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Abstract: This paper summarizes results for preferred values of the Particle Swarm Optimizer (PSO) 
parameters when it is applied to EM problems. The PSO is applied to two different EM optimization problems. 
The first problem is the optimization of the position of a rectangular waveguide feed, which has two 
optimization variables. The second problem is the optimization of the excitations of a broadside antenna array, 
which has twenty optimization variables. The results show that the preferred parameters of PSO are somewhat 
different for optimization problems with different number of dimensions of the optimization space. 
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1. Introduction 
 
The Particle Swarm Optimization (PSO) is a relatively new approach to EM optimization and design [1-3]. 

It is based on the analogy of movement of bird flocks or fish schools, on one side, and the optimization, on the 
other side. The PSO algorithm belongs to the class of the heuristic optimization algorithms. Since it was 
introduced ten years ago, its possibilities and limits, when applied to EM problems, are not fully explored. The 
aim of this paper is to summarize the results for the found preferred parameters of the PSO when it is applied to 
the optimization of EM systems.  

In Section 2 we briefly describe the implementation of PSO used in the following numerical examples. In 
Section 3, we present results for optimization of the position of the rectangular waveguide feed, for different 
values of the PSO parameters. In Section 4, we present results for the optimization of the excitations of the 
broadside antenna array using PSO.  

 
2. Description of the Used Implementation of PSO 

 
The PSO algorithm minimizes the cost-function of an EM problem by simulating movement and interaction 

of particles in a swarm. The position of a particle (or an agent) corresponds to one possible solution of the EM 
problem, i.e., it corresponds to one point in the optimization space. Since we assume that there is no a priori 
knowledge of the optimization problem, all solutions in the optimization space are well suited for the beginning 
of the optimization. Therefore, PSO starts with randomly chosen positions of particles. Each particle keeps track 
of its personal best position found in the optimization space, bestp , which is the position-vector in the 
optimization space. The swarm keeps track of the global best position, bestg , found with all particles together. 
Hence, every particle knows the best position found by itself and the best position found by the whole swarm. 
(There are other possible formulations of the PSO, when particles do not know the global best position, but 
rather know the best position of a subset of the swarm that it belongs to. However, these formulations are out of 
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the scope of this paper.) The velocity vector for the calculation of the particle position in the next iteration is 
calculated as 

 ( ) ( )1best21best11 ()rand()rand −− −⋅⋅+−⋅⋅+⋅= nnn-n ccw xgxpvv , (1) 

where 1−nv  is the particle velocity in the previous iteration, w  is so-called inertia coefficient, ()rand  is the 
function that generates uniformly distributed random numbers in the interval from 0.0 to 1.0, 1c  is so-called the 
cognitive coefficient (it controls the pull to the personal best position), and 2c  is so-called the social rate 
coefficient (it controls the pull to the global best position).  

The next position of the particle in the optimization space is calculated as  

 tnn-n ∆+= vxx 1 , (2) 

where t∆  is most often considered to be of a unit value.  
It is found that if there are no limits for the velocity of the particles, they might fly-out of the meaningful 

optimization space [1-3]. Therefore, maximal velocity maxV  is introduced as another parameter of the PSO 
algorithm. maxV  represents the maximal percentage of the dynamic range of the optimization variable for which 
the velocity can change in successive movements of the particle. In our implementation of the optimization, all 
dynamic ranges of the optimization variables are scaled to the interval [ ]0.1,0.1 +− , and we will use one unique 
value of maxV  for all optimization variables. 

Default parameters of PSO found in the literature [3] are: the number of particles 15=p , the inertia 
729.0=w , the maximal velocity 2.0max =V , and the cognitive coefficient and the social rate 

( ) ( )494.1 ,494.1, 21 =cc . 
 

3. The First Optimization Problem: 
Optimal Position of Feeding Probe in Rectangular Waveguide 

 
We consider a rectangular waveguide open at one end and closed at the other end. The width of the 

waveguide is 86 mm, the height is 43 mm, and the length is 200 mm. One half of the structure is shown in 
Fig. 1. The operating frequency is 4 GHz. 

 
Fig. 1. One half of the rectangular waveguide used in the first optimization problem. 

 
The feeding probe is positioned on the central axis of the rectangular waveguide. The probe distance from 

the closed end of the waveguide, x , and its height, h , are optimized for the minimal possible reflection 
coefficient ( 11s ). The optimization parameters are varied in the ranges mm 1011 ≤≤ x  and mm 3010 ≤≤ h . 
Therefore, the optimization space has two dimensions.  

