

Section II gives a short introduction on the FEKO

solution kernel and the various CEM methods that are

supported by it. This serves as background for a

discussion on the difficulties associated with the GPU

acceleration of a commercial CEM software package

such as FEKO in Section III, and a short discussion of

GPU accelerated solvers that exist in FEKO or are under

development in Section IV. The paper is concluded in

Section V, where a discussion on future paths to facilitate

further GPU acceleration is included.

ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016 117

1054-4887 © 2016 ACES

Submitted On: August 28, 2015
Accepted On: January 24, 2016

II. THE FEKO SOLUTION KERNEL
As already mentioned, a number of CEM methods

exist which have their own strengths and weaknesses,

and which can solve various problems of interest with

varying degrees of success. It is thus important that a

commercial CEM code such as FEKO implements a

number of these methods to allow it to be competitive for

a large selection of target application areas.

Figure 1 shows the various solution techniques

available in FEKO for the solution of RF/microwave

problems. Two factors influencing the choice of solution

method – the electrical size of the problem being

considered and the complexity of the materials being

simulated – are indicated on the axes. The possibility of

hybridizing various methods exists, and this allows for

the solution of more complex problems by selecting the

best solution method for different regions of the same

problem with full bi-directional coupling between them.

Fig. 1. A diagram depicting the various computational

methods in FEKO. The hybridization that exists between

some of the methods is also shown by green arrows.

III. CHALLENGES IN GPU

ACCELERATION
In any software development, it is required that the

available resources be allocated to maximize the

delivered value in the software project. How value is

determined is specific to each project, and may also

differ greatly between the academic and commercial

environments. In the commercial environment, for

example, the number of customers with capable

hardware demanding or being able to use GPU

acceleration directly influences the relative value of

GPU accelerated extensions when compared to other

feature extensions. Academic development may, on the

other hand, place a high importance on novelty for use in

academic publications.

A. Versatility, reliability, and reproducibility

Many academic publications on the topic of

accelerated CEM codes consider a small number of

examples to illustrate the applicability or performance

improvements of a specific method. These examples are

often simple or canonical problems, which may play to

the strengths of the method being considered, and also

may not exceed the resources – such as available

memory – of the GPU being used for acceleration.

In the commercial setting, there is no such control

over which examples are being considered, and

customers expect accurate results for a wide variety of

problems. This not only imposes heavy resource

requirements for additional validation and verification of

the accelerated methods, but also in the detection of

possible problem cases at run-time (such as running out

of GPU memory and then switching automatically to

block based algorithms or switching the computations on

the fly back to the CPU), and handling these in a well-

rounded and user friendly way.

B. Variety of CEM methods

The various computational methods included in the

FEKO solution kernel and discussed in Section II have

their own strengths and weaknesses when it comes to the

solution of CEM problems. In addition, each of these

methods present its own challenges in parallelization in

general (MPI, OpenMP, etc.), and in GPU computing

specifically.

Take the Methods of Moment (MoM) and the Finite

Element Method (FEM) as examples. These are both

matrix-based methods which require the construction,

and (for driven problems) the subsequent solution of a

linear system of equations. It is also possible to formulate

certain classes of problems in each method as

generalized eigenvalue problems.

At this point it may seem as if these two methods

would be amenable to similar approaches when

considering them for GPU acceleration. The situation is,

however, that the linear system which results as part of a

MoM computation is dense, whereas that associated with

the FEM is a sparse system. Although GPU tools exit for

the solution of both types of systems, the difference in

performance of dense and sparse computation on a GPU

means that the realized speedup will differ significantly.

Furthermore, the effect of the other phases in the solution

process (e.g., matrix fill) must also be taken into

consideration and will be discussed in Section IV.

C. Software and design decisions

Another important factor regarding the adoption of

GPU acceleration in an existing commercial CEM

package are design and development decisions such as

the language of implementation and low-level program

118 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

flow, which if – if not selected carefully – may not map

well to massively parallel architectures such as GPUs.

CUDA was already mentioned as programming

language to support NVIDIA cards. In the OpenMP 4.0

standard, for example, provision has been made for the

use of accelerators. OpenMP is a directive-based, open

standard which provides a portable means to parallelize

code over a number of threads. The inclusion of the

concept of accelerators and the associated operations,

means that the importance of such technologies has been

recognized. Furthermore, since the directives are

platform agnostic, acceleration would in theory not be

limited to a particular set of devices – such as NVIDIA

GPUs when using CUDA – but the same code could be

used to run on multi-core CPUs, GPUs by other vendors,

and other accelerator technologies such as Intel's Xeon

Phi coprocessors. There is also OpenCL, kind of being

in the middle between CUDA and OpenMP. In FEKO,

all three techniques (OpenCL, OpenMP, and CUDA) are

being explored and partially used, but all the following

GPU discussions refer to CUDA specifically.

Considering that many of the GPGPU programming

tools are centered on C/C++ implementations, the options

for the acceleration of for instance FORTRAN based

routines generally involve rewriting large portions of

code in C/C++, or switching to FORTRAN compilers

that do support GPU computing. Any rewriting

introduces the risk of introducing new bugs, increasing

the need for proper tuning, testing and software

verification.

In terms of switching compilers, there are also a

number of factors to consider. One of the biggest

problems is the loss of productivity – possibly for a

whole development team – due to changes required in

build processes and utilities, the introduction of

unforeseen bugs caused by incompatible compiler

options, and bugs in the compilers themselves.

IV. GPU ACCELERATION IN FEKO

A. The Method of Moments

As discussed in Section III, the MoM requires the

assembly and solution of a dense linear system with

other steps followed like near or far field calculations.

The run-time for the assembly of the matrix is quadratic

in terms of the number of unknowns, whereas that of the

solution of the linear system is cubic. The post-

processing is typically linear in terms of the number of

unknowns and linear in terms of the number of far field

directions/near field observation points etc. It follows

that as the problem size gets larger, the matrix solution

phase will dominate the overall run-time.

The matrix solution phase can be isolated and

accelerated using libraries such as MAGMA [9] or

cuSOLVER (available as part of CUDA since version

7.0). Unfortunately, even though it can be accelerated by

up to an order of magnitude, the total simulation

acceleration is significantly less, with the matrix

assembly phase now dominating the run-time. Even

though considerable speedups can be attained for this

matrix fill phase in simplified MoM code [3], a

considerable amount of development resources need to

be invested for a FEKO implementation due to the

complex nature of the code (many different basis

functions, higher order on curvilinear meshes,

Sommerfeld integrals for planar Green’s functions etc.).

B. The Finite Element Method

Another matrix-based method implemented in

FEKO is the FEM. In contrast to the MoM, the matrices

are sparse, but many of the same challenges present

themselves when the GPU acceleration of the method is

considered.

Here, the phases of the solution process which

contribute most significantly to the total simulation time

are the construction of the relevant preconditioner and

the subsequent solution of the sparse linear system.

FEKO uses by default iterative solvers for a single right

hand side which – with the right preconditioners –

provide according to our experience faster solution times

than direct sparse solvers and in particular use less

memory.

For the solution of FEM linear system, a simple

iterative solver can be expected to show a 2-5x

performance improvement when running on a GPU, but

for most problem sizes where the amount of GPU

memory is not a limitation, this translates into a

simulation speedup of only 50% as the other phases start

dominating.

Further acceleration is hampered by the sheer

number of preconditioning options available in a

software such as FEKO. In addition, differences in

matrix representation and the lack of complex value

support in available third-party libraries make the use of

a standalone approach – as was done with the MoM

matrix solution – problematic.

C. Ray launching Geometrical Optics

Along Uniform Theory of Diffraction (UTD) and

Physical Optics (PO), the Ray Launching Geometrical

Optics (RL-GO) solver – which is sometimes referred to

as Shooting and Bouncing Rays (SBR) – is ideal for the

analysis of electrically large and complex objects. It

is inherently parallel and is well suited to GPU

acceleration. As an initial proof of concept, we were able

to accelerate the calculation of the intersections of rays

with geometry in FEKO by at least an order of magnitude

when using CUDA.

However, this was handwritten CUDA code. It is

not possible to simply run the RL-GO code through

a GPU aware compiler and obtain an accelerated

implementation with similar performance. Furthermore,

the complexity and recursive nature of the code means

JAKOBUS: GPU ACCELERATED ELECTROMAGNETIC SOLVERS - A COMMERCIAL POINT OF VIEW 119

that GPU specific limits such as smaller stack size must

be addressed as well.

D. Finite Difference Time Domain Method

In much the same way that the RL-GO solver is

algorithmically well suited to GPU acceleration, the

Finite Difference Time Domain (FDTD) method lends

itself well to such parallelization. Much of this stems

from the fact that the same simple update equations are

applied to each voxel in each time step with (almost) no

communication required between adjacent updates. As is

indicated in Fig. 1, one advantage of the acceleration of

the FDTD over the RL-GO solver in FEKO is that there

is as yet no hybridization of FDTD with other methods

and thus, less complexity to be considered.

The FDTD solver implemented in FEKO makes

used of GPU acceleration to provide roughly an order

of magnitude speedup for certain problems. One

disadvantage of such a speedup is that from a user’s

perspective, the relative performance of post-processing

phases such as the calculation of far fields is significantly

lower.

For both CPU and GPU based FDTD solvers, the

measured performance is greatly affected by the problem

setup, which includes factors such as user-requested near

fields or the far fields already mentioned. If these are in

the frequency domain, for example, then additional

costly computations are required during every simulation

time step.

V. CONCLUSION
In this paper, a discussion on the challenges

associated with the GPU acceleration of the commercial

CEM software package FEKO was presented. This

showed that although a method may be promising

theoretically, its application in commercial software

generally requires the allocation of significant

development resources, with at this stage not always the

necessary demand from the market.

As examples, the acceleration of the MoM, FEM,

and RL-GO were considered, and although certain

phases of the computational process can be accelerated

significantly, the total simulation speedup is limited. The

further acceleration of these methods is hampered by the

complexity of the numerical algorithms, e.g., through

hybridization. As illustrated, for FDTD, the situation is

different.

REFERENCES
[1] D. B. Davidson, Computational Electromagnetics

for RF and Microwave Engineers, 2nd ed.,

Cambridge: Cambridge University Press, 2011.

[2] D. B. Kirk and W. W. Hwu, Programming

Massively Parallel Processors – A Hands-on

Approach, Burlington: Morgan Kaufmann, 2010.

[3] E. Lezar and D. B. Davidson, “GPU-accelerated

methods of moments by example: monostatic

scattering,” IEEE Antennas and Propagation

Magazine, vol. 52, no. 6, pp. 120-135, Dec. 2010.

[4] M. J. Inman, A. Z. Elsherbeni, and C. J. Reddy,

“CUDA based GPU solvers for method of moment

simulations,” Annual Review of Progress in

Applied Computational Electromagnetics, Tampere,

Finland, Apr. 2010.

[5] E. Lezar and D. B. Davidson, “GPU-based Arnoldi

factorization for accelerating finite element

eigenanalysis,” International Conference on

Electromagnetic in Advanced Applications (ICEAA),

Torino, Italy, Sept. 2009.

[6] A. Dziekonski, A. Lamecki, and M. Mrozowski,

“On fast iterative solvers with GPU acceleration

for finite elements in electromagnetics,” 10th

International Workshop on Finite Elements for

Microwave Engineering, Mill Falls, NH, USA,

Oct. 2010.

[7] K. E. Spagnoli, An Electromagnetic Scattering

Solver Utilizing Shooting and Bouncing Rays

Implemented on Modern Graphics Cards, ProQuest,

2008.

[8] Y. Tao, H. Lin, and H. Bao, “GPU-based shooting

and bouncing ray method for fast RCS prediction,”

IEEE Trans. Antennas Propagat., vol. 58, no. 2,

pp. 494-502, 2010.

[9] ICL, University Tennessee, Knoxville, “MAGMA:

Matrix Algebra on GPU and Multicore

Architectures,” 2015. [Online]. Available: http://icl.cs.

utk.edu/magma/index.html

[10] E. Lezar and U. Jakobus, “GPU accelerated

electromagnetic simulations with FEKO,”

International Supercomputing Conference,

Hamburg, June 2012.

[11] E. Lezar, U. Jakobus, and S. Kodiyalam, “GPU

related advances in the FEKO electromagnetic

solution kernel,” International Conference on

Electromagnetics in Advanced Applications

(ICEAA), Torino, Italy, Sept. 2013.

[12] Altair Development S.A. (Pty) Ltd, “FEKO – Field

Computations Involving Bodies of Arbitrary Shape,”

2016. [Online]. Available: www.altairhyperworks.

com/feko

120 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

GPU Acceleration of Nonlinear Modeling by the Discontinuous Galerkin

Time-Domain Method

Huan-Ting Meng and Jian-Ming Jin

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

meng2@illinois.edu, j-jin1@illinois.edu

Abstract ─ A discontinuous Galerkin time-domain

(DGTD) algorithm is formulated and implemented to

model the third-order instantaneous nonlinear effect on

electromagnetic fields due the field-dependent medium

permittivity. The nonlinear DGTD computation is

accelerated using graphics processing units (GPUs).

Two nonlinear examples are presented to show the

different Kerr effects observed through the third-order

nonlinearity. With the acceleration using MPI + GPU

under a large cluster environment, the solution times for

nonlinear simulations are significantly reduced.

Index Terms ─ Computational electromagnetics, DGTD,

GPU acceleration, Kerr effect, nonlinear electromagnetics,

third-order nonlinearity.

I. INTRODUCTION
Nonlinear phenomena in electromagnetics generally

involve changes in the material properties due to the

presence of electromagnetic fields. The changes in the

material properties in turn modify the state of the original

electromagnetic fields in the medium. Since the material

properties and the contained fields interact with each

other constantly, it is most natural to describe and model

these interactions in the time domain, where at each time

instant the changes in the fields induce nonlinear

modifications on both the material properties and the

fields themselves.

The nonlinear Kerr effect [1] is one of the most

studied and exploited optical effects. It describes the

third-order interaction between the electric field and the

permittivity of the material, which produces a variety of

nonlinear phenomena [1], [2], such as third-harmonic

generation (THG), self-phase modulation (SPM), self-

focusing, and frequency mixing. Much investigation has

been carried out for the simulation of the nonlinear

optical effects using the finite-difference time-domain

(FDTD) algorithms [3], due to their straightforward

implementation.

This work is focused on the modeling of the third-

order Kerr instantaneous nonlinearity using the

discontinuous Galerkin time-domain (DGTD) algorithm.

The nonlinear DGTD algorithm possesses many

advantages of the linear DGTD algorithms over nonlinear

FDTD algorithms, including the flexibility in complex

geometry modeling, reduced phase shifts, and the ease to

achieve higher order accuracy and convergence. To

speed up the computation, the MPI + GPU framework

developed in [4] is adapted to accelerate the nonlinear

DGTD algorithm.

II. FORMULATION
For a general third-order nonlinear medium, the

relative permittivity can be written as:
(3) 2

,L ,N L ,L() ,r r r r rE E (1)

where
,Lr and

,N Lr are the linear and nonlinear parts

of the relative permittivity, respectively, (3) is the

third-order nonlinear polarization coefficient, and E is

the magnitude of the time-varying electric field. Here we

focus on the derivation of the DGTD algorithm to model

a nonlinear, lossless, and non-dispersive medium to

update the electric field since the updating equation for

the magnetic field has no nonlinear components and thus

is identical to that in a linear medium. Testing Ampere’s

law using the Galerkin method, substituting in the

expansion of the fields, and applying the central flux, the

equation after taking the time derivative on D for

element e becomes:

0

0

[]{ } { }

{ }
[]{ },

e

e

e er

e i j

V

e e

r i j eh

V

S h N N dV e
t

e
N N dV F h h

t

(2)

where

1
(,) () () ,

e

e e

e i j

V

S i j N N dV

 (3)

and { }e and { }h are the electric and magnetic field

solution vectors and e

iN and
e

jN are vector basis

functions. The terms associated with the boundary

conditions are omitted for simplicity. Since the time-

varying permittivity is embedded in the mass matrix of

ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016 121

1054-4887 © 2016 ACES

Submitted On: August 29, 2015
Accepted On: March 30, 2016

the DGTD algorithm, the volume integration pertaining

to the electric field is now split into two terms by the

product rule, where for the nonlinear medium, both the

relative permittivity and the electric field are functions

of time. Discretizing Equation (2) in the time domain

using central difference gives:
1 1

0

1 1

0

1/2

{ } { }

2

{ } { }

2

{ } ,

e

e

n n n n
e er r

i j

V

n n n n
e er r

i j

V

n

e e
N N dV

t

e e
N N dV

t

b

 (4)

where 1n

r
 is the field-dependent nonlinear permittivity

at the future time step, n

r is the converged permittivity

at the current time step, and
1/2 1/2 1/2 1/2{ } []({ } { }) []{ } .n n n n

eh eb F h h S h (5)

After rearranging the terms, Equation (4) can be cast into

a field-marching form as:
1 1 1/2[] { } [] { } { } ,n n n n n

e eM e M e b (6)

where
1 10[]

e

n n e e

e r i j

V

M N N dV
t

, (7)

and

0[] .

e

n n e e

e r i j

V

M N N dV
t

(8)

Due to the variation of the field magnitude at each time

step, ()r E of each element changes with time, and

therefore the mass matrix 1[]n

eM has to be reassembled

at every time step. Note that, we have recovered the

original expression for []eM as in the linear DGTD

algorithm, albeit with a field- and time-dependent

permittivity. The dependency of 1{ }ne in 1[]n

eM

renders Equation (6) a nonlinear equation.

