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Abstract:   
 
This paper presents the results to date of an on-going development effort to provide a scalable, portable, 
parallel scene generation tool that will provide the capability to rapidly generate scenes of radiating and 
scattering structures in realistically complex electromagnetic environments.  The benefit of such a tool is 
that it will provide users with the capability to solve large problems that cannot be currently solved with 
existing sequential electromagnetic modeling tools,   This tool supports a broad range of users including 
researchers, algorithm developers, analysts, and system developers.  This paper will present the 
parallelization process highlighting the strategies used and will show the results to date. 
 
The project presented here is the parallelization of WIPL-D, an electromagnetic modeling tool. Through 
parallelization, the well known and commercially available tool will become faster and possess increased 
capabilities. This paper will walk you through the parallelization process, providing the strategies used 
and the results received. 
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1. Background 

The parallel electromagnetic modeling tool (WIPL-DP) being developed under this effort is leveraging a 
proven commercially successful sequential electromagnetic modeling and scene generation tool called 
WIPL-D (Wires, Plates and Dielectrics).  WIPL-D has evolved from over ten years of research in 
numerical electromagnetics. The demand for analysis of composite conducting and dielectric structures 
necessitated the development of such a tool. WIPL-D uses Method of Moments to solve Maxwell’s 
Equations. It uses a bilinear quadrilateral domain technique, which reduces the number of unknowns for 
large scale simulation problems. WIPL-D was developed by Dr. Tapan K. Sarkar from Syracuse 
University and Dr. Branko M. Kolundžija from the University of Belgrade.  

 
This WIPL-DP effort is being funded under the Common High Performance Computing Software 
Support Initiative (CHSSI). The goal of this initiative is to provide efficient, scalable, portable software 
codes, algorithms, tools, models and simulations that can run on a variety of DOD High Performance 
Computing platforms that can be used by scientists and engineers to solve computing problems.  For more 
information on the CHSSI initiative refer to http://www.hpcmo.hpc.mil/Htdocs/CHSSI/. Through the 
CHSSI initiative, WIPL-D is being parallelized so that it can meet certain pre-determined requirements, 
namely portability, scalability, and accuracy. For portability, the parallelized code must run on various 
High Performance Computers located at multiple Department of Defense sites. For scalability, the code 
running on multiple processors must meet a required speedup level when compared to a single processor 
run. For accuracy, the parallelized code must have accuracy within a certain percent when compared to 
the original commercial version of WIPL-D.  
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This is a three year development effort with four major milestone reviews.  We are currently starting the 
third year of the effort and have two major milestones left to complete.  The four major milestone reviews 
are used to determine if the project is meeting the guidelines set forth by the CHSSI program and, based 
on this, a decision is made whether or not to continue the out year funding. The past, present, and future 
years will be discussed in terms of what was or is to be accomplished, along with the CHSSI requirements 
for that year. 
 

2.  WIPL-DP Development First Year 
 
The first year of the effort had two main goals. These goals were to increase the code’s portability and to 
determine the strategies for parallelization. The results were presented at the CHSSI SAT review, along 
with baseline timings for a selected target demonstration. There were three specific critical test 
parameters that must be achieved. A speed baseline was to be established for a target demonstration 
running on a single processor. The code was to be run on one High Performance Computing platform 
producing valid results. Optimally, the single processor version of the code was to produce an accuracy of 
6% error (8% as a minimum) when compared to the commercial version of WIPL-D. The accuracy is 
determined by comparing the output files from the parallel version to the output files from the commercial 
version. Matlab scripts were used to calculate the percent error between the values in the corresponding 
files. 
 
The first goal required providing a parallel version of the code that was more portable, To achieve this, 
the original WIPL-D FORTRAN version of the code was converted into the C language. The conversion 
process began with using a FORTRAN conversion tool called f2c which took the original WIPL-D 
FORTRAN code and converted it to C code.  Using this tool saved a great deal of time but did not 
produce the most efficient C code so some hand tuning was required. To attain higher portability, the 
dependencies on the f2c libraries were removed, eliminating the need for them to be present or installed 
on the target machines. First, all of the file and standard input and output functions from f2c were 
replaced by C’s stdio functions. Also, there were data structures in the f2c libraries that were used by the 
converted code. When they could not be replaced by C data structures, corresponding sections of the f2c 
library were imported into the new WIPL-D version. Next, the common blocks used by FORTRAN were 
pulled out and placed into header files. Also performed was some general cleanup of f2c generated white 
space in the files, providing code that is easier to read and understand. As required by the government, a 
common header was placed on each file signifying that the code is export controlled. 
 