The cost-function used in this optimization is calculated as  
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 dB][[dB]100 11cost sf −= , (1) 

where 11s  is the reflection coefficient, in dB, at the feeding probe. 
PSO algorithm parameters are varied one-at-a-time with all the others equal to the default values, as given 

in Section 2, except the number of particles in the swarm. It is found that the swarm of five particles performs 
better than setups with higher number of particles and for that reason it is used as a default value in this 
optimization problem. 

The PSO coefficients are taken from the following sets  
{ }35 ,30,25 ,20,15,10 ,5∈p ,  
{ }0.9 0.8, .7,0 ,6.0,.50 ,4.0,3.0,.20 ,1.0∈w ,  
{ }0.9 0.8, .7,0 ,6.0,.50 ,4.0,3.0,.20 ,1.0max ∈V , and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0.0,0.3,5.0,5.2,0.1,0.2,5.1,5.1,0.2,0.1,5.2,5.0,0.3,0.02,1 ∈cc . 
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Fig. 2. Impact of number of particles. Fig. 3. Impact of inertia coefficient w. 
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Fig. 4. Impact of maximal velocity Vmax. Fig. 5. Impact of cognitive and social rate coefficients. 

 
One optimization lasts for 100 iterations (EM solver calls). We use WIPL-D Pro. v5.1 [4] as the EM solver. 
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For each setup of the PSO coefficients, the optimization is repeated for 100 times to get a good estimation of the 
average outcome of the optimization. The average minimal cost-function found after the number of iterations is 
shown is Figs. 2-5.  

From the presented results we conclude that preferred values for the PSO algorithm in this problem are: the 
number of particles 5=p , the inertia coefficient 4.0=w , the maximal velocity 2.0max =V , and cognitive and 
social rate coefficients ( ) ( )5.1,5.1, 21 =cc . 

 
4. The Second Optimization Problem: 

Optimal Excitations of Broadside Antenna Array 
 

The second optimization problem is a broadside antenna array of 42-point sources located along the z-axis 
and at uniform distance of one half of the wavelength at the operating frequency. Optimization of excitation 
magnitudes is done for the lowest possible side lobe levels. The solution is required to have symmetry of the 
excitation amplitudes, and therefore only one half of the excitations are varied. To avoid infinite number of 
solutions due to scaling, the 21st coefficient is predefined. Hence, we have a 20-dimensional optimization 
problem. 

The criterion for the optimization is that the side lobe levels should be lower then –80 dB everywhere for 
θ < 65°, where θ is the angle between the array axis and the radiation direction. The cost-function is calculated 
as: 

 ( )[ ]{ }∑
−

=

θ−−=
1

0

2
maxcost 80,0max1 n

i
iFF

n
f , (2) 

where Fmax is in the direction θ = 90°, [ ],°=θ ii ,65=n  and F(θi) is given in dB. The theoretical result exists in 
the form of the binomial distribution of the amplitudes. The ratio of the highest and the lowest amplitude is of 
the order of 1011, which is inconvenient from the standpoint of the numerical optimization. Hence, we represent 
each coefficient as ( ) 20,...,2,1,ln == kas kk , so that the maximal ratio of the coefficients is less than 30. Each 
optimized parameter, ks , has the lower bound equal to zero and the upper bound equal to the largest (21st) 
coefficient. 

PSO algorithm parameters are varied in the same way as in the previous example, with the difference that 
the default value for the number of particles in the swarm is 15. The same sets of the parameter values are used. 
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Fig. 6. Impact of number of particles. Fig. 7. Impact of inertia coefficient w. 
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Fig. 8. Impact of maximal velocity Vmax. Fig. 9. Impact of cognitive and social rate coefficients. 

 
One optimization lasts for 15,000 iterations (EM solver calls). Each optimization is repeated for 100 times 

to get the good estimation of the average outcome of the optimization. The average minimal cost-function found 
after the number of iterations is shown in Figs. 6-9. 

From the presented results, it can be seen that the preferred values for the PSO algorithm in this problem 
are: the number of particles 30=p , the inertia coefficient 7.0=w , the maximal velocity 7.0max =V , and 
cognitive and social rate coefficients ( ) ( )0.2,0.1, 21 =cc . Note that all values for ( )21,cc  coefficients except 
( ) ( )0.3,0.0, 21 =cc  show very similar behavior. 

 
5. Conclusions 

 
On the basis of results obtained through numerical experiments, presented in the paper, we can conclude 

that preferred PSO parameters change with the increase of the number of optimization variables. The number of 
particles in the swarm seems to be proportional to the number of dimensions of the optimization problem. 
However, more experiments should be preformed to verify that. For the other parameters of the PSO algorithm, 
the default values performed well, but careful tuning can yield a slightly more efficient optimization. The future 
research should go in the direction of comparing the efficiency of PSO to the efficiency of other optimization 
algorithms that are used to optimize EM systems. 
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