At each time marching step n, the fixed-point

method is employed to solve Equation (6), where
1/2{ }nb is computed with the initial guess 1

0{ } { }n ne e

and 1

0[] []n n

e eM M . At the thk iteration step, the mass

matrix 1

1[]n

e kM

is inverted to update the field solution

1{ }n

ke . The updated solution is in turn used to update the

mass matrix 1[]n

e kM using Equation (7). If the norm of

the residual { }n

kr of Equation (6) is smaller than a

predefined threshold, then the nonlinear iteration is

converged, and the equation can be marched to the next

time step 1n . Otherwise it continues with the (1) thk

iteration step.

III. GPU IMPLEMENTATION
Because of the necessity to solve nonlinear equations

in each time step, the nonlinear DGTD computation is

very time-consuming. This computation can be effectively

accelerated by exploiting the power of graphics

processing units (GPUs). The GPU implementation for

the nonlinear DGTD algorithm is similar to the approach

described in [4], employing the same coalesced memory

accessing pattern and thread/block allocation. Since the

electric field update processes that are not related to
1{ }ne are similar to the ones found in [6], here we focus

on the parallelization of the computation related to
1{ }ne , which includes the assembly of the nonlinear

mass matrix
1[]n

eM
and the inversion of this mass

matrix.

To assemble the nonlinear mass matrix, note that

each mass matrix entry is numerically integrated through

quadrature, where the contribution from each weighted

quadrature point is summed. Due to the presence of

nonlinearity,
r on each quadrature point changes during

each iteration step, while the other constituting terms in

equation (7) remain identical. To parallelize the assembly

of the mass matrix, the constituting matrices at each

quadrature point are pre-calculated and stored, and then

summed together at each iteration step by first multiplying

with the updated .r The proposed parallelization

strategy and the memory access pattern are shown in

Fig. 1, with each of the total numTets elements

parallelized over its numTetDofs unknowns using

CUDA threads. Each threadblock is assigned with a

calculated number of elements to utilize all warps [4]. At

each iteration step, the mass matrices are assembled by

looping through numQuads quadrature points and

summing their contribution, which is completely

parallelizable.

Fig. 1. Parallelization and memory access pattern for the

assembly of the nonlinear mass matrices.

To invert the nonlinear mass matrix, we parallelize

the standard non-pivoting element-level Gaussian

elimination on the GPU. Each numTetDofs threads for

an element loops over each elemental matrix rows and

122 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

reduce them into row echelon form. Although the

elimination is only semi-parallelizable, the batch

processing of the elimination process for the nonlinear

elements somewhat provides a decent speedup. Note

that, the mass matrix has a small condition number, and

therefore can be easily inverted using the standard

Gaussian elimination without partial pivoting. This is

beneficial for the GPU acceleration since the partial

pivoting process involves many conditional statements

and branches, which are undesirable for the parallelization

on GPUs.

IV. NUMERICAL EXAMPLES
Two examples are presented here to demonstrate the

self-phase modulation, the third-harmonic generation,

and the self-focusing effects captured by the extended

DGTD algorithm and the GPU speedup. The simulation

was carried out on the XSEDE Stampede cluster with

NVIDIA Tesla K20 GPUs and Xeon E5-2680 CPU

threads.

A. Demonstration of the self-phase modulation and

the third-harmonic generation

The first example is a coaxial waveguide with an

inner and outer radius of 1 and 2 mm, respectively, and

a length of 40 mm. A small section of linear medium is

placed near each end for excitation and absorption of the

fields, and the rest of the coaxial waveguide is filled with

either a linear or nonlinear medium, with a linear

permittivity of
,L 1.0r and a third-order nonlinearity

coefficient of (3) 4e-8. The input signal is a modulated

Gaussian pulse with a center frequency of 20 GHz. The

number of finite elements is 110,715, and the solution

marches at a time step of 0.075pst for a total of

10,000 time steps for both the linear and nonlinear cases.

Mixed first-order basis functions are used for the

computation. The time-domain response for the two

cases is shown in

Fig. 2. It can be observed that with a linear medium,

the shape of the output signal is identical to the input,

whereas with a nonlinear medium the output signal

steepens and forms shock waves, showing the self-

steepening effect [1].

The frequency-domain response for the output

signal is shown in

Fig. 3. For the linear case, we have retained the

frequency profile of the original input Gaussian pulse

centered at 20 GHz. For the nonlinear case, the third-

harmonic effect generates harmonics at odd multiples of

the original 20 GHz signal at 60 GHz, 100 GHz, 140

GHz, and so on. In addition, the self-phase modulation

effect broadens the input bandwidth, where the leading

and the trailing edges shift to lower and higher

frequencies, respectively [1]. This result is validated

using COMSOL. Table 1 gives the average per-step CPU

and GPU timing for the simulation. The lower speedup

as comparing to [4] is in large due to the uneven

nonlinearity encountered by the different elements,

which correlates to thread idling in a warp, and the semi-

serial nature of the Gaussian elimination process. This

thread idleness effectively lowers the number of FLOPS

as well as the overall bandwidth.

Fig. 2. Time-domain response of the electric field for a

coaxial waveguide filled with a section of linear or

nonlinear medium.

Fig. 3. Frequency-domain response of the output signal

for a coaxial waveguide filled with a section of linear or

nonlinear medium.

Table 1: Average per-step timing comparison for the

simulation of a nonlinear coaxial waveguide

MPI 1 2 4 8

CPU Time per Step (ms)

Marching 1,482.00 741.61 369.71 183.15

Comm. 0 35.51 33.74 38.79

Per-Step 1,482.00 777.12 403.45 221.94

GPU Time per Step (ms)

Marching 47.21 23.73 12.00 6.14

Comm. 0 2.94 1.53 4.57

Per-Step 47.21 26.67 13.52 10.71

Speedup 31.39 29.14 29.83 20.72

MENG, JIN: GPU ACCELERATION OF NONLINEAR MODELING BY THE DGTD METHOD 123

B. Demonstration of the self-focusing effect

The second example demonstrates the self-focusing

effect through beam-shaped field propagation in a

1mm 1mm 3mm bulk medium. The linear relative

permittivity is
,L 1.0r and the third-order nonlinearity

coefficient is (3) 8 . The excitation is a tapered TEM

sine wave at 300 GHz, launched through a square

aperture with a dimension of a half of the excitation

wavelength. The number of finite elements is 664,039,

and the solution marches at a time step of 0.01pst

for a total of 5,000 time steps, where mixed first-order

basis functions are used for the simulation. The field

profiles in the bulk medium at various times for both

linear and nonlinear cases are shown in Fig. 4. In the

nonlinear medium, the specific electric field generates a

strong nonlinearity, which results in a maximum

instantaneous relative permittivity of 8.27,r or a

727% change to the linear relative permittivity. As can

be seen, due to nonlinearity, the field experiences pulse

compression which shortens the duration of each pulse.

This effect is due to self-phase modulation. As the field

propagates along the bulk medium, the wave is naturally

diffracted in the linear medium, where the magnitude of

the field decreases significantly after a couple of

wavelengths. In the nonlinear medium, the intensity of

the field modifies the surrounding medium into a self-

induced waveguide, which counteracts natural diffraction

and preserves the magnitude of the propagating wave for

a longer distance in the medium.

 (a) (b)

Fig. 4. Time-domain field profile for wave propagation

in a: (a) linear and (b) nonlinear medium at 5, 20, 25, and

50ns, respectively.

Table 2 shows the GPU average per-step timing.

Since different elements experience different levels of

nonlinearity at different times due to the propagation of

the field, the CUDA threads for a converged element will

idle and wait for the rest of the elements in the same GPU

to synchronize before completing the kernel (a single

time step). This results in some MPI nodes having to idle

and wait for the others to iteratively converge before

moving onto the next time step together. This idling time

is taking into account in the average communication

time, which is significantly longer for the fixed-point

method due to the large differences in the number of

iterations between different regions at any particular

moment. Due to the high nonlinearity of the example, it

is impractical to analyze the CPU performance. However,

it is expected that higher speedup can be achieved

comparing to the previous example, due to the increasing

number of elements [4].

Table 2: Average GPU per-step timing (in ms) for the

wave propagation in a bulk medium

MPI 1 2 4 8

Volume 569.93 287.23 142.95 72.41

Surface 10.01 5.04 2.55 1.31

Comm. 0 35.51 33.74 38.79

Per-Step 1,482.00 777.12 403.45 221.94

V. CONCLUSION
The DGTD algorithm was extended to model the

instantaneous third-order Kerr-type nonlinearity. The

resulting computationally intensive DGTD algorithm

was accelerated with GPUs based on the parallelization

framework from our prior work. Numerical examples

demonstrated that the DGTD simulation was able to

capture various nonlinear phenomena and the GPU

acceleration was able to achieve a good speedup for this

computationally intensive simulation.

REFERENCES
[1] R. W. Boyd, Nonlinear Optics. Burlington, MA:

Academic Press, 2008.

[2] B. Saleh and M. Tech, Fundamentals of Photonics.

New York, NY: Wiley, 2013.

[3] R. M. Joseph and A. Taflove, “FDTD Maxwell’s

equations models for nonlinear electrodynamics

and optics,” IEEE Trans. Antennas Propag., vol.

45, pp. 364-374, Mar. 1997.

[4] H.-T. Meng and J.-M. Jin, “Acceleration of the

dual-field domain decomposition algorithm using

MPI-CUDA on large-scale computing systems,”

IEEE Trans. Antennas Propag., vol. 62, no. 9, pp.

4706-4715, Sept. 2014.

124 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

Multilevel Inverse-Based Factorization Preconditioner for Solving Sparse

Linear Systems in Electromagnetics

Yiming Bu 1,2, Bruno Carpentieri 3, Zhaoli Shen 1,2, and Tingzhu Huang 2

1 Institute of Mathematics and Computer Science, University of Groningen, Groningen, 9712 CP, The Netherlands

yangyangbu@126.com, z.shen@rug.nl

2 School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731

China tingzhuhuang@126.com

3 School of Science and Technology, Nottingham Trent University, Burton Street, Nottingham NG1 4BU, UK

bruno.carpentieri@ntu.ac.uk

Abstract ─ We introduce an algebraic recursive multilevel

approximate inverse-based preconditioner, based on a

distributed Schur complement formulation. The proposed

preconditioner combines recursive combinatorial

algorithms and multilevel mechanisms to maximize

sparsity during the factorization.

Index Terms ─ Approximate inverse preconditioners,

computational electromagnetics, Krylov subspace

methods, sparse matrices.

I. INTRODUCTION
We consider multilevel approximate inverse-based

factorization preconditioners for solving systems of

linear equations;

Ax = b, (1)

where
n nA is a typically large nonsymmetric sparse

matrix arising from finite difference, finite element or

finite volume discretization of systems of partial

differential equations in electromagnetism applications.

Approximate inverse methods directly approximate

A−1 as the product of sparse matrices, so that the

preconditioning operation reduces to forming one (or

more) sparse matrix-vector product(s). Due to their

inherent parallelism and numerical robustness, this class

of methods are receiving renewed consideration for

iterative solutions of large linear systems on emerging

massively parallel computer systems. In practice,

however, some questions need to be addressed. First of

all the computed preconditioner could be singular. In the

second place, these techniques usually require more

CPU-time to compute the preconditioner than

Incomplete LU factorization (ILU)-type methods. Third,

the computation of the sparsity pattern of the

approximate inverse can be problematic, as the inverse

of a general sparse matrix is typically fairly dense. This

leads to prohibitive computational and storage costs.

In this paper we present experiments with an

algebraic recursive multilevel inverse-based factorization

preconditioner that attempts to remedy these problems.

The solver, proposed in [1], uses recursive combinatorial

algorithms to preprocess the structure of A and to

produce a suitable ordering of the unknowns of the linear

system that can maximize sparsity in the approximate

inverse. An efficient tree-based recursive data structure

is generated to compute and apply the multi-level

approximate inverse fast and efficiently. We assess the

effectiveness of the sparse approximate inverse to reduce

the number of iterations of Krylov methods for solving

matrix problems arising from electromagnetism

applications, also against other popular solvers in use

today.

II. THE MULTILEVEL FRAMEWORK

We divide the solution of the linear system into the

following five distinct phases:

1) a scale phase, where the matrix A is scaled by

rows and columns so that the largest entry of the

scaled matrix has magnitude smaller than one;

2) a preorder phase, where the structure of A is used

to compute a suitable ordering that maximizes

sparsity in the approximate inverse factors;

3) an analysis phase, where the sparsity preserving

ordering is analyzed and an efficient data

structure is generated for the factorization;

4) a factorization phase, where the nonzero entries

of the preconditioner are actually computed;

5) a solve phase, where all the data structures are

accessed for solving the linear system.

A. Scale phase

Prior to solving the system, we scale it by rows and

ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016 125

1054-4887 © 2016 ACES

Submitted On: August 30, 2015
Accepted On: April 11, 2016

mailto:yangyangbu@126.com
mailto:yangyangbu@126.com
mailto:tingzhuhuang@126.com
mailto:bruno.carpentieri@ntu.ac.uk

columns to reduce its condition number. We replace

system (1) with:

1/2 1/2 1/2

1 1 2, ,D Ay D b y D x (2)

where the n × n diagonal scaling matrices have the form:

 1

1
, if i j

| |

0

max, ,

, if i j

ij

i

aD i j

 2

1
, if i j

| |

0

max, .

, if i j

ij

j

aD i j

For simplicity, we still refer to the scaled system (2) as

Ax = b.

B. Preorder phase

We describe this step using standard notation of

graph theory. First, we compute the undirected graph

Ω(Ã) associated with the matrix;

, if A is symmetric,

if A is unsymmetric.,T

A
Ã

A A

Then, Ω(Ã) is partitioned into p non-overlapping

subgraphs Ωi of roughly equal size by using the

multilevel graph partitioning algorithms available in the

Metis package [2]. For each partition Ωi we distinguish

two disjoint sets of nodes: interior nodes that are

connected only to nodes in the same partition, and

interface nodes that straddle between two different

partitions; the set of interior nodes of Ωi form a so called

separable or independent cluster. After renumbering the

vertices of Ω one cluster after another, followed by the

interface nodes as last, and permuting A according to this

new ordering, a block bordered linear system is obtained,

with coefficient matrix of the form:

1 1

1

.T

p p

p

B F

B F
Ã P

B
A

FE C

E

P

E C

 (3)

In (3), each diagonal block Bi corresponds to the interior

nodes of Ωi; the blocks Ei and Fi correspond to the

interface nodes of Ωi; the block C is associated to the

mutual interactions between the interface nodes. In our

multilevel scheme we apply the same block downward

arrow structure to the diagonal blocks of Ã recursively,

until a maximum number of levels is achieved or until

the blocks at the last level are sufficiently small and easy

to factorize. As an example, in Fig. 1 (a) we show the

structure of the general sparse matrix rdb2048 from Tim

Davis matrix collection [3] after three reordering levels.

(a) The structure of

rdb2048 after permutation

(b) The structure of the inverse

factor (In red are displayed the

entries actually stored)

Fig. 1. Structure of the multilevel inverse-based

factorization for the matrix rdb2048.

C. Analysis phase

The data format for storing the block bordered form

(3) of Ã is defined, allocated and initialized using a tree

structure. The root is the whole graph Ω and the leaves

at each level are the independent clusters of each

subgraph. In other terms, each node of the tree

corresponds to one partition Ωi or equivalently to one

block Bi of Ã. The information stored at each node are

the entries of the off-diagonal blocks E and F of
iB s

father, and those of the block C of Bi after its

permutation, except at the last level of the tree where we

store the entire block B. These blocks are stored in sparse

format.

D. Factorization phase

In this phase, we compute the approximate inverse

factors
1L and

1U
of Ã, which have the following form:

1

1 1

1

1

1

,
p p

S

U W

U W

U

L

1

1

1

1

1

1

,
p

p S

L

L

G G L

U

where Bi = LiUi, and

1 1 1 1 1 1, ,i i i i S i S i i iW U L F GU UL E L (4)

and LS, US are the triangular factors of the Schur

complement matrix:

1

1

.
p

i i i

i

S C E B F

During the factorization, fill-in may occur in
1L and

1U but only within the nonzero blocks. Additional

sparsity is gained by applying the arrow structure (3) to

the diagonal blocks recursively. This can be seen in Fig.

126 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

1 (b). For computing the factorization we only need to

invert explicitly the last level blocks and the small Schur

complements at each reordering level. The blocks Wi, Gi
do not need to be assembled. They may be applied using

Eq. (4). For the rdb2048 problem in Fig. 1 (b), we

display in red the entries that we actually stored for

computing the exact multilevel inverse factorization;

these are only 34% of the nonzeros of A.