The second goal was to determine parallelization strategies for WIPL-D. These strategies were defined in 
a parallelization requirements document. To see which areas of the code would benefit from 
parallelization, the GNU profiling tool, gprof, was used on several machines running the C version of 
WIPL-D. The computers that were used were two Linux machines – Huinalu at the Maui High 
Performance Computing center which contains 933MHz Pentium III processors and a 1.0 GHz Pentium 
III running RedHat 7.2, a Solaris Sun Blade running Solaris 5.8, and two Windows machines (98 and XP) 
with Cygwin (a Windows utility for Unix simulation). Various demonstration applications, along with a 
larger project application, were profiled on these machines. The demonstrations used were the ones that 
are provided in the WIPL-D commercial version and the larger project application was a simulation of a 
Mirage aircraft. 
 
The profiling data obtained from the above machines was used to determine candidates for parallelism. A 
compilation of the high usage functions from the demonstrations and the Mirage project is shown in 
Table 1 below.  
 

20th Annual Review of Progress in Applied Computational Electromagnetics

April 19-23, 2004 - Syracuse, NY     © 2004 ACES



 

Table 1 – Profiling Data 

 Demos Mirage Project 
Main | | 
 | Impedance Matrix Construction (racun_) | 75% | 20% 
 |     | Initial Impedance Calculations (simpi_) |   | 65% |   | 12% 
 |     |       Calculate Surface Potential (spint_) |   |     40% |   |     9% 
 |     | (sipak_) |   | 3% |   | 3% 
 |     | (gepak_) |   | 3% |   | 1% 
 |       (sempi_) |     3% |     1% 
 | Solution to System of Equations (smqcc_) | 20% | 75% 
 | Far Field Calculations (farfi_)* | 29% | 2% 
   Near Field Calculations (nearfi_)*   11%   3% 
Profiler Overhead 3% 3% 

 
*The Far Field and Near Field Calculations occur only if the user selects near field and radiation patterns. 

 
The data identifies some good candidates for parallelism, which fall into two main categories. First, there 
are functions that take a large percentage of time themselves. Second, there are functions that consume a 
small amount of time themselves, but have many child functions that take a large percentage of time. The 
desired strategy for the first category of functions would be to internally parallelize the computations 
inside the function. For the second category the strategy would be to parallelize the calls from the 
function to its child functions. There is also a sub-category of functions that are not good candidates in 
themselves. These are functions that take a small amount of time but are called a very large number of 
times. Since they are too small to be parallelized internally, higher level functions can distribute their calls 
to these functions. This will be accounted for by the second category described above.  
 
Table 1 shows the call tree that the candidate functions follow. For each function the average processor 
usage percentage is shown. The percentage of time at each level is the accumulated time of the function 
plus its descendants. Table 1 shows that the Impedance Matrix Construction could benefit from 
parallelization by distributing its child function calls. Almost all of its time is taken up by the children 
processes. The simpi_ and spint_ functions consume a lot of time due to being called many times. 
Parallelizing them internally would not be very beneficial since their self time per call is very small. The 
Solution to the Systems of Equations is a function that would greatly benefit from internal parallelization. 
The amount of self time it takes for each call is very large, which increases with the size of the problem. 
The Far Field and Near Field Calculations are also functions that can benefit from internal parallelization. 
They may not always be present though, since they are dependent upon user input. Their percentages of 
time are based upon when they are used in the project, which is the reason for the total percentage of time 
being over 100. As can be seen from Table 1, for the smaller projects the Impedance Matrix Construction 
dominates processor usage, and as the project size increases the Solution to the System of Equations takes 
over. The parallelization strategies for these candidates will be described in depth in the following 
sections. 
 
The High Performance Computer that was used to get the baseline timing and accuracy was a Linux 
Cluster named Huinalu at the Maui High Performance Computing Center (MHPCC). The demonstration 
application that was chosen was a simulation of a cell phone alongside a dielectric head, as seen in Figure 
1. This application was a modified version of Demo-531, a demonstration provided in the commercial 
version of WIPL-D. Modifications were made to this demonstration to increase the problem size and 
coverage, allowing for more thorough testing of the software. The demonstration application was run over 
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two frequencies (0.9 GHz and 2.4 GHz) and contained 3549 unknowns. The baseline timing that was 
received was 5,793 seconds. The worst-case accuracy was 0.04%, which met the optimum timing 
objective.  
 

 
Figure 1 – Cell Phone Alongside a Dielectric Ovoid 

 
 

3.  WIPL-DP Development Second Year 
 
The goal of the second year of this effort was to achieve scaled speedup through parallelization at the 
frequency level. The results for the second milestone were presented at the CHSSI Alpha Test. The three 
specific critical test parameters for this milestone were as follows. Optimally, the scaled speedup was to 
exceed 80% (25% as a minimum) of the single processor C version on 32 nodes (16 nodes as a 
minimum). The code was to be run on two High Performance Computing platforms producing valid 
results. The single processor version of the code was to produce an optimal accuracy of 4% (5% 
minimum) when compared to the commercial version of WIPL-D. The calculation of the speedup is 
found by taking the execution time on one processor and dividing it by the time it takes to run on multiple 
processors. 
 
