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Abstract: The diakoptic surface integral-equation formulation (DSIE) is used for simulations of complex 3-D 
scatterers. Comparisons to solutions found using the classical method of moments are presented, illustrating 
accuracy, acceleration, and storage reduction achieved using the diakoptic approach. The implemented DSIE uses 
the WIPL-D engine for calculation of MoM-SIE coefficients and for the post-processing of results. 
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1. Introduction 
 
The surface integral-equation (SIE) formulation has been used for more than a half of a century to solve 

electromagnetic (EM) field problems [1]-[4]. However, for complex problems, the simulations based on the SIE 
become unacceptably demanding in both the computer CPU time and memory resources. Hence, various approaches 
have been suggested to increase the efficiency of the SIE formulation [5]-[9]. We present here a general approach 
that can be seamlessly integrated into existing SIE codes, which we refer to as the diakoptic SIE (DSIE) 
formulation. In our previous work, the DSIE has been successfully applied to 2-D static and dynamic EM problems 
[10] and 3-D static problems [11]. In the present paper, the diakoptic approach is specialized to the dynamic analysis 
of 3-D metallic scatterers. In all examples, rooftop basis functions along with the Galerkin testing procedure are 
implemented utilizing the WIPL-D engine [12]. 

 
2. Outline of Diakoptic Surface Integral-Equation Formulation 

 
We consider an arbitrarily shaped metallic scatterer located in a vacuum. The DSIE formulation (as well as the 

classical MoM-SIE) is based on the surface equivalence principle [1]. In the DSIE formulation, the original system 
is split into several non-overlapping subsystems. Each subsystem is encapsulated by a diakoptic (boundary) surface 
that acts as an interface between the subsystem and the rest of the system. For each subsystem, the unknowns are the 
coefficients of the surface electric current expansions on the scatterer surface and the coefficients of the equivalent 
surface sources on the diakoptic boundary. For the scatterer surface in a subsystem, we formulate the same SIEs as 
in the classic MoM-SIE approach. For the diakoptic surface, we formulate an additional SIE by requiring that the 
electric and magnetic fields are zero just outside the diakoptic boundary. The solution of such SIEs gives a matrix 
relation between the coefficients of the equivalent surface sources and the coefficients of current expansions on the 
scatterer surface. In order to solve the whole original system, we combine the matrix relations for all subsystems 
into a global diakoptic system of linear equations. Solutions of that system are the expansion coefficients of the 
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equivalent sources at the diakoptic boundary. By using that solution and matrix relations for subsystems, the 
coefficients of the current expansions on the scatterer surface can be calculated. If the number of unknown 
coefficients for the equivalent sources at a diakoptic boundary is sufficiently smaller than the number of coefficients 
for the currents at the scatterer surface, DSIE solves the problems more efficiently than MoM-SIE. 

 
3. Illustration of DSIE 

 
The aim of this example is to illustrate the basic idea of DSIE and the influence of modeling of a diakoptic 

boundary to the accuracy of the final solution. 
The considered scatterer is a metallic square plate, shown in Fig. 1a. The plate side is mm 5 . The illuminating 

electromagnetic wave arrives from the direction perpendicular to the plane in which the scatterer resides, i.e., the 
direction of the incident wave is 0=Φ , o90=Θ  and the plate is parallel to the Oyz  plane of the Cartesian 
coordinate system. The rms value of the incident electric field is V/m 1=E  and the electric field vector is parallel to 
the z-axis. The frequency of the incident EM wave is GHz 3=f , i.e., the electrical length of the scatterer side is 

20/λ , where λ  is the free-space wavelength at the operating frequency.  
For the diakoptic analysis, the scatterer is wrapped with a diakoptic boundary surface. The diakoptic boundary 

is a cube of a side mm 10=a , positioned around the scatterer, as shown in Fig. 1b. The sides of the cube are 
parallel to the principal planes of the Cartesian coordinate system, while the center of the cube coincides with the 
center of the scatterer. The original EM system is split into two diakoptic subsystems. The first diakoptic subsystem 
consists of the scatterer and the diakoptic boundary (Fig. 1b). The second diakoptic subsystem consists of the outer 
space and the same diakoptic boundary (Fig. 1c). The union of both subsystems is the whole region where the EM 
field exists. 
 

   
(a) Square metallic scatterer. (b) First diakoptic subsystem. (c) Second diakoptic subsystem. 

Fig. 1. Square metallic scatterer and the diakoptic subsystems. 
 