E. Solve phase

In the solve phase, the multilevel factorization is

applied at every iteration step of a Krylov method for

solving the linear system. Notice that the inverse

factorization of Ã may be written as:
11

1

11

0
() ,

0

T

SS

LU W
PAP

LU G

(5)

where
1 1 1 1 1 1, ,S SU L F G L EW U U L and LS,

US are the inverse factors of the Schur complement

matrix 1 .S C EB F
From Eq. (5), we obtain the following expression for

the exact inverse:
1 1 1 1 1 1

1 1 1
.

B B FS EB B FS

S EB S

(6)

We can derive preconditioners from Eq. (6) by computing

approximate solvers 1B for B and 1S for S. Hence,

the preconditioner M has the form:
1 1 1 1 1 1

1 1 1
.

B B FS EB B FS
M

S EB S

III. NUMERICAL EXPERIMENTS
We show some preliminary results with the proposed

Algebraic Multilevel Explicit Solver (AMES) for solving

a set of matrix problems arising from electromagnetics

applications [3]. We summarize the list of problems in

Table 1. In our experiments, we choose ILUPACK [7] as

the local solver in AMES to invert the diagonal blocks at

the last level, and the Schur complements at each level.

Notice that in this case the entries of the inverse factors

are not computed explicitly, and the application of the

preconditioner is carried out through a backward and

forward substitution procedure. We solve the right

preconditioned system ,AMy b x My instead of (1),

using restarted GMRES [4] preconditioned by AMES.

We compare AMES against two other popular algebraic

preconditioners for linear systems, that are the Algebraic

Recursive Multilevel Method (ARMS) by Saad and

Suchomel [5] and the Sparse Approximate Inverse pre-

conditioner (SPAI) by Grote and Huckle [6], at roughly

equal memory costs.1 We use the zero vector as initial

1 We choose a combination of parameters for AMES, and tune the dropping

threshold for ARMS and SPAI to obtain similar memory cost.

guess in our code, and we terminate the solution process

when the norm of residual is below 10
−12 or the iterations

count exceeds 5000. For the performance comparison,

we report on the memory ratio

,

nnz

nnz

M

A

 number of

iterations (Its), and time costs for performing the

preordering phase (tp), the factorization phase (tf) and the

solving phase (ts). The experiments are run in double

precision floating point arithmetic in Fortran95, on a PC

equipped with an Intel(R) Core(TM) i5-3470 running at

3.20 GHz and with 8 GB of RAM and 6144 KB of cache

memory.

Table 1: Set and characteristics of test matrix problems

Matrix Problem Size nnz(A) Field

dw2048 2,048 10,114
Square dielectric

waveguide

dw8192 8,192 41,746
Square dielectric

waveguide

utm3060 3,060 42,211 Uedge test matrix

utm5940 5,940 83,842 Uedge test matrix

2cubes_sphere 101,492 874,378
FEM

electromagnetics

A. Varying number of reduction levels in AMES

We consider the dw2048, dw8192 and 2cubes_sphere

problems for these experiments. Increasing the number

of levels may help reduce the number of iterations at

similar memory cost. In our experiments, varying the

number of levels nlev from 1 to 3 for a given problem, we

tuned the dropping threshold to keep roughly the same

memory cost in each run, and then we studied the effect

on convergence. The results of our experiments, reported

in Table 2, show that using more levels enabled us to

reduce the number of iterations at similar memory

ratio. However, the computing time for the preordering

phase (tp) and the solution cost per iteration tend to

increase with the nlev. We conclude that a small number

of reduction levels is recommended to use in AMES.

Table 2: Performance of AMES with varying numbers of

reduction levels

Matrix nlev
()

()

nnz M

nnz A
Its

tp

(sec)

tf

(sec)

ts

(sec)

ttot

(sec)

dw2048

1 2.37 24 0.023 0.025 0.008 0.056

2 2.33 22 0.029 0.021 0.011 0.061

3 2.38 17 0.030 0.021 0.027 0.078

dw8192

1 3.22 87 0.067 0.109 0.312 0.488

2 3.27 82 0.083 0.128 0.417 0.628

3 3.28 78 0.092 0.141 0.744 0.977

2cubes_
sphere

1 0.31 12 1.271 3.691 0.310 5.272

2 0.31 12 1.503 2.552 0.598 4.653

3 0.31 11 2.333 1.829 1.200 5.362

BU, ET AL.: MULTILEVEL INVERSE-BASED FACTORIZATION PRECONDITIONER FOR SPARSE LINEAR SYSTEMS 127

B. Varying the number of reduction levels for the

Schur complement

The Schur complement matrix S relative to the block

C in (3) typically preserves a good deal of sparsity that

can be exploited during the factorization by reordering S

in a multilevel nested dissection structure, similarly to

what is done to the upper leftmost block B. We have

implemented this idea at the first permutation level,

using ILU factorization as local solver for the reduced

Schur complement matrix. We denote by ASlev the number

of reduction levels used for the Schur complement. We

consider again the dw2048, dw8192 and 2cubes_sphere

problems in these experiments. For a certain test problem,

we vary ASlev keeping all the other parameters constant,

and we tune the drop tolerance in the ILU factorization

to have similar memory costs. The value ASlev = 0 means

that only the diagonal blocks of the upper-left block B

are permuted. Clearly, the max value of ASlev is limited

by the size of Schur complement. From Table 3, we see

that simultaneous permutation of both the diagonal

blocks of B and of the Schur complement S can make the

AMES solver more robust to some extent. However, the

implementation cost increases and thus, although useful,

this option is problem dependent. In our experiments of

the coming sections, we select the value for the

parameter ASlev that minimizes the total solution cost.

Table 3: Performance of AMES with varying numbers of

reduction levels

Matrix ASlev
()

()

nnz M

nnz A

Its

tp

(sec)

tf

(sec)

ts

(sec)

ttot

(sec)

dw2048

0 2.37 24 0.023 0.025 0.008 0.056

1 2.37 12 0.023 0.027 0.005 0.055

2 2.37 12 0.024 0.031 0.012 0.067

dw8192

0 3.22 87 0.067 0.109 0.312 0.488

1 3.26 21 0.067 0.164 0.057 0.288

2 3.26 18 0.073 0.156 0.060 0.289

2cubes_
sphere

0 0.31 12 1.271 3.691 0.310 5.272

1 0.31 11 1.277 3.974 0.334 5.585

2 0.31 11 1.288 4.016 0.350 5.654

3 0.31 11 1.298 3.985 0.355 5.638

C. Comparing AMES against other preconditioners

From Table 4, we can clearly see that the AMES

preconditioner shows a good potential of reducing the

number of iterations against other state-of-the-art

preconditioning techniques at similar memory costs.

This result demonstrates the overall good efficiency

of the fill reducing strategies implemented in the

preconditioner on the selected electromagnetic problems.

One exception is the 2cubes_sphere problem, which has

favourable properties for the SPAI method. The good

decay of the entries away from the diagonal makes this

problem suitable for SPAI. The AMES method still

remains competitive. However, the pre-processing and

solution costs for setting up and applying the multilevel

recursive scheme do not pay off in this case.

Table 4: Performance comparison of the multilevel

approximate inverse preconditioner against other iterative

solvers

Matrix Method
()

()

nnz M

nnz A

Its

tp

(sec)

tf

(sec)

ts

(sec)

ttot

(sec)

dw2048

AMES 2.37 12 0.023 0.027 0.005 0.055

ARMS 2.39 670 0 0.009 0.081 0.090

SPAI 2.37 2239 0 0.094 0.367 0.461

dw8192

AMES 3.26 21 0.067 0.164 0.057 0.288

ARMS 3.37 +5000 0 0.040 +10.89 +10.93

SPAI 3.33 +5000 0 0.836 +4.841 +5.677

Utm3060
AMES 2.79 125 0.077 0.145 0.366 0.588

ARMS 2.93 402 0 0.030 0.763 0.793

SPAI 2.88 +5000 0 3.131 +3.095 +6.226

Utm5940
AMES 3.50 267 0.147 0.409 2.738 3.294

ARMS 3.51 1150 0 0.077 5.085 5.162

SPAI 3.51 +5000 0 11.76 +11.02 +22.78

2cubes_
sphere

AMES 0.31 12 1.271 3.691 0.310 5.272

ARMS 0.32 68 0 0.262 0.986 1.248

SPAI 0.32 8 0 3.269 0.153 3.422

IV. CONCLUSIONS

In this paper we used recursive combinatorial

techniques to remedy two typical drawbacks of explicit

preconditioning, that are lack of robustness and high

construction cost. The numerical experiments show that

these strategies can improve the performance of

conventional approximate inverse methods, yielding

iterative solutions that can compete favourably against

other popular solvers in use today.

REFERENCES
[1] Y. Bu, B. Carpentieri, Z. Shen, and T.-Z. Huang,

“A hybrid recursive multilevel incomplete

factorization preconditioner for solving general

linear systems,” Applied Numerical Mathematics,

vol. 104, pp. 141-157, 2016.

[2] G. Karypis and V. Kumar, “A fast and high quality

multilevel scheme for partitioning irregular graphs,”

SIAM J. Sci. Comput., vol. 20, pp. 359-392, 1999.

[3] T. Davis, Sparse Matrix Collection, (1994).

Available at the URL: http: //www.cise.ufl.edu/

research/sparse/matrices

[4] Y. Saad, Iterative Methods for Sparse Linear

Systems. SIAM Publications, 2nd edition, 2003.

[5] Y. Saad and B. Suchomel, “ARMS: An algebraic

recursive multilevel solver for general sparse linear

systems,” Numer. Linear Algebra Appl., vol. 9, no.

5, pp. 359-378, 2002.

[6] M. Grote and T. Huckle, “Parallel preconditionings

with sparse approximate inverses,” SIAM J. Sci.

Comput., vol. 18, pp. 838-853, 1997.

[7] M. Bollhoefer, Y. Saad, and O. Schenk, ILUPACK -

Preconditioning Software Package, 2010. Available

online at the URL: http://ilupack.tu-bs.de.

128 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

Porting an Explicit Time-Domain Volume Integral Equation Solver onto

Multiple GPUs Using MPI and OpenACC

Saber Feki 1, Ahmed Al-Jarro 3, and Hakan Bagci 2

1 KAUST Supercomputing Laboratory
2 Division of Computer, Electrical and Mathematical Sciences and Engineering

King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, KSA

{saber.feki, hakan.bagci}@kaust.edu.sa

3 Department of Electronic and Electrical Engineering

University College London, Torrington Place, WC1E 7JE, London, UK

ahmed.aljarro@ucl.ac.uk

Abstract ─ A scalable parallelization algorithm to port

an explicit marching-on-in-time (MOT)-based time

domain volume integral equation (TDVIE) solver onto

multi-GPUs is described. The algorithm makes use of

MPI and OpenACC for efficient implementation. The

MPI processes are responsible for synchronizing and

communicating the distributed compute kernels of the

MOT-TDVIE solver between the GPUs, where one MPI

task is assigned to one GPU. The compiler directives of

the OpenACC are responsible for the data transfer and

kernels’ offloading from the CPU to the GPU and their

execution on the GPU. The speedups achieved against

the MPI/OpenMP code execution on multiple CPUs and

parallel efficiencies are presented.

Index Terms ─ Explicit marching-on-in-time scheme,

GPU, MPI, OpenACC, time-domain volume integral

equation.

I. INTRODUCTION
The use of hardware accelerators, including multi

and many-core architectures, has been increasing in

many emerging applications of high performance

computing (HPC) as they provide cost effectiveness,

power efficiency, and physical density. Nevertheless,

one of the limiting factors to a wider spread use of multi-

core accelerators, such as GPUs, is the human-labor

intensive porting process required by low-level

programming models, such as CUDA [1] and OpenCL

[2]. To overcome this limit, HPC research has focused

on developing high-level directive based programming

models, such as OpenACC [3], which provide compiler

directives and clauses to annotate codes originally

developed for CPUs in a manner similar to how OpenMP

[4] is used on codes executed on multicore CPU

architectures. This high-level approach, when carefully

implemented, significantly reduces the re-programming

efforts while maintaining the efficiency of the resulting

codes.

In this work, we report on our recent efforts on

parallelizing a fully explicit marching-on-in-time (MOT)-

based time-domain volume integral equation (TDVIE)

solver [5] for efficient execution on multiple GPUs.

The MOT-TDVIE solvers are becoming attractive

alternatives to finite difference time domain (FDTD)

schemes for analyzing transient electromagnetic

scattering from inhomogeneous dielectric objects [5, 6].

However, their effective use in practical problems of

photonics, optoelectronics, and bio-electromagnetics,

where electrically large scatterers need to be discretized

with millions of degrees of freedom, relies on

acceleration algorithms such as the plane-wave time

domain (PWTD) method [7] and/or hardware-based

acceleration [8-11].

Our recent research has focused on the latter; we

developed highly scalable parallelization algorithms [8,

9] to enable the explicit MOT-TDVIE solver of [5] in

analyzing scattering from electrically large structures.

Additionally, we used OpenACC to enable the execution

of the same solver on GPUs [10, 11]. Significant

performance improvements with up to 30X and 11X

speedups relative to the sequential and multi-threaded

CPU codes were achieved. Furthermore, we demonstrated

that the (single) GPU-accelerated MOT-TDVIE solver

could leverage energy consumption gains on the order of

3X relative to its multi-threaded CPU version [10]. In

this paper, we describe in detail the process of porting

the same MOT-TDVIE solver onto multi-GPUs using

MPI/OpenACC. Additionally, we present numerical

results, which demonstrate that the ported code executes

up to 11.2X faster on multi-GPUs than on conventional

CPUs.

ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016 129

1054-4887 © 2016 ACES

Submitted On: September 20, 2015
Accepted On: July 4, 2016

II. MOT-TDVIE SOLVER

A. MOT-TDVIE algorithm

Let V represent the volumetric support of dielectric

scatterer with permittivity () r residing in an unbounded

background medium with permittivity
0 . The scatterer

is excited by a band-limited incident electric field

0 (,).tE r Upon excitation, scattered field sca (,)tE r

is generated. Scattered and incident fields satisfy

E(r,t) = E

0
(r,t) + E

sca (r,t), where (,)tE r is the unknown

“total” field. One can construct a TDVIE as [5, 6]:

 2

0 0(,) (,) (,), ,tt t c t V E r E r A r r (1)

where (,)tA r is given by:

 0 0

0

()() (,)
(,) , .

4V

t R c
t dv V

R

r E r
A r r (2)

Here, 0c is the speed of light in the background medium,

and R r r is the distance between points r and .r

TDVIE (1) is solved by time marching, which makes use

of an explicit predictor-corrector algorithm as described

next [5]. First V is discretized using
eN cubic elements.

Let kr ,

k = 1: N

e
, and t represent the centers of these

elements and time step size..Assume n represents the

index of the “current” time step. At the predictor step, first

, (,)k n k n t A A r are computed using
, (,),l m l m t E E r

l = 1: N

e
, max(1,) :gm n N n t , in the integral given

in (2). For this operation,
,(,) l mm t E r E is assumed

within cubic element l and linear interpolation is used to

approximate
0(, /)l kln t R c E r , where

kl k lR r r , from

, 1l mE and El ,m for
0[1] / .klm t n t R c m t Note

that here max 0/ 2gN R c t , where

R

max
= max{R

kl
},

for any , .k l Vr r Then, finite differences (FD), which

approximate the spatial derivative operator “”, are

applied to
,k nA to yield “predicted” samples , .k nE

Differentiation “ 2t ” in (1) is approximated using

backward FD for pairs (,)k lr r that satisfy
02klR c t

and using central FD for all other pairs. At the corrector

step, differentiation “ 2t ” is recomputed using a central

difference formula for pairs (,)k lr r that only satisfy

02 .klR c t Note that use of central FD is now allowed

since field samples that are not known at the predictor

step (due to causality) can now be replaced by the

predicted fields’ samples. At the end of time step ,n

,k mE are stored as part of the “history” of field samples

to be used in the computation of Ak ,n+1
.

Note that FD evaluations and corrector updates are

spatially local operations while computation of Ak ,n
,

k = 1: Ne
, is global. Samples El ,m

 that satisfy the

condition
0[] kln m c t R do not contribute to Ak ,n

since the fields radiated from point rl at time m t have

not yet reached point rk at time n t . This also means

that for
gn N , all fields radiated from all points reach

to all other points. Consequently, they all contribute to

all samples Ak ,n
, k = 1: Ne

, rendering the computational

cost of the integral evaluation O(Ne

2) per time step for

all gn N . As Ne increases, the cost of computing Ak ,n

limits the solver’s applicability to electrically large

problems. This limitation can be overcome by using

acceleration algorithms such as the PWTD method [6-7]

and/or highly scalable parallelization algorithms [8-11]. In

this work, we implement and fine-tune the parallelization

algorithm of [8, 9], which is originally developed for

CPUs, for multi-GPUs to further increase the applicability

of the MOT-TDVIE solver to electrically large problems.