The frequency loop is the main loop of the WIPL-D program and offers a high level of parallelism. The 
calculations for the iterations of the loop are independent from one another. After acquiring the user 
inputs, the frequency loop will perform iterations for each frequency present in the simulation. The 
approach that was chosen was to distribute the number of frequencies among the available processors at 
run time. When the program arrives at the frequency loop, calculations are performed to determine what 
frequencies every processor is responsible for. Each processor then proceeds to execute its assigned 
iterations. To eliminate out of order file output, each processor prints to separate output files, with the 
frequency number appended to the end of the filename. When the frequency loop has completed the root 
processor collects all of the output files and assembles them as they would appear if the project was run 
using a single processor. This method has been implemented and tested with a target demonstration on the 
target machines identified below. It has had the desired impact by dividing the processing time by the 
number of frequencies, providing the necessary scaled speedup. The results obtained were above the 
optimal defined requirements. 
 
The High Performance Computers that were chosen to run on were Huinalu and an IBM SP3 named 
Tempest at the Maui High Performance Computing Center. The demonstration application that was used 
was again the cell phone alongside a dielectric ovoid, as described in the previous section and shown in 
Figure 1. It was run on both machines using 1, 2, 4, 8, 16, and 32 processors, with two frequencies per 
processor. The frequency range was 0.9 GHz to 2.4 GHz. The results presented at the second milestone 
(Alpha Test) were above the optimum requirements. The worst case speedup was 88.9% and the worst 
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case accuracy was 0.08% error, which both met the optimum objectives. A graph of the speedup based on 
the number of processors can be seen in Figure 2. 
 

 
Figure 2 – Speedup Results for Frequency Parallelization 

 
During this second year work was also performed on parallelizing the impedance matrix solution using 
the Scalapack libraries. The details on this will be presented in the next section. 
 

 
4.  WIPL-DP Development Third Year 

 
Currently we are in the third and final year of the WIPL-DP development effort.  The goal for this year is 
to further increase the performance of WIPL-DP by decreasing run time and adding additional 
functionality. This will be accomplished by parallelizing the impedance matrix generation and solution. 
The results will be presented at the Beta Test milestone which is currently scheduled for April 2004. The 
three specific critical test parameters that must be accomplished are as follows. The scaled speedup is to 
exceed 80% (25% as a minimum) of the single processor C version on 64 nodes (32 nodes as a 
minimum). The code is to be run on three High Performance Computing platforms (two as a minimum) 
producing valid results. The single processor version of the code is to produce an optimal accuracy of 2% 
(3% minimum) when compared to the commercial version of WIPL-D. 
 
The parallelization of the impedance matrix generation will offer increased speedup, but more importantly 
it will provide increased functionality. By distributing the matrix, a greater number of unknowns will be 
able to be used, thus allowing for larger simulations to be solved. The current goal is to reach 100,000 
unknowns. The impedance matrix is made up of complex values and has the dimensions of number of 
unknowns by number of unknowns. Each processor performing the generation will hold a fraction of the 
complete matrix. The number of processors used will be determined by dividing the number of unknowns 
for the project by the number of unknowns that can be held in a single processor’s memory. A processor 
can typically address around 12,000 unknowns if it has sufficient memory. The matrix is constructed by 
looping over the number of elements (number of plates plus number of wires) and performing impedance 
calculations. There is an outer and inner loop that both cycle over the number of elements. Each iteration 
of the outer loop determines the columns to be calculated. The inner loop then goes through and performs 
calculations and accumulates values in the rows of those columns. The outer loop calculations are 
independent of each other, except for at the end of the inner loop where the accumulations take place. The 
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outer loop can be distributed, performing all calculations prior to the accumulations. Each processor 
entering the loop will be assigned iterations to be performed and execute them in parallel. Then results 
prior to the accumulation will then be saved off, and the accumulation will be done separately afterward. 
The results will be saved into an array that holds the indexes and the corresponding values to be added to 
them. To prevent this array from becoming too large, at the end of each iteration every processor will 
perform the accumulations through communication with the other processors. Each processor determines 
where an index of the matrix is held and provides the accumulation data to the corresponding processor. 
Parallelizing this loop can have great benefits since all of the impedance calculations (the child functions 
of racun_ from Table 1) are contained inside this loop. All of the calculations in the matrix construction 
would be distributed over the number of processors performing the generation, providing scaled speedup. 
 