The total number of coefficients for the expansion of the electric currents on the scatterer surface is 4=N . The 

total number of coefficients for the expansion of the equivalent electric currents on the diakoptic boundary is 
12=D  (the total number of coefficients for the equivalent magnetic currents is D , too).  
Both subsystems are simulated using classical MoM-SIE to find their matrix representations. The combination 

of these matrices yields a diakoptic system of linear equations. The solutions of that system are the coefficients of 
equivalent electric and magnetic currents on the diakoptic boundary. From that solution, the coefficients for the 
expansion of the electric current on the scatterer surface are calculated.  

First, we explore the stability of the diakoptic system of linear equations. It is essential that this system of linear 
equations is stable in order to get accurate results for the equivalent sources, since all other results (such as RCS, 
near and far fields) are calculated using these equivalent sources. We increased the numerical accuracy with which 
the integrals in the MoM matrix entries are computed [12] and observed the magnitude of the electric current 
(Fig. 2) in the direction of the incident electric field at the scatterer (z-coordinate). The RCS for the direction 0=Φ  
as a function of the angle Θ  and the same integral accuracies as parameters is shown in Fig. 3. From Figs. 2 and 3 it 
is seen that there exists a slight discrepancy between the MoM-SIE and the diakoptic solution only for the lowest 
integral accuracy. Even that discrepancy is on the order of several percent. 

Further, we explore the influence of the number of coefficients for equivalent electric (and magnetic) currents 
on the diakoptic boundary. The diakoptic boundary is additionally meshed into smaller quadrilaterals to increase the 
total number of coefficients for equivalent sources ( D ). The integral accuracy is set to 0 (normal) [12]. The 
magnitude of the electric current for various D , in the same direction as in the previous case, is shown in Fig. 4. 

24th Annual Review of Progress in Applied Computational Electromagnetics March 30 - April 4, 2008 - Niagara Falls, Canada  ©2008 ACES

677



The RCS for various D  is shown in Fig. 5. From Figs. 4 and 5 it is seen that increasing the total number of 
coefficients for the expansion of the equivalent sources on the diakoptic boundary enhances the accuracy of the 
diakoptic solution. This can be explained by the fact that by increasing D  we increase the amount of information 
about the subsystem that is visible to other subsystems through the diakoptic boundary.  
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Fig. 2. Scatterer current for various  

integral accuracies. Fig. 3. RCS for various integral accuracies. 
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Fig. 4. Scatterer current for various  

number of coefficients for equivalent sources. 
Fig. 5. RCS for various number of  
coefficients for equivalent sources. 

 
Finally, we increase the frequency in order to show that the diakoptic approach can be applied for an arbitrary 

frequency. The new frequency is GHz 30=f . Hence, the electrical length of the plate side is 2/λ  and the 
corresponding electrical dimensions of the diakoptic boundary are λ×λ×λ . The number of coefficients for 
equivalent electric (magnetic) currents is increased to 768=D  so that the rooftop basis functions can effectively 
approximate the equivalent sources. 

The near field distribution in the vicinity of the scatterer, shown in Fig. 6, is calculated: (a) with the classical 
MoM-SIE approach, (b) with DSIE, (c) using equivalent sources on the diakoptic boundary and the electric currents 
on the scatterer surface in the first subsystem, and (d) using equivalent sources on the diakoptic boundary of the 
second subsystem. From Figs. 6c and 6d it is seen that the EM field is preserved inside each subsystem, while it is 
annihilated outside the subsystem (diakoptic) boundary, which is in accord with the applied equivalence theorem. 
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(a) MoM-SIE solution. (b) DSIE solution. 

  
(c) First subsystem. (d) Second subsystem. 

Fig. 6. Near field in the vicinity of the scatterer for GHz 30=f . 
 
The RCS for GHz 30=f , shown in Fig. 7, is calculated: (a) with the classical MoM-SIE approach, (b) with 

DSIE, and (c) using equivalent sources on the diakoptic boundary of the second subsystem. The results shown in 
Figs. 6 and 7 demonstrate that the DSIE can be used for an arbitrary frequency. 

   
(a) MoM-SIE. (b) DSIE. (c) DSIE equivalent sources. 

Fig. 7. RCS at GHz 30=f . 
Note that in this particular example, the DSIE formulation is not advantageous compared to the classical 

MoM-SIE as we use more unknown coefficients for the equivalent sources than the number of coefficients for the 
currents on the plate (scatterer). 