B. MPI parallelization

Operations required by the MOT-TDVIE solver at

each time step can be grouped into two: (i) computation

of Ak ,l
, 1: ek N , which requires access to samples

,l n mE , l = 1: Ne
, 1: min(1,)gm n N and (ii)

computation of samples Ek ,n
 by applying FD to Ak ,n

.

The parallelization scheme used here, first, ensures the

even distribution of the memory via application of the

graph-based partitioning scheme to the distribution of

the points
kr , k = 1: Ne, representing the discretization of

V . This results in an unstructured partitioning of the

points
kr [9]. In this partitioning, each process stores

only
,k nE and

,l n mE that belong to the partition

assigned to it. The computational load of step (i) is

distributed using a one-way pipeline communication

strategy, so-called the “rotating tiles” paradigm [8]. The

test tiles (partitions that contain test points) are initially

same as the source titles (partitions that contain source

points) at the beginning of the rotation but they are

rotated among the processors during the computation of

Ak ,l
. When a processor receives a test tile, it first adds

the contribution from the source titles it stores to Ak ,l

associated with the received test tile, then it passes the

(updated) tile to its “neighboring” processor. At the end

of a full rotation all contributions to Ak ,l
 are computed.

It is noted here that, this strategy eliminates the need for

globally executed collective routines such as MPI_Reduce

[8]. The computational load of step (ii) is distributed

using the same grouping of the test points provided

by the graph-partitioning algorithm. This reduces the

communication costs associated with spatial FD

computations by ensuring that the data communication

only happens between points residing on the boundary of

any two partitions [9].

III. PORTING TO MULTIPLE GPUS

The state-of-the-art GPU-nodes can include up to 8

K80 GPUs, which is essentially equivalent to having 16

independent GPUs. On the other hand, OpenACC

standard, as a stand-alone programming model, provides

very limited support for code development on multiple

devices. Therefore, one typically relies on using

OpenACC/OpenMP together with the MPI standard to

port codes onto a cluster of nodes equipped with multiple

GPUs/multicore CPUs. In this work, OpenACC is used

to accelerate the time marching loop of the MOT-TDVIE

130 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

solver. Both memory- and compute-bound operations

are executed on GPUs, which benefit from the improved

memory bandwidth and higher flop rate, respectively.

However, because the amount of compute-bound

operations is significantly higher that memory-bound

operations, benefits from increased memory bandwidth

might be considered negligible. The main advantages of

OpenACC over CUDA are the significantly increased

programming efficiency and code portability on different

hardware platforms. More specifically, OpenACC offers

an easy way to port codes onto accelerators using simple

descriptive compiler directives. Additionally, the same

OpenACC-annotated code can be compiled on different

hardware platforms, including the host itself (multicore

CPU architecture) as well as any other accelerator

supported by the OpenACC standard. In contrast, the

CUDA programming model is more tedious to

implement and can be used on only NVIDIA GPUs.

The code is designed such that the number of MPI

processes spawn on each node is equal to the number of

GPUs per node. Each MPI process is assigned to a GPU

using the runtime API function acc_set_device_num to

set the GPU target to the MPI rank modulo the number

of GPUs per node, as shown in the pseudo code in Fig.

1. The data directive #pragma acc data is applied to the

outermost time loop in order to minimize data transfers

between the host and the device. Input and output arrays

are annotated with clauses present_or_copyin and

present_or_copyout, respectively. However, the arrays

needed for the MPI communications, which are of very

limited memory size, are copied in and out at each

iteration so that they are accessible to the MPI routines.

Each enclosed code block in the MOT-TDVIE solver is

annotated with #pragma acc kernels and offloaded to the

assigned GPU. The code blocks implementing the

computation of Ak ,l
 consist of two nested loops yielding

a quadratic computational complexity. The second loop

is further annotated with #pragma acc loop reduction

and the associated variables to further optimize the sum

operation of all source contributions. The OpenACC

standard offers the ability to further tune loop execution

using the gang and vector clauses, which can be used to

modify the number of blocks of threads and threads per

block to be executed, respectively. Since there are only

two nested loops in the kernels of the parallel MOT-

TDVIE solver, values assigned to these two parameters

by the compiler already result in good performance

improvements. Having said that, tuning these parameters

in the presence of three or more nested loops may

significantly increase the performance. Indeed, this was

demonstrated for the serial version of the code, with

structured grid, when executed on single GPUs. The

tuning of these two parameters improved the acceleration

performance by up to 23X [10]. For some of the loops

that are not parallelized by the compiler due to perceived

false data dependencies, the code block is annotated with

the loop pragma accompanied with the independent

clause to avoid unnecessary synchronization between the

loop iterations in absence of data dependencies. Note

that, the code design using multi-GPU kernels allows for

MPI synchronizations and communications to take place

between the compute kernels as necessary. That is the

case with the rotating tiles communications implemented

to compute Ak ,l
, and the halo cells exchange

communications implemented to compute Ek ,n
using FD.

Fig. 1. Pseudo code for the implementation of the MOT-

TDVIE solver using MPI and OpenACC.

IV. NUMERICAL EXPERIMENTS
The test bed used for performance evaluation

consists of a system of two nodes connected using an

Infiniband FDR high-speed network. Each node is a dual

socket CPU system hosting four NVIDIA Kepler K20c

GPUs. Each socket is an eight-core Sandy Bridge

// Get number of MPI processes = # of GPUs
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
// Assign each MPI process to a GPU
acc_set_device_num(rank%ngpus,acc_device_nvidia);

#pragma acc data present_or_copyin(input
arrays) present_or_copyout(output arrays)

for (int t=0; t<nt; ++t) { // time loop
 for(rot=0; rot<=size; ++rot){
 // MPI communication for rotating tiles
 MPI_Sendrecv();
 MPI_Barrier();
 #pragma acc kernels
 // Spatio-temporal convolutions

 for (int k=0; k<Ne; ++k){
#pragma acc loop reduction
for (int l=0; l<Ne; ++l){

A[t][k] = A[t-tkl][l] + ...
 } }
 MPI_Barrier();
 // Loops with no data dependencies

 #pragma acc kernels
 #pragma acc loop independent
 for(i=0; i<ni; ++i){

 }
 } // end rotation

 // MPI communication for Halo Exchange
 MPI_Sendrecv();
 MPI_Barrier();
 #pragma acc kernels
 // spatial finite difference operations

 for (int k=0; k<Ne; ++k){

 B[t][k] = A[t][k] +
 }
} // end time loop

FEKI, ET AL.: PORTING EXPLICIT TDVIE SOLVER ONTO MULTIPLE GPUS USING MPI AND OPENACC 131

Intel(R) Xeon(R) CPU E5-2650.

In our performance evaluation, as shown in Fig. 2,

a significant speedup ranging from 7.4X to 11.2X

is recorded comparing the MPI and OpenMP

implementation on 16 cores SandyBridge to the MPI and

OpenACC implementation on four K20c GPUs. It is

also observed that as Ne
 increases, higher speedup is

achieved. This is due to the fact that the GPUs are

supplied with larger computational loads; therefore,

taking better advantage of its computational capacity. It

has been shown before that the MPI implementation

demonstrated a great scalability on large super-computers

[8-9]. Figure 3 shows the parallel efficiency of the MPI

and OpenACC implementation executed on two and

eight GPUs, which ranges from 82% to 94%. Another

advantage of using NVIDIA GPUs is their energy

efficiency as the simulation consumed 2.4X less energy

on GPUs than on CPUs. For all of the above, the GPUs

are identified as the preferred computing platform in our

overall performance analyses of the explicit MOT-

TDVIE solver.

Fig. 2. Performance speedup of MPI and OpenACC on

four K20c GPUs compared to MPI and OpenMP on 16

cores SandyBridge CPU.

Fig. 3. Parallel efficiency of the MPI and OpenACC

implementation scaling from two to eight GPUs.

V. CONCLUSION
The porting of the explicit MOT-TDVIE solver

using MPI and OpenACC to multi-GPUs resulted in a

highly efficient implementation. The simulations

executed on multi-GPUs were faster by up to an order of

magnitude compared to those executed on CPUs (using

the MPI and OpenMP version of the code). The OpenACC

API has the advantage of easily porting the MPI code

to multi-GPU environment; therefore, increases the

developer productivity while keeping the legacy of the

original CPU code. Furthermore, the parallelization

allows the explicit TDVIE solver to efficiently simulate

transient electromagnetic wave interactions on electrically

large structures discretized using a large number of

spatial elements on GPUs.

REFERENCES
[1] CUDA, www.nvidia.com, 2016.

[2] OpenCL, www.khronos.org/opencl, 2016.

[3] OpenACC, www.openacc-standard.org, 2016.

[4] OpenMP, www.openmp.org, 2016.

[5] A. Al-Jarro, M. A. Salem, H. Bagci, T. M. Benson,

P. Sewell, and A. Vukovic, “Explicit solution of

the time domain volume integral equation using a

predictor-corrector scheme,” IEEE Trans. Antennas

Propag., vol. 60, no. 11, pp. 5203-5214, 2012.

[6] N. T. Gres, A. A. Ergin, E. Michielssen, and B.

Shanker, “Volume-integral-equation-based analysis

of transient electromagnetic scattering from three-

dimensional inhomogeneous dielectric objects,”

Radio Sci., vol. 36, no. 3, pp. 379-386, May 2001.

[7] Y. Liu, A. Al-Jarro, H. Bagcı, and E. Michielssen,

“Parallel PWTD-accelerated explicit solution of

the time domain electric field volume integral

equation,” IEEE Trans. Antennas Propag., vol. 64,

no. 6, pp. 2378-2388, 2016.

[8] A. Al-Jarro, M. Cheeseman, and H. Bagci, “A

distributed-memory parallelization of the explicit

time-domain volume integral equation solver using

a rotating tiles paradigm,” in Proc. 28th Int. Review

of Progress in Appl. Comp. Electromagn., 2012.

[9] A. Al-Jarro and H. Bagci, “An unstructured mesh

partitioning scheme for efficiently parallelizing an

explicit time domain volume integral equation

solver,” in Proc. 29th Int. Review of Progress in

Appl. Comp. Electromagn., 2013.

[10] S. Feki, A. Al-Jarro, A. Clo, and H. Bagci, “Porting

an explicit time-domain volume-integral-equation

solver on GPUs with OpenACC,” IEEE Antennas

Propag. Mag., vol. 56, pp. 265-277, 2014.

[11] S. Feki, A. Al-Jarro, and H. Bagci, “Multi-GPU-

based acceleration of the explicit time domain

volume integral equation solver using MPI-

OpenACC,” in Proc. IEEE Int. Symp. Antennas

Propag. and USNC/URSI National Radio Sci.,

Meet., 2013.

6

7

8

9

10

11

12

77K 176K 571K 1.09M

S
p

ee
d

u
p

Ne

0%

20%

40%

60%

80%

100%

77K 176K 571K 1.09M

P
ar

al
le

l
ef

fi
ci

en
cy

Ne

132 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

Parallel Realization of Element by Element Analysis of Eddy Current Field

Based on Graphic Processing Unit

Dongyang Wu, Xiuke Yan, Renyuan Tang, Dexin Xie, and Ziyan Ren

Department of Electrical Engineering

Shenyang University of Technology, Liaoyang, Liaoning 110870, China

shineast_521@163.com, yanxke@126.com, sgdtds@sina.com, xiedx2010@163.com, and rzyhenan@163.com

Abstract ─ The element by element parallel finite

element method (EbE-PFEM) applied to engineering

eddy current problem is presented in this paper. Unlike

classical finite element method (FEM), only element

matrix is needed to store for EbE method. Thereby more

storage memory saved. Element by element conjugated

gradient (EbE-CG) method is used to solve the equations

which are discretized from elements level. Considering

the ill-conditioned character of system equations, highly

parallel Jacobi preconditioned (JP) method is used to

accelerate the convergence. Besides, the process of

dealing with boundary condition based on EbE theory is

introduced. To validate the method, a 2D eddy current

problem in complex frequency domain is used. The

numerical analysis is carried out on the graphic

processing units (GPU) with a compute unified device

architecture (CUDA) parallel programming model to

accelerate the convergence. And the results demonstrate

that the JP method and GPU platform are effective in

solving eddy current field with improved convergence.

Index Terms ─ Eddy current filed, element by element

method, graphic processing unit, parallel computing.

I. INTRODUCTION
Due to the computer resource requirements of

classical FEM for solving the electromagnetic problems,

the parallel finite element method (PFEM) has become

increasingly popular in recent years. Element by element

(EbE) method [1] is a PFEM which can execute the

parallelism on the elements level. The advantage of EbE

method compared to classical FEM is that it does not

need assembling and storing system matrix. Its key idea

is to decouple the element solution by directly solving

element equations instead of whole equations. The

solving process is executed in parallel, and only

intermittent communication is needed. Initially, EbE

method was used for heat conduction problem and then

expanded to the field of mechanics. More recently

however, with the development of general purpose on

graphic processing unit (GPGPU), EbE method has

received increasing attention as it is very suitable for

parallel processing and with the GPU[2]-[4] being a

multi-core device, parallel processing at element level on

different cores can be achieved. Some good results have

been obtained with electrostatic problem, as in [5], [6].

In author’s previous work, firstly EbB-CG method

is directly used to solve 2D eddy current problem

parallelly on the GPU, and 3.4 times speed up rate

achieved compared with that of serial calculation with

CPU [7]. Furthermore, TEAM problem 7 is taken as an

example to validate the EbE method and GPU are

effective for 3D linear eddy current problem, and the

results have a good agreement with experiment data [8].

The purpose of this paper is to broaden the JP method to

2D eddy current analysis with two different medium in

solving domain, and a comparing analysis is fulfilled

between EbE-CG method and EbE-JPCG method.

II. EBE METHOD AND GPU

IMPLEMENTATION

A. Node connection matrix

The key function of node connection matrix (NCM)

is to transit the node information between local variables

and global variables.

Now, assume x is global solution vector (GSV),

e
x is the local elements solution vector (LESV), ()e

x is

global elements solution vector (GESV), E is the total

number of elements, Q is NCM. Then consider three

type operations of NCM as below:
() ,e

Qx = x (1)

where () (1) (2) (), , , ,
T

e Ex x x x this operation

achieves the alternation from GSV to GESV according

to the node number of each element:

,T e
Q x = x (2)

where 1 2, , , ,
T

e Ex x x x this operation achieves

the summation of LESV which have the same node

number. This process alternates the LESV to GSV:
() .T e e

QQ x = x (3)

ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016 133

1054-4887 © 2016 ACES

Submitted On: November 16, 2015
Accepted On: May 10, 2016

mailto:yanxke@126.com
mailto:sgdtds@sina.com
mailto:xiedx2010@163.com

Equation (3) achieves the alternation from LESV to

GESV.

NCM also can be operated with the element matrix

,e
K and the relationship between system matrix K

and the element matrix e
K can be given as follows:

 .T e
K = Q K Q (4)

Equations (1) to (4) provide the theoretical

foundation for fulfilling the parallel EbE technique.

B. EbE-CG method

For the traditional FEM, the system matrix K and

right hand side (RHS) vector b must be assembled from

the element matrix e
K and element RHS e

b , while for

the EbE-PFEM, considering (1)-(4) the assemble process

can be deduced as follows:

 () .T e T e T e eb = Q b = Kx = Q K Qx Q K x (5)

As shown in (5), the product of assembling the

element vector is equivalent with the product of

assembling element matrix. So, we can solve the element

equations parallelly as below:

 () .e e e
K x = b (6)

As we know, CG method mainly contains two types

of inner product calculations, i.e., (,)r r and (,)p Ap

which can be calculated by EbE method as follows:

 ()(,) () () ,T e T T e e T e r r r r r QQ r r r (7)

where ()

()

,e e j

j adj e

 r r r r is the global residual,

e
r is the local element residual, Q is the NCM. ()e

r is

the sum of e
r and j

r which are relative with .e
r So

this process needs the solution information of adjacent

nodes. The calculation of (,)p Ap is similar with (,).r r

C. Dealing with boundary condition

It is not necessary to assemble the system matrix for

EbE method, so the boundary condition (BC) has to be

applied on the elements level. Now, taking an example

of 2D with triangular subdivision (Fig. 1), and assume

the value of first kind BC is 0.U

Fig. 1. Partial subdivision of 2D model.

Based on traditional FEM idea, we can get the

element matrix equation of ①, as described in (8):

1
1 1 1 1

111 12 13 1

11 1 1 1

21 22 23 2 2

1 1 1 11
31 32 33 33

.

xK K K b

K K K x b

K K K bx

 (8)

Differ from classical FEM, the element matrix and

right hand side vector must be modified with weights

simultaneously. Taking element ① as an example, we

can get the modified element Equation (9):

0(1)

11 1
(1)22 22
2 01 2 1 2

(1)22 22 22 22

3(1) 1

33 3

1 0 0

0 0 .

0 0

U
x

K K
x U

K K K K
x

K b

 (9)

In contrast to first kind BC, the second kind BC

(node 3 and 4) can be applied on elements directly. For

the 2D eddy current problem, the current density is easily

applied to the elements level during the element analysis

of RHSV.