 
4. Efficiency of DSIE: Scattering from Complex Structures 

 
The aim of this example is to demonstrate the efficiency that can be achieved using DSIE, particularly the 

acceleration and the storage reduction when compared to the classical MoM-SIE solution. 
The considered scatterer consists of 1250 identical metallic cubes grouped in 10 clusters, as shown in Fig. 8a. 

Each cluster consists of 125 ( 555 ×× ) metallic cubes (Fig. 8b). The side of a cube is mm 1=a . The distance 
between neighboring cubes in a cluster is mm 1=d  in the x , y , and z -direction. The distance between 
neighboring clusters is mm 6=p  in the y  and z -direction. The illuminating EM wave impinges from the direction 

0=Φ , o90=Θ . The rms value of the incident electric field is V/m 1=E  and the electric field vector is parallel to 
the z-axis. The frequency of the incident EM wave is GHz 15=f . The electrical length of the cube side is 20/λ . 
The dimensions of one cluster are 20/920/920/9 λ×λ×λ  and the dimensions of the whole scatterer are 
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20/925.15.3 λ×λ×λ . The total number of the unknown coefficients for the electric current expansions for the 
whole scatterer is 000 15tot =N , i.e., 12 per metallic cube.  

  
(a) Complex scatterer. (b) One cluster of cubes. 

Fig. 8. The complex scatterer. 
 
For the diakoptic approach, the scatterer is divided into 11 subsystems. The first one consists of the outer space 

and the diakoptic boundaries of the other 10 subsystems (Fig. 9a). The remaining 10 subsystems are congruent. Each 
of them consists of a cluster of 125 cubes wrapped with a diakoptic boundary (Fig. 9b). The diakoptic boundary is a 
cube of a side mm 11=b . The total number of the unknown coefficients for the current expansions of the equivalent 
electric (magnetic) currents on the diakoptic boundary is 192=D  and for the encapsulated cluster is 1500=N . 
Since we have 10 congruent systems, their diakoptic matrices are identical and, therefore, we solve only two 
subsystems with MoM-SIE: the first one and one of the remaining 10 congruent subsystems.  

  
(a) The first subsystem. (b) One of 10 congruent subsystems. 

Fig. 9. Subsystems for the diakoptic approach. 
 
The RCS calculated with the classical MoM-SIE and the DSIE formulations is shown in Fig. 10 for two cuts 

(a) o88=Θ  and (b) o180=Φ . The results calculated using DSIE and MoM-SIE match very well.  
The acceleration of DSIE approach can be calculated as DSIESIE / tta = , where t  is the time needed for each of 

these simulations. The simulation of the whole scatterer at once using WIPL-D [12] out-of-core solver takes 
s 557 24SIE =t  on a 32-bit desktop PC with 512 MB of RAM. On the same PC, the DSIE simulation takes only 

s 619DSIE =t . Therefore, the achieved acceleration is 7.39=a . Theoretically, the maximal acceleration that can be 

achieved in this example is ( )
( ) ( )

6.177
2 33

3
=

++
=

DNKD
KNa , if the inversion of matrices ( ( )3~ NO ) is the dominant 

time-consuming process. 
The storage reduction of the DSIE approach can be calculated as DSIESIE / ssm = , where s  is the memory 

(RAM) used for each of these simulations. To store the MoM-SIE matrix of the whole scatterer (double precision 
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complex numbers), it takes GB 6.3SIE =s . The largest matrix that is stored in the DSIE approach is the MoM matrix 
for the first subsystem that consists of 1920 coefficients and it takes MB 59DSIE =s . Two such matrices are needed 
during the DSIE simulation. Therefore, the achieved storage reduction in this example is 5.30≈m .  

0 40 80 120 160 200 240 280 320 360
-50

-40

-30

-20

-10

0

10
 

Φ [deg]

σ/
λ2  [d

B]

 DSIE
 MoM-SIE

 

0 30 60 90 120 150 180
-30

-25

-20

-15

-10

-5

0

5

10

15

 

 

θ [deg]

σ/
λ2  [d

B]

 DSIE
 MoM-SIE

 
(a) Θ -cut. (b) Φ -cut. 

Fig. 10. RCS calculated using DSIE vs. classical MoM-SIE. 
 

5. Conclusions 
 
In this paper we have shown that the diakoptic surface integral-equation (DSIE) formulation can be efficiently 

used for the simulations of complex 3-D scatterers. Significant accelerations and storage reductions, compared to the 
classical MoM-SIE formulation, are achieved without compromising the accuracy of the final results.  

The future work will include composite metallic and dielectric structures, antennas, higher-order basis 
functions, and optimization-for-speed of the diakoptic code. 
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