III. NUMERICAL EXPERIMENT
In this work, a conductor in an open slot of motor is

taken as an example to analyze the skin effect. Two

models are considered to verify the validity of the

proposed method. Model I is shown in Fig. 2, it is a

current-carrying conductor in an open slot, for which the

analytical solution is available [9], and the domain

contains only one conducting medium. And its

mathematical model is shown as below:

2
2

0 0 02

0 m
0

j

0 (, ,) ,

()

e e

x

A
A J p A J in

y

A
on AB CD BD

n

IA
H on AC

y b

 (10)

where A is vector magnetic potential, is angular

frequency, electrical conductivity, 0 is magnetic

conductivity, Je is electrical current density, is

solving domain, Hx is tangential component of magnetic

field intensity, Im is magnitude of current and b is width

of open slot. And the analytical solution of current

density (J) is shown as follows:

mj ch .
sh

e

pI
J A J py

b ph

(11)

Additional, in order to validate the proposed method

for eddy current problem with different mediums, Model

II is established in this paper (as shown in Fig. 3). For

Model II, there is 1 mm width air gap surrounding the

conductor, for which the condition number of its system

matrix becomes greater than that of Model I, and

convergence of solving the equations also becomes

worse. Both of two models are under the complex

excited current (10000 0)m j I A.

To test the accelerating performance of proposed

method on different computation scales, Model I and

134 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

Model II have been meshed into three different sizes,

shown in Table 1 and Table 2. The mesh of Model II in

size B is shown in Fig. 4, and its magnetic field

distribution is shown in Fig. 5. Furthermore, the

convergence of equations solved using CG and JPCG has

been researched. Both of EbE-CG and EbE-JPCG

methods are implemented with CPU and GPU separately.

Fig. 2. Current-carrying

conductor in an open slot

with air surrounded.

Fig. 3. Current-carrying

conductor in an open slot.

Fig. 4. The mesh of Model

II in size B.

Fig. 5. Magnetic field

distribution of Model II.

All the numerical computations are carried out on a

server with NVIDIA GTX 660 GPU clocked at 1.0 GHz

with 960 cores and 2G DDR5 global memory, and an

Intel Xeon E3-1230 CPU 3.3 GHz with 8G global

memory. Programming is in C++, and compiled by

Visual Studio 2010 and CUDA 5.5.

To reduce the communication cost between CPU

and GPU, the whole elements information is transferred

to GPU global memory initially. The solving process is

operated parallelly on GPU until computation results

meet the convergence criterion, then result data is

transferred from GPU to CPU. The GPU calculation is

fulfilled on different blocks, and the threads on the same

block are parallel running. But different block cannot

communicate. However, during the CG iteration process,

some kinds of steps such as the calculation of ()e
r need

the information of other relative elements which are not

in the same block. To overcome this, if the nodes on the

boundary of memory block, the node information is

stored on both sides concurrently. A little more memory

needed, but high parallelism obtained. For other steps,

all the read and write instructions for threads within same

warp (a cluster of threads) are operated in the aligned and

coalesced way to improve parallel performance.

The calculation results are shown in Table 1 and

Table 2. Table 3 is shown the comparison of memory

required. Figure 6 is the current density comparison

between analytical and numerical solution of Model I.

From Fig. 6, we can see that the result calculated using

the proposed correlates well with analytical solution,

which validates the method.

Fig. 6. Comparison of current density with EbE-CG

method (Model I).

Table 1: The numerical results of Model I

Mesh

Size
Node Element

Iterations
CPU Time

(ms)

GPU Time

(ms)

CG JPCG CG JPCG CG JPCG

A 90 138 56 33 78 62 23 18

B 342 594 100 46 485 359 87 65

C 1080 1953 175 68 1549 1231 239 173

Table 2: The numerical results of Model II

Mesh

Size
Node Element

Iterations
CPU Time

(ms)

GPU Time

(ms)

CG JPCG CG JPCG CG JPCG

A 580 683 85 73 2578 1927 753 557

B 905 1511 134 96 6987 5125 1215 843

C 1384 2235 201 137 9768 7254 1441 935

Table 3: Comparison of memory required (Model II)

Mesh Size

Memory Required

(kB)

Memory Saved

(%)

EbE FEM CG

A 32 79 59.5

B 72 145 50.3

C 107 218 50.9

The distribution of current density in Model II is

shown in Fig. 7, which also shows that accurate results

can be obtained using EbE-JPCG to eddy current

problem with different medium. From the results shown

in Table 1 and Table 2, we can see that the convergence

of equations solving using JPCG is better than that using

CG. For the same model, the GPU processor is faster

than CPU due to its high parallelism.

Figure 8 shows three different mesh size level’s

speed up rate comparison of EbE-CG and EbE-JPCG

methods which are fulfilled on GPU for Model II. Figure

9 shows the speed up rate comparison of EbE-JPCG

WU, YAN, TANG, XIE, REN: ELEMENT BY ELEMENT ANALYSIS OF EDDY CURRENT FIELDS ON GPU 135

method fulfilled on GPU for two models.

Both EbE-CG method and EbE-JPCG method are

applied to Model II which contains two materials. As

shown in Table 2, the time consumed is much more than

Model I, however, results indicate overall improved

convergence and processing time with increasing mesh

size as shown in Figs. 8-9.

Fig. 7. Distribution of current density for EbE-JPCG

method (Model II).

Fig. 8. Comparison of speed up rate for EbE-CG method

and EbE-JPCG method.

Fig. 9. Comparison of speed up rate for EBE-JPCG

method implementation on GPU (Model II).

IV. CONCLUSION
The EbE-JPCG technique and GPU parallel

computing platform applied to eddy current problems are

the main contributions of this work. This paper presents

a comparative analysis of the performance of EbE-CG

method and EbE-JPCG method which are fulfilled on

CPU and GPU. As shown in Table 1, Table 2 and Fig. 8,

EbE-JPCG method converges more quickly than the

EbE-CG method. As well, GPU acceleration becomes

more effective with increasing mesh size. The numerical

results demonstrate that JP method is effective for EbE

method and parallel computing. As shown in Table 3,

EbE method can save approximately 50% memory space,

it is an important contribution for GPU platform which

just has a few GB memory. Another contribution of this

paper is to provide basis for solving of 3D eddy current

problem, as in [8]. The future work currently in progress

includes applying the EbE technique and GPU parallel

platform to 3D eddy current losses calculation of large

power transformer. Considering its serious ill-conditioned,

JP method will be ineffective. So a new improved JP

method which is also convenient for parallel EbE

implementation is included in the ongoing work.

ACKNOWLEDGMENT
This work is supported by National Natural Science

Funds (51507105), Science Foundation of Education

Department of Liaoning Province, P.R. China (L2013046)

and Natural Science Foundation of Liaoning Province,

P.R. China (2015020087).

REFERENCES
[1] T. J. R. Hughus, I. Levit, and J. Winget, “An

element-by-element solution algorithm for problems

of structural and solid mechanics,” Computer

Methods in Applied Mechanics and Engineering,

vol. 36, pp. 241-254, 1983.

[2] A. F. P. Camargos and V. C. Silva, “Performance

analysis of multi-GPU implementations of Krylov-

subspace methods applied to FEA of electromagnetic

phenomena,” IEEE Transactions on Magnetics, vol.

51, no. 3, March 2015.

[3] T. Okimura, T. Sasayama, and N. Takahashi,

“Parallelization of finite element analysis of

nonlinear magnetic fields using GPU,” IEEE

Transactions on Magnetics, vol. 49, no. 5, May 2013.

[4] O. Bottauscio, M. Chiampi, J. Hand, et al., “A GPU

computational code for eddy-current problems in

voxel-based anatomy,” IEEE Transactions on

Magnetics, vol. 51, no. 3, March 2015.

[5] D. M. Fernández, M. M. Dehnavi, and W. J. Gross,

“Alternate parallel processing approach for FEM,”

IEEE Transactions on Magnetics, vol. 48, no. 2, pp.

399-402, 2012.

[6] I. Kiss, S. Gyimóthy, Z. Badics, et al., “Parallel

realization of the element-by-element FEM technique

by CUDA,” IEEE Transactions on Magnetics, vol.

48, no. 2, pp. 507-510, 2012.

[7] D. Y. Wu, R. Y. Tang, and D. X. Xie, “Element by

element finite element method applied to eddy

current problem,” CEFC’2014, France, May 25-28,

2014.

[8] D. Y. Wu, X. K. Yan, R. Y. Tang, D. X. Xie, and Z.

W. Chen, “GPU acceleration of EBE method for 3-

D linear steady eddy current field,” ICEMS’2015,

Thailand, October 25-28, 2015.

[9] D. X. Xie, “Finite element method applied to the

calculation of skin effect of current-carrying

conductor in an open slot,” HIET Journal, vol. 4,

no. 1, pp. 6-23, 1981. (In Chinese).

136 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

GPU-based Electromagnetic Optimization of MIMO Channels

Alfonso Breglia, Amedeo Capozzoli, Claudio Curcio, Salvatore Di Donna, and

Angelo Liseno

Università di Napoli Federico II, Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione

via Claudio 21, I 80125 Napoli, Italy

a.capozzoli@unina.it

Abstract ─ Strategies to accelerate MIMO channel

capacity optimization on GPUs are outlined. The

optimization scheme is dealt with by properly facing the

main computational issues. In particular, the propagation

environment is described by ultrafast Geometrical

Optics (GO), singular values are computed by a very fast

scheme and the optimizer is a parallel version of the

differential evolutionary algorithm. The unknowns are

given proper representations to reduce the number of

optimization parameters.

Index Terms ─ CUDA, differential evolutionary,

Geometrical Optics, GPU, MIMO channel, optimization,

singular values.

I. INTRODUCTION

Multiple Input - Multiple Output (MIMO) [1, 2] is a

wireless communication technology using multiple

antennas in both transmission and reception modalities

to increase the channel capacity (CC) over that of a

conventional SISO (Single Input - Single Output). CC is

a crucial parameter to assess the performance of a

communication system, and the problem arises of how

defining the most convenient configuration of transmitting

(TX) and receiving (RX) antennas to maximize it for a

given SNR (Signal to Noise Ratio) and propagation

environment.

Different approaches have been proposed to

optimize the MIMO CC, see [3, 4] for two representative

examples. As it appears from [3, 4], besides signal

processing factors (e.g., modulation), two critical aspects

emerge when optimizing the performance of a MIMO

channel: one is the electromagnetic environment, since

the electromagnetic propagation influences the properties

of the channel matrix, and the other is the optimization

scheme itself. Since both aspects pose a significant

computational question, the issue thus arises of how

computationally addressing the problem of optimizing

a MIMO channel, by firstly determining the most

convenient computational resources and algorithms to be

exploited and that could make the challenge feasible.

Then, how much a MIMO channel can be improved, how

the CC depends on the accuracy of the employed

electromagnetic model and what can be obtained by a

modeling grasping only the essential aspects of the

problem should be pointed out, giving general guidelines

at the design stage. These points have been up to now

overlooked throughout the literature. Our purpose is

facing the first point, namely, how much accelerated

analysis and optimization can make the goal viable. This

entails understanding how to push the performance of

both, the employed algorithms and computational

resources. Several computational key points should be

then considered, since each performance can degrade the

problem to unfeasibility:

1. Properly choosing and accelerating a global

optimizer since a local optimizer is typically not

enough to find the best solutions;

2. Properly choosing and accelerating the approach to

compute the MIMO channel matrix;

3. Being the CC related to the singular values (SVs) of

the channel matrix, accelerating their computation

depending on the problem size (conventional - 4x4,

6x6 - MIMO vs. massive MIMO [5]);

4. Properly representing the unknowns, to manage only

the essential optimization parameters;

5. Properly exploiting massively parallel computing

platforms as Graphics Processing Units (GPUs).

The paper is organized as follows. The MIMO CC

is briefly recalled in Section II, just to provide a formal

introduction. Section III addresses points 1) and 4),

Section IV point 2) and Section V points 3) and 5).

Finally, Sections VI and VII present numerical results

and conclusions, respectively.

II. CHANNEL MODEL
Let us consider a narrowband, flat-fading channel,

whose CC depends on the distribution of the SVs of the

channel scattering matrix [1, 2]. Indeed, given NTX

transmitting and NRX receiving antennas embedded in a

complex 3D deterministic electromagnetic scenario, the

MIMO channel can be described by its complex, NTX x

NRX matrix H [1]. The generic element hij of H can be

expressed as:

ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016 137

1054-4887 © 2016 ACES

Submitted On: December 29, 2015
Accepted On: March 30, 2016

M

m

RX

j

TX

im

RX

j

TX

iij rrGrrhh
1

),(),(, (1)

where TX

ir represents the position of the i-th transmitting

antenna, RX

jr represents the position of the j-th receiving

antenna, M(i, j) is the number of relevant multi-paths

between TX

ir and RX

jr and),(
RX

j

TX

im rrG is proportional to

the voltage induced on the j-th receiving antenna by the

m-th multipath originated at the i-th transmitting

antenna.

Under the hypothesis of narrowband, flat-fading

channel, AWGN noise at the receivers and equally

distributed power among the transmitters [1], the

Shannon CC, say C, expressed in bit/s/Hz can be

calculated by first normalizing H to its Frobenius norm

as [6]:

2

1 1
/

TX RXN N

ij

i j

TX RX

h

H H
N N

, (2)

and then computing,

r

k TX

k

N

SNR
C

1

2

2 1log
 , (3)

where r is the rank of H
~

 and
2

k is its k-th SV.

The approach is illustrated in Fig. 1, where the flow-

chart boxes correspond to the titles of the Sections III-V.

Fig. 1. Flow chart of the approach.

III. THE OPTIMIZATION APPROACH
To enable a satisfactory exploration of the objective

functional landscape, the global optimization approach

should be chosen to exhibit good convergence properties

and to profit of the massive parallelization. In this sense,

a less “complex”, but massively parallelizable algorithm

should be preferred to a more “involved”, but “more

sequential” scheme. The “genetic-like” differential

evolutionary approach has been then chosen as the global

optimization scheme due to its main features matching

both the above mentioned requirements [7].

The approach exploits a population of Np members,

each member being represented by an array of D values,

where D coincides with the number of optimization

unknowns. At the g-th iteration (generation), the k-th

member of the population is denoted by the D-

dimensional array),...,,(
)()2()1(D

gkgkgkgk
pppp . The initial

population is randomly generated, accounting for some

physical constraints enforced by the problem. Starting

from the initial population, the algorithm generates a

new one by first defining new arrays as (mutation):
)(

32
11 gkgkgkgk ppFpm , (4)

where k1, k2 and k3 belong to 1, 2, …, Np and three

indices mutually different and different also from k, and

F[0,2] is a user defined real and constant factor

representing a scale factor of the differential variation

gkgk
pp

32

 .

Following mutation, new trial arrays

),...,,(
)(

1

)2(

1

)1(

11

D

gkgkgkgk tttt are generated as follows

(crossover):

randD(k)j or CRjrand if p

randD(k)j or CRjrand if m
t

i

gk

i

gki

gk

)(,

)(,

)(

)(

1)(

1
, (5)

where rand(j)[0,1], j=1,2,…,D, is the j-th evaluation of

a random uniform generator, CR[0,1] is a user defined

crossover constant and randD(k)1,2,…,D is a

randomly chosen integer to ensure that the trial array

contains at least a mutated element. Following the

crossover, the cost values of
gk

p and
1gkt are compared

and the one with the largest cost becomes the new

population member at generation g+1 (selection).

The operations involved in mutation, crossover and

selection and the random number generations are

inherently parallel. An issue of the crossover stage is the

“random” global memory access, so that particular care

has been given to improve memory coalescence.

Unknowns representation

The problem concerns the optimization of the TX and

RX antenna locations to maximize the MIMO CC. To

profit from a reduction of the number of unknowns, both

the TX and RX antennas are assumed to be located on

lines and their positions are indirectly searched for by

representing them by Legendre polynomials [8] as:

1

0

)(
K

k

nkkn cx . (6)

In Eq. (6), xn is the generic antenna coordinate on the

optimization line, K is the number of polynomials, k is

the k-th Legendre polynomial, the n's are uniformly

spaced points in [-1,1] and the ck's become the actual

unknowns to be sought for. If K is less than the involved

antennas, the number of problem parameters is reduced.

138 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

Notice that the representation in Eq. (6) is also amenable

to enforcement of constraints on minimum and maximum

antenna spacings [9].

IV. CHANNEL MATRIX CALCULATION

The method exploited to calculate H
~

 should trade

off computational accuracy and speed to execute in an

iterative optimization. Calculating at each generation the

matrix H
~

 for a large number of antenna configurations by

a full wave method would be unfeasible, especially for

large scenarios. Opposite to that, Geometrical Optics

(GO) is very appealing to quickly provide an approximate

solution to Maxwell’s equations.

Nevertheless, for electrically large scenarios GO must

be properly accelerated by adequate algorithmic structures

capable to properly handle the intersections of the rays

with the scene objects. Indeed, ray tracing involves two

main steps: the search for the intersection between a ray

and the geometric primitives (e.g., triangles), and the

electromagnetic field transport. The first step can be

definitely the most time consuming one, if not properly

managed. A brute force approach would be indeed

unfeasible due to the large number of intersection tests to

be performed. Fortunately, the problem can be faced by

tree-like structures which, if properly setup, managed and

explored, can significantly reduce the computational

complexity. Data structures like KD-tree and BVH

(Bounding Volume Hierarchy) [10] can be effectively

applied to this purpose and may profit from a high degree

of parallelization. Here, the Split BVH (SBVH) scheme

set up in [10] has been exploited.

V. GPU-BASED SVs CALCULATION
Computing the SVs of small or large matrices

should be dealt with different approaches. Accordingly,

the computational scheme to be employed differs if

considering conventional or massive MIMOs. In this

paper, we address the former case. Furthermore, the

number of involved matrices is related to the number of

population members of the differential optimizer. Then,

at each generation, the SVs of a large number of small

sized matrices have to be computed. This task can be

efficiently and effectively performed on a GPU as in

[11].

The problem of computing the SVs can be recast to

the computation of the SVs of a real-valued matrix A . To

this end, the approach in [7] consists of three steps. The

first step amounts at reducing A to a bidiagonal matrix,

say B , as:

T
Q B PA , (7)

where B is a NTX x NRX upper bidiagonal matrix, and

P and Q are NTX x NTX and NRX x NRX orthogonal

Householder matrices, respectively. The bidiagonalization

step consist of applying a sequence of Householder

transformations [12] to the matrix A , which zero the

elements below the diagonal and to the right of the first

superdiagonal. In the second step, B is transformed to a

tridiagonal matrix BBT
T

 . Finally, in the third step, the

symmetric tridiagonal eigenvalue problem is solved by a

bisection method based on the use of Sturm sequences by

restricting the search range using the Gershgoring circle

theorem [11].

The motivation for computing the tridiagonal matrix

T as above is due to the fact that the explicit formation

of T should be avoided for numerical reasons since it

may introduce non-negligible relative errors, especially

in the computation of the smallest SVs [12]. However,

the exploited approach is meant for those applications,

as the one at hand, in which the smallest SVs have very

low relative weight and may be considered irrelevant.

In summary, the problem of computing the SVs is

recast as a “guided” bisection, which is amenable to

parallelization.

VI. NUMERICAL RESULTS
The optimizer, the ray tracer and the SVs calculation

have been implemented in parallel GPU (CUDA) and

multi-core CPU (C++ with OpenMP directives) languages.

For the CPU case, the SVs have been achieved using the

third party Eigen library.

We consider a circular cylinder with radius 10

centered at the origin of the Oxyz reference system and a

plate of width 50, parallel to the yz plane and located at

x=30. The cylinder and the plate are perfectly conducting

and have a height of 15. The scene has been discretized

with 95458 triangles. This example points out how much

computation time can be saved by the approach and

provides an answer to the points raised in Section I and

a perspective to design tools.

The optimizer can position an arbitrary number of

transmitting and receiving antennas on lines with

arbitrary spatial orientations. Here, NTX = 4 and NRX = 4.

The TX and RX antennas have been located on lines

lying on the xy plane, parallel to the x-axis and passing

by (15, -40, 0) for the TX and by (15, 40, 0) for

the RX antenna. The antenna positions have been

represented using K=3 and minimum and maximum

spacing of /4 and 2, respectively, have been enforced

to control the maximum array size and mutual coupling.

The SNR has been fixed to 20 dB.

For computational convenience, the optimization

has been run with a population of 1000 elements,

grouped in 10 subgroups including those configurations

sharing the same positions of the TX antennas and

different positions of the RX ones. The optimization has

been run for a number of 50 generations, with CR=0.4

and F=0.7.

BREGLIA, ET AL.: GPU BASED ELECTROMAGNETIC OPTIMIZATION OF MIMO CHANNELS 139

The code has been run on a workstation equipped

with two Intel Xeon E5-2650 2.00GHz, Eight core

processors each and four NVIDIA Kepler K20c cards,

but with multi-GPU disabled. Figure 2 displays an

OpenGL rendering of the MIMO channel with the

optimized antenna locations. The figure also depicts the

GO rays connecting the TX antennas (the pink dots) with

the RX ones (not appearing in the image). As it can be

seen, multiple interactions have been accounted for as

well as diffraction from the plate border. Diffraction

from the plate corners and the cylinder ends have

been neglected for simplicity. The optimized antenna

positions are reported in Table 1. As it can be seen, the

TX and RX antennas occupy almost symmetric locations

due to the problem symmetry. The GPU code has run in

about 4.5 hours, gaining a speedup of about 5 as

compared to the CPU execution obtained by running 32

CPU threads. The optimized channel capacity has been

22.3 bps/Hz, a value which well agrees with the statistical

distribution of channel capacities for random channels

with 4 transmitting and 4 receiving antennas reported in

[2, Fig. 7].

Fig. 2. OpenGL rendering of the MIMO channel with

optimized antenna locations.

Table 1: Optimized TX and RX antenna positions

Antenna x-coord. Antenna x-coord.

TX 1 RX 1

TX 2 12.6 RX 2

TX 3 18.0 RX 3

TX 4 20.9 RX 4

VII. CONCLUSIONS
A GPU-based approach to accelerate MIMO CC

optimization has been presented using ultrafast

Geometrical Optics (GO), a very fast SV calculation

scheme and a parallel version of the differential

evolutionary algorithm. A speedup of 5 has been achieved

against a multi-core CPU implementation.

ACKNOWLEDGMENT
Work partially funded by the Italian Ministry of

Education, University and Research (MIUR), project

PON01_02425 “Services for wIreless netwoRk

Infrastructure beyOnd 3G” (SIRIO).

REFERENCES
[1] G. J. Foschini and M. J. Gans, “On limits of

wireless communications in a fading environment

when using multiple antennas,” Wireless Personal

Commun., vol. 6, no. 3, pp. 311-335, Mar. 1998.

[2] J. Bach Andersen, “Array gain and capacity for

known random channels with multiple element

arrays at both ends,” IEEE J. Selected Areas

Commun., vol. 18, no. 11, pp. 2172-2178, Nov.

2000.

[3] U. Olgun, et al., “Optimization of linear wire

antenna arrays to increase MIMO channel using

swarm intelligence,” Proc. of the 2nd Europ. Conf.

on Antennas Prop., Edinburgh, UK, pp. 1-6, Nov.

11-16, 2007.

[4] M. A. Mangoud, “Optimization of channel capacity

for indoor MIMO systems using genetic algorithm,”

Progr. Electromagn. Res. C, vol. 7, pp. 137-150,

2009.

[5] E. G. Larsson, et al., “Massive MIMO for next

generation wireless systems,” IEEE Commun.

Mag., vol. 52, no. 2, pp. 186-195, Feb. 2014.

[6] N. Noori and H. Oraizi, “Evaluation of MIMO

channel capacity in indoor environments using

vector parabolic equation method,” Progr.

Electromagn. Res. B, vol. 4, pp. 13-25, 2008.

[7] R. Storn and K. Price, “Differential evolution -

A simple and efficient heuristic for global

optimization over continuous spaces,” J. Global

Opt., vol. 11, no. 4, pp. 341-359, Dec. 1997.

[8] A. Capozzoli, et al., “Field sampling and field

reconstruction: a new perspective,” Radio Sci.,

vol. 45, RS6004, pp. 31, 2010, doi: 10.1029/

2009RS004298.

[9] A. Capozzoli, et al., “FFT & aperiodic arrays with

phase-only control and constraints due to super-

directivity, mutual coupling and overall size,”

Proc. of the 30th ESA Antenna Workshop on

Antennas for Earth Observ., Science, Telecomm.

and Navig. Space Missions, Noordwijk, The

Netherlands, May 27-30, 2008, CD ROM.

[10] A. Breglia, et al., “Comparison of acceleration data

structures for electromagnetic ray tracing purposes

on GPUs,” IEEE Antennas Prop. Mag., vol. 57, no.

5, pp. 159-176, Oct. 2015.

[11] A. Capozzoli, et al., “Massive computation of

singular values of small matrices on GPUs,” Proc.

of the Int. Workshop on Comput. Electromagn.,

Izmir, Turkey, pp. 36-37, July 1-4, 2015.

[12] G. H. Golub and C. Reinsch, “Singular values

decomposition and least squares solutions,”

Numer. Math., vol. 14, pp. 403-420, 1970.

140 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

Fast and Parallel Computational Techniques Applied to Numerical Modeling

of RFX-mod Fusion Device

Domenico Abate 1,2, Bruno Carpentieri 3, Andrea G. Chiariello 4, Giuseppe Marchiori 2,

Nicolò Marconato 2, Stefano Mastrostefano 1, Guglielmo Rubinacci 5, Salvatore Ventre 1,

and Fabio Villone 1

1 DIEI, Università di Cassino e del Lazio Meridionale, Loc. Folcara, 03043 Cassino (FR), Italy

s.mastrostefano@unicas.it, ventre@unicas.it, villone@unicas.it

2 Consorzio RFX, Corso Stati Uniti 4, Padova, Italy

domenico.abate@igi.cnr.it, giuseppe.marchiori@igi.cnr.it, nicolo.marconato@igi.cnr.it

3 Nottingham Trent University, School of Science and Technology, Burton Street, Nottingham NG1 4BU, UK

bruno.carpentieri@ntu.ac.uk

4 DIII, Seconda Università di Napoli, Via Roma 29, Aversa (CE), Italy

andreagaetano.chiariello@unina2.it

5 DIETI, Università di Napoli Federico II, Via Claudio 21, 80125, Napoli

rubinacci@unina.it

Abstract ─ This paper presents fast computational

techniques applied to modelling the RFX-mod fusion

device. An integral equation model is derived for the

current distribution on the active coils of the conducting

structures, and the input-output transfer functions are

computed. Speed-up factors of about 200 can be

obtained on hybrid CPU-GPU parallelization against

uniprocessor computation.

Index Terms ─ Fusion plasma devices, GPUs, HPC,

integral formulation, parallelism.

I. INTRODUCTION
Modelling fusion devices is computationally very

challenging due to the electromagnetic interaction of the

fusion plasma and the surrounding conducting structures,

which makes the problem inherently multiphysics. The

evolution of the plasma may exhibit unstable modes, thus

exacerbating the aforementioned problems and requiring

a feedback controller. The design of such control system

requires rather accurate response model of the overall

system plasma plus conductors. Therefore, fast parallel

techniques are often required to make the computations

affordable [1, 2]. In this paper, we analyze the RFX-mod

device [3], a medium size (major radius R = 2 m, minor

radius a = 0.46 m) toroidal device particularly suited to

explore innovative concepts in plasma control. Passive

and active conductors are very important to determine the

overall properties and performances of such feedback

system and therefore they should also be adequately

represented in any realistic model. The main conducting

structures are the vessel (needed to have the vacuum

inside the machine), the shells (highly conducting sheets

needed for passive stabilization), the mechanical

structure, hosting the active control coils. Figure 1 shows

the 3D hexahedral mesh used.

In particular, RFX-mod is equipped with a state-of-

the-art control system made by 192 (4 poloidal x 48

toroidal) independently fed active coils (Fig. 1), with

more than 600 magnetic sensors acquired in real time.

This makes RFX-mod on the one hand very challenging

for numerical modelling but on the other hand an ideal

test-bed for validating the predicting capabilities of

computational tools. We compute the input-output

transfer functions of the system, assuming as input the

currents or the voltages of the active coils and as output

suitable magnetic measures [4]. The presence of an

axisymmetric plasma evolving through equilibrium states

is self-consistently taken into account [1].

The computer solution of such a problem is very

expensive, due to the complexity of the 3D geometry and

the plasma contribution. The use of High Performance

Computing (HPC) cluster is mandatory. The GPU

architecture has a large amount of cores designed to run

a large number of execution threads at the same time; the

computational model used is the single instruction,

ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016 141

1054-4887 © 2016 ACES

Submitted On: December 31, 2015
Accepted On: May 16, 2016

mailto:s.mastrostefano@unicas.it
mailto:ventre@unicas.it
mailto:domenico.abate@igi.cnr.it
mailto:giuseppe.marchiori@igi.cnr.it
mailto:andreachiariello@gmail.com

multiple data (SIMD), where concurrent threads execute

the same code (called Kernel) on different data. In the

present work, we focus our attention on a hybrid multi-

node system for modeling RFX-mod devices.

The paper is organized as follows. Section II

describes the model, while in Section III we illustrate the

computational technique. Section IV reports the results

and draws the conclusions.

Fig. 1. Mesh used for the analysis of the problem.

II. MODEL
We consider a system of 3D conductors Vc

discretized with a finite elements mesh. We use an

integral formulation, which assumes as primary

unknown the current density in Vc. We introduce the

electric vector potential T, such that TJ , and then

we expanded T in terms of edge elements kN , we have:

k

kkI NJ . (1)

Imposing Ohm’s law in weak form, we get [1,2,8]:

,
d I dU

L R I V
dt dt

 (2)

0
,

() (')
',

4 'c c

i j

i j
V V

L dV dV

N r N r

r r
 (3)

cV

jiji dVR NηN, . (4)

In these equations, I is the vector of degrees of

freedom Ik in (1), V is the vector of externally applied

voltages and is the resistivity tensor. Matrix L is a fully

populated square matrix, which is the 3D analogue of

mutual inductance of a system of magnetically coupled

conductors; conversely, R matrix is sparse and represents

the resistance matrix of the 3D conductors. The quantity

U is the magnetic flux due to plasma currents [1, 8]:

S
jMU ,

eS
Sj ̂ , IQ

e
̂ , (5)

where
S

j are equivalent currents located on a coupling

surface, M is a mutual inductance matrix between the

equivalent current and the 3D conducting structures,
e

̂

is the external magnetic flux, Q is a matrix representing

Biot-Savart integral [1] and S is the plasma response

matrix [8].

Combining (2)-(5), finally we get [8]:

VIR
dt

Id
L

* ,
*

,L L M SQ (6)

to which we can add the expression for the magnetic field

and flux perturbations y at given points, linearly related

to 3D currents through a suitable matrix C [1,8]:

ICy . (7)

Equations (6)-(7) represent the model; they can be

easily recast in standard state space form. In the present

paper, they are used to get the frequency-domain transfer

functions between the inputs (voltages or currents in

active coils) and the outputs (linear combinations of

magnetic measurements). In doing so, the inversion of

a complex matrix is required. Indeed, we split the

unknowns into three subsets; the corresponding subset

of indices of the various matrices are identified with

the following suffix: “p” (passive structures), “m”

(measurement coils), “a” (active coils), so that Equation

(6) reads as:

 * *

* *

0,

,

p app pp pa

p a mmp ma

j L R I j L I

L I L I

(8)

where
m represent the fluxes induced at measurements

coils (i.e., the output of the system). After some simple

algebraic manipulations it turns out:

 .)(

,

**

1

aamampm

aapappppp

IjTILjHL

IjHILRLjjI

 (9)

Equation (9) can be used to evaluate
m for a given

assigned unitary current flowing in excitation coil. This

transfer function can be used to design the feedback

control. For each frequency and each active coil, we set

Ia to 1 (the known terms in the Eq. (9)) and find the Flux

for all measurement coils (unknowns variables).

III. FAST TECHNIQUES
In order to speed up the overall computation we

move in two directions:

 parallelize the matrix assembly phase;

 accelerate the inversion of system (9).

A. Parallel assembly strategies

Matrices L and Q are very expensive to assemble.

For L matrix, parallelization can be achieved grouping

elements of nodes into boxes, distributing boxes among

processors, and performing the element-element

integration independently on each processor. The locally

assembled matrix is then compressed (see [2]).

The computation of matrix Q is the most time

consuming part of the assembly algorithm. In order to

reduce this cost, in the present work, parallel assembly

is implemented on multi CPUs and multi GPUs

environment. Here we take advantage of the fact that

142 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

Biot-Savart integral computation for elements and field

points, are independent from each other. Of course,

different implementations are necessary to adapt the

parallel computation to the two different hardware

architectures. In the following, we briefly recall the main

features of the two algorithms.

In multi CPUs environment we propose a standard

parallel strategy using a simple domain decomposition

approach that distributes the field points equally among

the processors. After the local computations, a reduction

operation is required to retrieve the complete matrix

from each MPI process. This strategy scales linearly with

the number of the processors.

In multi GPUs environment we propose to assign

to each computational thread the evaluation of a

contribution of the Biot-Savart integral corresponding to

a given element and a given field point. All the

contributions are summed on the CPU. The algorithm is

briefly summarized in the follow, see [1] for details:

1) Allocate temporary data for storing the local

contribute (CPU).

2) Compute the considered element and source point

from the thread and block index (GPU).

3) Compute the shape function related to the considered

element (GPU).

4) Compute the local contribution (GPU).

5) Return the partial matrix to the host memory (CPU).

6) Scatter the output data on the complete matrix on the

host (CPU).

The final step is due to uncoalescent memory access

needed to store the results in the final matrix and possible

race conditions when two different contributions are

summed in the same location. The dimension of the

matrix can be huge compared to the on board GPU

memory (which is typically of a few GB). Step 5

involves memory transfer from GPU to Host memory,

but fortunately this has no impact on the overall

performance of the code. We point to [9] for more

sophisticated approaches not considered here.

B. Speed up of the linear system inversion

As far as the inversion of the linear system involved

in (9) is concerned, it is worth noting that *

xy
L are fully

populated submatrices of matrix *
L and

pp
R is a sparse

positive definite matrix. Using a direct solver, the cost of

the inversion procedure is O(N3), N being the number of

unknowns present in the passive part of the device. When

geometric details are added and/or a great accuracy is

required in the computation, it is easy to exceed quickly

the computational resources available on a uniprocessor

system. The use of powerful computing facilities can

help in the search of additional speed and increase the

size of the solvable problems [5].

Nevertheless, there are cases in which parallelization

fails poorly. For this problem, an approximated

compression technique is mandatory. The authors

successfully applied these methods for the study of

plasma fusion devices [2] as well as in other fields (e.g.,

NDT [6]). These techniques are based on an effective

low-rank approximation of the submatrix representing

the far interaction between well separated parts of the

device. The matrix-by-vector product
jij

IL
* related to

these parts is replaced by an accurate low cost operator

(the complexity is asymptotically only O(N)). Finally,

the inversion in (9) can be performed by an iterative

method (such as the GMRES method). It is worth noting

that the preconditioner (essential for any iterative solver)

is 1

pp
R , which can be computed in fast and accurate way

by the means of Cholesky decomposition. It is important

to stress that its factorization and back substitution

is very cheap using a single CPU. Moreover the

preconditioner turns out to be very effective, being the

number of iterations required to converge very small.

IV. RESULTS
The computational cluster used for the evaluation of

the numerical performances is made by two nodes. Each

node consist of 16x cores Intel Xeon CPU E5-2690

(@ 2.90 GHz processor, 20 MB L2), 128 GB RAM,

2×NVIDIA Kepler K20 (2496 cores, 6 GB VRAM).

A. 2D validation and transfer function computation

First of all, a numerical validation of the procedure

is carried out. We generated a 3D mesh which fictitiously

reproduce an axisymmetric geometry, so that a 2D

code (CREATE_L [7]) can be used as benchmark. We

computed the transfer function T defined in the previous

section with the two codes, finding a very good

agreement, as shown in Fig. 2. This confirms the

correctness of the procedure.

In order to show the actual effect due to the presence

of the plasma, we compare the results obtained with and

without plasma on the full 3D mesh described above.

The plasmaless computation is in fact a purely magneto-

quasi-static calculation. The number of elements of the

mesh is equal to 30907, the number of nodes is 81550.

The number of unknowns in the passive structure (i.e.,

the dimension of the matrix to invert) is 22619. The

results are reported in Fig. 3. Evidently, the presence of

the plasma has an effect not only on the dynamical

properties of the model (e.g., the phase behavior at high

frequencies), but also on the static gain (amplitude at

zero frequency limit). This is not surprising, since the

plasma affects also the magnetostatic coupling between

active coils and sensors, because it reacts to external

static magnetic field perturbations, so as to reach a

different equilibrium configuration and hence, modifying

the whole magnetic field map in the surrounding regions.

ABATE, ET AL.: PARALLEL COMPUTATIONAL TECHNIQUES FOR RFX-MOD FUSION DEVICE MODELING 143

Fig. 2. Comparison of one element of the transfer

function T: proposed approach and reference 2D code.

Fig. 3. Effect of plasma on the transfer function.

B. Numerical issues

Regarding the speedup of the matrix assembly, using

25 cores the time required to compute the compressed

matrix L is about 90 s, the total time required to compute

the plasma matrices is about 549 s (540 s of this time is

due to the computation of Q matrix). In Fig. 4 we report

the speedup for assembling Q matrix, defined as the

assembly time required by one CPU divided by the time

obtained using a parallel multi GPUs. Using standard

parallel strategy (multi CPUs) the maximum achievable

speed up on the proposed computational system is

limited to 32.

Fig. 4. Speedup for Q-matrix assembly

The time required for each single inversion is about

17.5 s. The total time for all inversions is about 7000s.

The number of iterations required by GMRES to

converge increases with the excitation frequency.

Without the plasma (i.e., the response due to only the

passive structures) the number of iterations required by

GMRES to converge is 21 at a frequency of 100 Hz and

9 at 10 Hz. If the plasma is present the number of iteration

is 41 at frequency of 100 Hz and 9 at 10 Hz. This is

coherent with the general expectation that the used

preconditioner is more effective at lower frequencies and

without plasma.

V. CONCLUSIONS
We have presented fast parallel techniques for the

computation of input-output transfer functions on the

RFX-mod fusion devices on hybrid architectures,

featuring multiple CPUs and GPUs. The peculiarities of

fusion devices make this approach particularly effective

in significantly improving the performances of the

computation, allowing speed-ups up to almost 200 with

respect to standard computations.

REFERENCES
[1] F. Villone, A. G. Chiariello, S. Mastrostefano, A.

Pironti, and S. Ventre, “GPU-accelerated analysis

of vertical instabilities in ITER including three-

dimensional volumetric conducting structures,”

Plasma Phys. Control. Fusion, vol. 54, no. 8, 2012.

[2] G. Rubinacci, S. Ventre, F. Villone, and Y. Liu, “A

fast technique applied to the analysis of resistive

wall modes with 3D conducting structures,”

Journal of Comp. Phys., vol. 228, no. 5, pp. 1562-

1572, 2009.

[3] P. Sonato, et al., Fusion Eng. Des., vol. 66-68, pp.

161, 2003.

[4] F. Villone, et al., “ITER passive and active RWM

analysis with the CarMa code,” 38th EPS

Conference, paper P5.107, 2011.

[5] R. Fresa, G. Rubinacci, and S. Ventre, “An eddy

current integral formulation on parallel computer

systems,” Int. Journal for Numerical Methods in

Engineering, vol. 62, no. 9, pp. 1127-1147, 2005.

[6] G. Rubinacci, A. Tamburrino, and S. Ventre, “Fast

numerical techniques for electromagnetic non-

destructive evaluation,” Nondestr. Testing Eval.,

vol. 24, pp. 165-194, 2009.

[7] R. Albanese and F. Villone, “The linearized

CREATE-L plasma response model for the control

of current, position and shape in tokamaks,” Nucl.

Fusion, vol. 38, no. 5, pp. 723, 1998.

[8] A. Portone, et al., “Linearly perturbed MHD

equilibria and 3D eddy current coupling via the

control surface method,” Plasma Phys. Control.

Fusion, 50, 085004, 2008.

[9] A. Capozzoli, et al., “Speeding up aperiodic

reflectarray antenna analysis by CUDA dynamic

parallelism,” Proc. of the Int. Conf. on Numerical

Electromagn. Model. and Opt. for RF, Microwave

and Terahertz Appl., Pavia, Italy, pp. 1-4c, 2014.

144 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

Parallel Implementations of Multilevel Fast Multipole Algorithm on

Graphical Processing Unit Cluster for Large-scale Electromagnetics Objects

Nghia Tran and Ozlem Kilic

Department of Electrical Engineering and Computer Science

The Catholic University of America, Washington, DC, 20064, USA

16tran@cua.edu, kilic@cua.edu

Abstract ─ This paper investigates solving large-scale

electromagnetic scattering problems by using the Multi-

level Fast Multipole Algorithm (MLFMA). A parallel

implementation for MLFMA is performed on a 12-node

Graphics Processing Unit (GPU) cluster that populates

NVidia Tesla M2090 GPUs. The details of the

implementations and the performance achievements in

terms of accuracy, speed up, and scalability are shown

and analyzed. The experimental results demonstrate that

our MLFMA implementation on GPUs is much faster

than (up to 37x) that of the CPU implementation.

Index Terms ─ Graphics Processing Unit (GPU),

Multilevel Fast Multipole Algorithm (MLFMA).

I. INTRODUCTION
Over the past twenty years, various numerical

techniques have been developed to reduce the

computational time and memory requirements of full-

wave electromagnetic models without significant loss of

accuracy, including adaptive integral method (AIM) [1],

impedance matrix localization (IML) [2], fast multipole

method (FMM) [3], and multi-level fast multipole

algorithm [4]. Compared with the others, MLFMA is

among the most suitable techniques for large-scale

problems. It reduces the computational complexity of the

method of moments (MoM) from O(N2) to O(NlogN),

where N denotes the number of unknowns, whereas

AIM, IML and FMM have the complexities of

O(N3/2logN), O(N2logN), and O(N3/2), respectively.

Recently, many authors have investigated the

parallelization of MLFMA on CPU clusters [5] in solving

problems of hundreds of thousands to millions of

unknowns. In [6], CPU clusters were used to implement

MLFMA using Open MP and MPI library to solve a

billion unknowns. Multi-GPU implementation was also

investigated on a single node, multi-GPU computer without

using the MPI library [7]. In this paper, we demonstrate

the implementation of MLFMA for electromagnetics

problems on GPU clusters by using the MPI library.

We demonstrate the parallelization of MLFMA on a

12-node GPU cluster each of which is populated with

an NVidia Tesla M2090 GPU. An MVAPICH2

implementation of MPI is used for cluster parallel

programming. This paper is the continuation of our GPU

implementation of FMM by using GPU clusters. In [9]

and [10], GPU implementation for single level Fast

Multipole Method (FMM) solves only the maximum

problem size up to 656K unknowns on 13 nodes. In this

paper, our MLFMA implementation on GPU cluster can

solve up to 1.1 M unknowns. We demonstrate that the

implementation of MLFMA on GPUs is faster than that

of the CPU. The performance of the implementation is

analyzed by using a PEC sphere.

The rest of the paper is organized such that Section

II provides an overview of MLFMA. Section III presents

the parallel implementation of MLFMA on GPU

clusters. Experimental results are discussed in Section

IV, followed by the conclusions in Section V.

II. OVERVIEW OF THE MULTILEVEL

FAST MULTIPOLE ALGORITHM
The fundamental principles of MLFMA and its

applications in electromagnetics have been studied in

literature [4]-[5]. In this section, we provide a brief

overview to help our discussion on its parallel

implementation, which is presented in Section III.

MLFMA was invented based on the grouping

concept to accelerate the iterative solution of the linear

equation system ZI = V of the Method of Moment

(MoM), where I represents the unknown currents, V

depends on the incident field, and Z is the impedance

matrix. The main idea of the grouping concept is shown

in Fig. 1, where the M edges in the mesh of a given

structure are categorized into an N-level tree structure

connecting groups of different sizes from the finest (level

N) to the coarsest level (level 0). Based on the groups’

proximity, the impedance matrix Z can be split into two

matrices, Znear and Zfar, corresponding to near and far

interactions as shown in Equation (1):

' ' ' ' ' '

' ' '

,
M M M

near far

mm m mm m mm m m

m m m

Z I Z I Z I V

(1)

where m and m’ are observation and source edges in the

ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016 145

1054-4887 © 2016 ACES

Submitted On: February 27, 2016
Accepted On: May 10, 2016

mesh, respectively.

The Znear matrix comprises of interactions between

edges in spatially nearby groups, and is computed and

stored using the conventional MoM [8]. During the

iterative solution, the near matrix is calculated by the

regular sparse matrix-vector multiplications (MVMs).

The remaining edges, whose parents are near, constitute

the far term as shown in Fig. 1 (b). By treating the

interactions between the edges that are spatially far-away

using MLFMA, Zfar matrix does not need to be explicitly

computed and stored. Instead, the far components can

benefit from the fast MVMs during the iterative solution.

The Zfar matrix is factorized into radiation, receive and

translation functions, as explained in [4].

 (a) (b)

Fig. 1. MLFMA general concepts: (a) concept of the

MLFMA tree, and (b) MLFMA concept of far interactions.

The far component is calculated through five main

stages: aggregation, translation, and disaggregation,

interpolation and anterpolation as shown in Fig. 1 (b).

In the aggregation stage, radiated fields among the

groups from level N (the finest level) to level 2 are

calculated. At the finest level N, the radiation functions

for a group are computed by combining the radiation

patterns of the basic function of all edges in this group.

From level N-1 to level 2, the radiation functions for

each group are computed from the combination of the

radiation function of its children group of the finer level

using shifting and interpolation.

In the disaggregation stage, the receive functions at

each group are computed from level 2 to level N by

combining the local incoming waves due to translation

and the incoming waves from parent groups of the

coarser level using shifting and anterpolation.

The translation stage is identical to FMM [3], and the

details of interpolation and anterpolation can be found in [5].

III. PARALLELIZATION OF MLFMA ON

GPU CLUSTERS
In this section, we provide an overview of our

implementation on GPU. The implementation consists of

pre-processing, processing and post-processing. The

geometry mesh data resulting from the pre-processing

step is transferred to the GPU memory, and the entire

computation is performed on the GPU. The user defined

results such as radar cross section, scattered fields are

post-processed on CPU.

The GPU cluster used for our implementation

consists of 12 computing nodes. Each node has a dual 6-

core 2.66 GHz Intel Xeon processor, 48GB RAM along

with one NVidia Tesla M2090 GPU running at 1.3 GHz

supported with 6GB of GPU memory. The nodes are

interconnected through the InfiniBand interconnection.

The cluster populates CUDA v6.0 and MVAPICH2

v1.8.1 (a well-known implementation of Message Passing

Interface (MPI)).

In the processing step, the workload of the

computational task is equally distributed among the

computing nodes, and the inter-node communication is

minimized. This is achieved by uniformly distributing

the total number of groups, M, among the n computing

nodes. The parallelization of the GPU cluster

implementation is performed at two levels: (i) among the

computing nodes using MPI library, and (ii) within the

GPU per node using CUDA programming model.

Within each node, the CUDA thread-block model is

utilized to calculate the workload assigned to that node.

We only present the far interactions in this paper, since

the near field and V vector calculations implementations

can be found in [9]-[10].

All CUDA kernels are implemented to calculate

Znear matrix, and far interactions which includes the

radiation/receive functions, translation matrix, and

interpolation/anterpolation matrices. In fast matrix-vector

multiplication (MVM), CUDA kernel is also utilized to

compute the radiated fields, translation fields and received

fields in the aggregation, translation and disaggregation

stages, respectively. MPI library is also used to gather

results from each node in the end of MVM stage.

A. Far interactions calculations

This task comprises of five calculations: radiation,

and receive functions, interpolation, anterpolation and

translation matrices.

(i) Radiation and Receive Function Calculations

The first step in the far interaction calculations is the

calculation of the radiation, TE, and receive, RE, functions

for Zfar matrix. They are complex conjugates of each

other. Thus their implementations are similar. Following

the M group distribution, each node handles the calculations

of K directions for Mnode groups. Given this amount of

workload per node, the CUDA kernel is launched with

Mnode.K blocks such that each block implements Mgroup

radiation/receive function calculations at a given direction,

resulting in a total of Mnode.K blocks per node.

(ii) Translation Matrix Calculation

The second task for far interactions is the calculation

of the translation matrix, TL. The workload for the TL

calculations is also distributed across the nodes following

146 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

the group-based technique. By careful investigations,

allocating a CUDA block on a single row of the matrix

is the efficient way for the translation matrix calculation

to save memory requirements. Each CUDA block is

assigned to compute one sparse row of the TL matrix for

a given direction, and each thread computes one element

in that row.

(iii) Interpolation and Anterpolation Matrices

The third task for the far interactions is the calculation

of interpolation and anterpolation matrices. They are

transposes of each other. Thus their implementation is

similar. Each node handles the calculations of Kchildren/node

rows of KchildrenxKparent interpolation matrix, where

Kchildren is number of directions of a finer level, and Kparent

is number of directions of a coarser level. The CUDA

kernel is launched with Kchildren/node blocks per node. In

each block, the maximum number of threads (1024

threads) are utilized in order to implement the full

number of Kparent directions.

B. Fast matrix-vector multiplication

The next stage for the processing is the solution for

the linear system where we employ the iterative method

known as the biconjugate gradient stabilized method

(BiCGSTAB). The calculation of ZfarI comprises of five

stages: aggregation, translation, interpolation, anterpolation

and disaggregation, as shown in Fig. 2. Using a group-

based partitioning technique, the unknown current vector

I (Nedgesx1) is distributed across the computing nodes on

GPU clusters.

Fig. 2. Far matrix-vector-multiplication in parallel.

In the aggregation stage, at level N, each node

computes the radiated fields for Mnode groups for K

directions by multiplying the unknowns I with their

corresponding radiation functions, TE, and accumulating

within each group. After the aggregation step, an all-to-

all communication is employed by each node to

broadcast the radiated fields to all other nodes. The

radiated fields from level N-1 to level 2 are computed by

multiplying interpolation matrices with radiated fields of

children groups at lower levels.

In the translation, the radiated fields at each

direction are calculated from the sum of the multiplication

of the translation matrix and the radiated fields, and the

received fields from parent groups at upper levels using

anterpolation.

In the disaggregation stage, the received fields of all

M group at level N are multiplied with the corresponding

receive functions, and integrated over the partitioned K

directions of the unit sphere. The far components of

MVM are then incorporated with the near components of

MVM. At the end of MVM, the partial results from all

nodes are summed together and all nodes are updated.

IV. EXPERIMENTAL RESULTS

A. Accuracy

First, we verify the accuracy of our GPU

implementation by calculating the radar cross section

(RCS) of a 9 diameter (corresponding to 0.27 m and

100,000 unknowns) perfect electrically conducting (PEC)

sphere illuminated by an 1 GHz x-polarized normally

incident field. The results are compared to Mie scattering.

It can be observed in Fig. 3 that the GPU results and the

analytical solutions show a very good agreement.

Fig. 3. RCS of a 9λ diameter PEC sphere.

B. Implementation performance on GPU cluster

In the first experiment, our GPU implementation is

evaluated using the fixed-workload model (Amdahl’s

Law). A 22.4 diameter PEC sphere (650K unknowns) is

chosen such that it demands the use of at least 7 nodes to

satisfy the required memory. Two metrics are used for the

performance evaluation: speed up and scalability. The

speed up is defined as the ratio of time required by multi-

node GPU implementation with respect to the 7-node CPU

implementation. Scalability is the normalized speedup of

multiple nodes in reference to the speedup of 7 nodes. As

shown in Fig. 4, the speedup factor increases from 23.7

for 7 nodes to 37 for 12 nodes. Since each node processes

less workload, the GPU execution time decreases as the

number of nodes increases. The inter-node communication

overhead results in the difference between the speedup

of total execution time and computation time. For 7

computing nodes, the speed-up for the near-field system

matrix is over 86 (CPU computation time: 848s, GPU

computation time: 9.5s), while the speed-up of the BICGstab

iterative solution is over 22 times for 100 iterations,

which is restricted by the overhead communication between

computing nodes (CPU computation time: 9100s, GPU

TRAN, KILIC: MLFMA ON GPU CLUSTER FOR LARGE-SCALE OBJECTS 147

computation time: 415.1s).

In order to investigate the scalability of this

implementation, we compare how the speedup improves

with increasing number of computing nodes as we keep

the problem size constant, as observed in Fig. 5. The

computation speedup scales similar to the theoretical

linear behavior, demonstrating our efficient hardware

implementation. The total speedup scales closely to the

theoretical expectation demonstrating our efficiency in

reducing the inter-node communication overhead.

Fig. 4. Speedup analysis for the fixed-workload model

(vs. 7 nodes CPU implementation, 100 iterations).

Computational CPU exec time = 5573 sec, total CPU

exec time = 5627 sec.

Fig. 5. Scalability analysis for the fixed-workload model.

In the second experiment, we investigate the largest

problem size our GPU implementation can handle. As

the number of nodes increases, the problem size is also

increased so that the GPU memory in each node in fully

utilized. As shown in Fig. 6, the GPU implementation

can process a maximum problem size of 1.1 M unknowns

with a speed up factor of 25.2.

Fig. 6. Speedup analysis when the number of nodes

increases along with problem size increases (vs. multi-

node CPU, 100 iterations).

VI. CONCLUSION
In this paper, the GPU implementation of MLFMA

for electromagnetic scattering problems up to 1.1 million

unknowns using our 12-node GPU cluster is demonstrated.

The maximum problem size is determined by the available

on-board GPU memory. For the same degree of

accuracy, the GPU implementation outperforms the CPU

implementation. Moreover, the GPU implementation has

a good scalability as the number of computing nodes

increases.

REFERENCES
[1] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz,

“AIM: Adaptive integral method for solving large‐
scale electromagnetic scattering and radiation

problems,” Radio Science, vol. 31, no. 5, pp. 1225-

1251, 1996.

[2] F. X. Canning, “The impedance matrix localization

(IML) method for moment-method calculations,”

IEEE Ant. Prop. Mag., vol. 32, no. 5, pp. 18-30, 1990.

[3] R. Coifman, V. Rokhlin, and S. Wandzura, “The

fast multipole method for the wave equation: A

pedestrian prescription,” IEEE Antennas Propagat.

Mag., vol. 35, no. 3, pp. 7-12, June 1993.

[4] J. M. Song and W. C. Chew, “Multilevel fast multipole

algorithm for solving combined field integral

equations of electromagnetic scattering,” Microw.

Opt. Tech. Lett., vol. 10, pp. 14-19, Sep. 1995.

[5] O. Ergul and L. Gurel, “Efficient parallelization of

the multilevel fast multipole algorithm for the

solution of large-scale scattering problems,” IEEE

Trans. Antennas Propag., vol. 56, no. 8, pp. 2335-

2345, Aug. 2008.

[6] X.-M. Pan, W.-C. Pi, M.-L. Yang, Z. Peng, and X.-

Q. Sheng, “Solving problems with over one billion

unknowns by the MLFMA,” Antennas and Propaga.

IEEE Trans. on, vol. 60, no. 5, pp. 2571-2574, 2012.

[7] J. Guan, S. Yan, and J.-M. Jin, “An OpenMP-CUDA

implementation of multilevel fast multipole algorithm

for electromagnetic simulation on multi-GPU

computing systems,” Antennas and Propaga.,

IEEE Trans. on, vol. 61, no. 7, pp. 3607-3616, 2013.

[8] S. M. Rao, D. R. Wilton, and A. W. Glisson,

“Electromagnetic scattering by surfaces of

arbitrary shape,” IEEE Trans. Antennas Propag.,

vol. AP-30, no. 3, pp. 409-418, May 1982.

[9] Q. M. Nguyen, V. Dang, O. Kilic, and E. El-Araby,

“Parallelizing fast multipole method for large-scale

electromagnetic problems using GPU clusters,”

Antennas and Wireless Propagation Letters, IEEE,

vol. 12, pp. 868-871, 2013.

[10] V. Dang, Q. Nguyen, and O. Kilic, “Fast multipole

method for large-scale electromagnetic scattering

problems on GPU cluster and FPGA-accelerated

platforms,” Applied Computational Electromagnetics

Society Journal, vol. 28, no. 12, 2013.

148 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY EXPRESS JOURNAL

http://aces-society.org

INFORMATION FOR AUTHORS

PUBLICATION CRITERIA

Each paper is required to manifest some relation to applied

computational electromagnetics. Papers may address general

issues in applied computational electromagnetics, or they

may focus on specific applications, techniques, codes, or

computational issues. While the following list is not

exhaustive, each paper will generally relate to at least one of

these areas:

1. Code validation. This is done using internal checks or

experimental, analytical or other computational data.

Measured data of potential utility to code validation efforts

will also be considered for publication.

2. Code performance analysis. This usually involves

identification of numerical accuracy or other limitations,

solution convergence, numerical and physical modeling

error, and parameter tradeoffs. However, it is also

permissible to address issues such as ease-of-use, set-up

time, run time, special outputs, or other special features.

3. Computational studies of basic physics. This involves

using a code, algorithm, or computational technique to

simulate reality in such a way that better, or new physical

insight or understanding, is achieved.

4. New computational techniques or new applications for

existing computational techniques or codes.

5. “Tricks of the trade” in selecting and applying codes and

techniques.

6. New codes, algorithms, code enhancement, and code

fixes. This category is self-explanatory, but includes

significant changes to existing codes, such as applicability

extensions, algorithm optimization, problem correction,

limitation removal, or other performance improvement.

Note: Code (or algorithm) capability descriptions are

not acceptable, unless they contain sufficient technical

material to justify consideration.

7. Code input/output issues. This normally involves

innovations in input (such as input geometry

standardization, automatic mesh generation, or computer-

aided design) or in output (whether it be tabular, graphical,

statistical, Fourier-transformed, or otherwise signal-

processed). Material dealing with input/output database

management, output interpretation, or other input/output

issues will also be considered for publication.

8. Computer hardware issues. This is the category for

analysis of hardware capabilities and limitations of various

types of electromagnetics computational requirements.

Vector and parallel computational techniques and

implementation are of particular interest.

Applications of interest include, but are not limited to, antennas

(and their electromagnetic environments), networks, static

fields, radar cross section, inverse scattering, shielding,

radiation hazards, biological effects, biomedical applications,

electromagnetic pulse (EMP), electromagnetic interference

(EMI), electromagnetic compatibility (EMC), power

transmission, charge transport, dielectric, magnetic and

nonlinear materials, microwave components, MEMS, RFID,

and MMIC technologies, remote sensing and geometrical and

physical optics, radar and communications systems, sensors,

fiber optics, plasmas, particle accelerators, generators and

motors, electromagnetic wave propagation, non-destructive

evaluation, eddy currents, and inverse scattering.

Techniques of interest include but not limited to frequency-

domain and time-domain techniques, integral equation and

differential equation techniques, diffraction theories, physical

and geometrical optics, method of moments, finite differences

and finite element techniques, transmission line method, modal

expansions, perturbation methods, and hybrid methods.

Where possible and appropriate, authors are required to provide

statements of quantitative accuracy for measured and/or

computed data. This issue is discussed in “Accuracy &

Publication: Requiring, quantitative accuracy statements to

accompany data,” by E. K. Miller, ACES Newsletter, Vol. 9,

No. 3, pp. 23-29, 1994, ISBN 1056-9170.

SUBMITTAL PROCEDURE

All submissions should be uploaded to ACES server through

ACES web site (http://aces-society.org) by using the upload

button, Express Journal section. Only pdf files are accepted for

submission. The file size should not be larger than 6MB,

otherwise permission from the Editor-in-Chief should be

obtained first. Automated acknowledgment of the electronic

submission, after the upload process is successfully completed,

will be sent to the corresponding author only. It is the

responsibility of the corresponding author to keep the remaining

authors, if applicable, informed. Email submission is not

accepted and will not be processed.

EDITORIAL REVIEW

In order to ensure an appropriate level of quality control,

papers are peer reviewed. They are reviewed both for technical

correctness and for adherence to the listed guidelines regarding

information content and format.

PAPER FORMAT

Only camera-ready electronic files are accepted for publication.

The term “camera-ready” means that the material is neat,

legible, reproducible, and in accordance with the final

version format listed below.

http://aces-society.org/

The following requirements are in effect for the final version of

an ACES Express Journal paper:

1. The paper title should not be placed on a separate page.

The title, author(s), abstract, and (space permitting)

beginning of the paper itself should all be on the first page.

The title, author(s), and author affiliations should be

centered (center-justified) on the first page. The title should

be of font size 14 and bolded, the author names should be

of font size 12 and bolded, and the author affiliation should

be of font size 10 (regular font, neither italic nor bolded).

2. An abstract is required. The abstract should be a brief

summary of the work described in the paper. It should state

the computer codes, computational techniques, and

applications discussed in the paper (as applicable) and

should otherwise be usable by technical abstracting and

indexing services. The word “Abstract” has to be placed at

the left margin of the paper, and should be bolded and

italic. It also should be followed by a hyphen (–) with the

main text of the abstract starting on the same line.

3. All section titles have to be centered and all the title letters

should be written in caps. The section titles need to be

numbered using roman numbering (I. II. ….)

4. Either British English or American English spellings may

be used, provided that each word is spelled consistently

throughout the paper.

5. Internal consistency of references format should be

maintained. As a guideline for authors, we recommend that

references be given using numerical numbering in the body

of the paper (with numerical listing of all references at the

end of the paper). The first letter of the authors’ first name

should be listed followed by a period, which in turn,

followed by the authors’ complete last name. Use a comma

(,) to separate between the authors’ names. Titles of papers

or articles should be in quotation marks (“ ”), followed by

the title of the journal, which should be in italic font. The

journal volume (vol.), issue number (no.), page numbering

(pp.), month and year of publication should come after the

journal title in the sequence listed here.

6. Internal consistency shall also be maintained for other

elements of style, such as equation numbering. Equation

numbers should be placed in parentheses at the right

column margin. All symbols in any equation have to be

defined before the equation appears or right immediately

following the equation.

7. The use of SI units is strongly encouraged. English units

may be used as secondary units (in parentheses).

8. Figures and tables should be formatted appropriately

(centered within the column, side-by-side, etc.) on the page

such that the presented data appears close to and after it is

being referenced in the text. When including figures and

tables, all care should be taken so that they will appear

appropriately when printed in black and white. For better

visibility of paper on computer screen, it is good to make

color figures with different line styles for figures with

multiple curves. Color should also be tested to insure their

ability to be distinguished after black and white printing.

Avoid the use of large symbols with curves in a figure. It

is always better to use different line styles such as solid,

dotted, dashed, etc.

9. A figure caption should be located directly beneath the

corresponding figure, and should be fully justified.

10. The intent and meaning of all text should be clear. For

authors who are not masters of the English language, the

ACES Editorial Staff will provide assistance with grammar

(subject to clarity of intent and meaning). However, this

may delay the scheduled publication date.

11. Unused space should be minimized. Sections and

subsections should not normally begin on a new page.

ACES reserves the right to edit any uploaded material, however,

this is not generally done. It is the author(s) responsibility to

provide acceptable camera-ready files in pdf and MSWord

formats. Incompatible or incomplete files will not be processed

for publication, and authors will be requested to re-upload a

revised acceptable version.

COPYRIGHTS AND RELEASES

Each primary author must execute the online copyright form and

obtain a release from his/her organization vesting the copyright

with ACES. Both the author(s) and affiliated organization(s) are

allowed to use the copyrighted material freely for their own

private purposes.

Permission is granted to quote short passages and reproduce

figures and tables from an ACES Express Journal issue

provided the source is cited. Copies of ACES Express Journal

articles may be made in accordance with usage permitted by

Sections 107 or 108 of the U.S. Copyright Law. The consent

does not extend to other kinds of copying, such as for general

distribution, for advertising or promotional purposes, for

creating new collective works, or for resale. The reproduction

of multiple copies and the use of articles or extracts for

commercial purposes require the consent of the author and

specific permission from ACES. Institutional members are

allowed to copy any ACES Express Journal issue for their

internal distribution only.

PUBLICATION CHARGES

There is a $200 basic publication charge assigned to each paper

for ACES members, and $300 charge for non-ACES members.

Corresponding authors should be active members of the society

at the time of submission and the time of publication in order to

receive the reduced charge.

ACES Express Journal doesn’t allow for more than four pages.

All authors must comply with the page limitations. ACES

Express Journal is an online journal, and printed copies are not

available.

Upon completion of its first year, ACES Express Journal

will be abstracted in INSPEC, in Engineering Index, DTIC,

Science Citation Index Expanded, the Research Alert, and to

Current Contents/Engineering, Computing & Technology.

	March_Inside_Cover_TOC.pdf
	THE APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY
	ASSOCIATE EDITORS-IN-CHIEF
	Amedeo Capozzoli
	Universita di Napoli Federico II, DIETI
	I-80125 Napoli, Italy
	Maokun Li
	Tsinghua University, EE Dept.
	Beijing 100084, China
	EDITORIAL ASSISTANTS
	TABLE OF CONTENTS

	March_Inside_Cover_TOC.pdf
	THE APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY
	ASSOCIATE EDITORS-IN-CHIEF
	Amedeo Capozzoli
	Universita di Napoli Federico II, DIETI
	I-80125 Napoli, Italy
	Maokun Li
	Tsinghua University, EE Dept.
	Beijing 100084, China
	EDITORIAL ASSISTANTS
	TABLE OF CONTENTS

	March_Inside_Cover_TOC.pdf
	THE APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY
	ASSOCIATE EDITORS-IN-CHIEF
	Amedeo Capozzoli
	Universita di Napoli Federico II, DIETI
	I-80125 Napoli, Italy
	Maokun Li
	Tsinghua University, EE Dept.
	Beijing 100084, China
	EDITORIAL ASSISTANTS
	TABLE OF CONTENTS

	April_Inside_Cover_TOC.pdf
	THE APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY
	ASSOCIATE EDITORS-IN-CHIEF
	Amedeo Capozzoli
	Universita di Napoli Federico II, DIETI
	I-80125 Napoli, Italy
	Maokun Li
	Tsinghua University, EE Dept.
	Beijing 100084, China
	EDITORIAL ASSISTANTS
	TABLE OF CONTENTS

	April_Inside_Cover_TOC.pdf
	THE APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY
	ASSOCIATE EDITORS-IN-CHIEF
	Amedeo Capozzoli
	Universita di Napoli Federico II, DIETI
	I-80125 Napoli, Italy
	Maokun Li
	Tsinghua University, EE Dept.
	Beijing 100084, China
	EDITORIAL ASSISTANTS
	TABLE OF CONTENTS

	April_Inside_Cover_TOC.pdf
	THE APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY
	ASSOCIATE EDITORS-IN-CHIEF
	Amedeo Capozzoli
	Universita di Napoli Federico II, DIETI
	I-80125 Napoli, Italy
	Maokun Li
	Tsinghua University, EE Dept.
	Beijing 100084, China
	EDITORIAL ASSISTANTS
	TABLE OF CONTENTS