The solving of the impedance matrix is the major bottleneck of the program. As seen in Table 1, this 
portion of the code can take around 75% of the processing time for larger simulations. Through 
parallelization the solution should take far less time, greatly decreasing the total processing time. Solving 
the system of equations is currently done using LU Decomposition. The separation of the impedance 
matrix into a lower and upper triangular matrix takes the bulk of the solution time. In the commercial 
version solution the order of execution creates dependencies between each iteration of the main loop. 
Each time through the loop, this implementation will go through and calculate a column for the lower 
matrix and then compute all of the recalculations for a single row (column number +1) for the upper 
matrix. This produces dependencies on all previously calculated columns and the previous rows.  
 
In order to parallelize this solution to the system of equations, the section of code that performs the 
current matrix solution must be replaced with a parallel implementation. To achieve this task the 
impedance matrix and the vector holding the x^0 terms must be passed into a parallel solution function. 
The impedance matrix is arranged as shown in Figure 3, where a is the real component and b is the 
imaginary component of each impedance value, and n is the number of unknowns. 
 

 
Figure 3 – Impedance Matrix Organization 

 
What you get is a 2n x n array. This array is stored in memory as a linear vector that holds these values in 
row-by-row order. This can be easily placed in a form that is needed by a parallel implementation and 
then the solution can be transformed back to the original form for WIPL-D to use. 
 
The parallel complex LU Decomposition function that is currently implemented is contained in the 
Scalapack library, namely pzgetrf(). It handles the decomposition by distributing blocks of data among 
processors in a 2-Dimension block-cyclic method, as shown in Figure 4.  
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Figure 4 – 2-Dimension Block Cyclic Matrix 

Distribution Over 4 Processors 
 
The processors that are used for the solution are arranged in a rectangular grid. For each diagonal process, 
the corresponding column of processes finds the maximum value in each column, applies row 
interchanges, and calculates the lower matrix columns. The lower matrix values from the diagonal process 
are broadcast to the corresponding row of processes for them to calculate the upper matrix rows. All of 
the newly calculated values and pivot information are broadcast to processes of the remaining sub-matrix. 
This procedure continues for each process along the diagonal. This distribution of data provides for good 
load balancing and cuts down on the amount of broadcasting, since the same processor holds multiple 
sections for each row and column. The optimum number of processors for the solution that is currently 
being used is the number of unknowns divided by 1,000,000. Optimal processor grid sizes and data block 
sizes are still being determined. 
 
The Scalapack parallel LU Decomposition function was chosen because Scalapack is widely available 
and free, providing high portability. It is not the most efficient parallel matrix solver out there though. 
Alternative parallel solvers may be used in place of the Scalapack version. The code was left general 
enough so that different parallel matrix solving functions may be substituted in to perform the impedance 
matrix solution. 
 
Currently the High Performance Computers that have been selected to meet the requirements set forth by 
CHSSI are Huinalu and Tempest at the Maui High Performance Computing Center and a Compaq SC 
40/45 at the Aeronautical Systems Center Major Shared Resource Center (ASC MSRC). Since this work 
is still ongoing, no real results for the additional parallelization have been received yet. By April of 2004 
the results for the target demonstration, along with selected Tri-Service applications, will be available.  
The target demonstration will be the previously described cell phone alongside a dielectric ovoid with 
additional modifications that are yet to be determined. 
 

5.  Future Developments 
 
The main goal for the final milestone of this development effort will be to move the code to an embedded 
High Performance Computer. Some additional parallelization will also take place to accomplish this. 
Again there are three specific critical test parameters. The parallel code must provide scaled speedup that 
will exceed 80% (25% as a minimum) of the single processor C version on 128 nodes (64 nodes as a 
minimum). The code is to be run on four High Performance Computing platforms (three as a minimum) 
producing valid results. The single processor version of the code is to produce an accuracy of 1% when 
compared to the commercial version of WIPL-D. 
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The additional parallelization that will be required deals with distributing the Far Field and Near Field 
calculations. This will be beneficial to simulations that contain near field and radiation patterns with a 
large number of points. Both the Far Field and Near Field functions contain simple, independent 
calculations. For the Far Field, the Phi (outer) and Theta (inner) direction loops possess independent 
iterations and can thus be distributed. For the Near Field, the X, Y, and Z direction loops also contain 
independent iterations and can be distributed. In both cases there is output file printing intertwined in the 
loops that must be removed and performed separately.  
 
The High Performance Computers that will be used are the ones described previously along with an 
embedded machine. The embedded machine that is to be used is yet to be determined. 
 
After all of the parallelization described in this paper has been completed, the profiling tool will again be 
used to determine if any other areas now present themselves as candidates for parallelism.  If any exist 
they will be looked into and parallelization strategies will be developed as necessary. 
 

6.  Conclusion 
 
WIPL-DP will provide users with an electromagnetic simulation modeling tool that can solve larger 
problems quickly and with increased capability. Applications will be able to be run in a timelier manner 
and not be constrained by the limits on the number of unknowns present in the commercial WIPL-D. 
There are a number of Tri-Service applications that can benefit from such a tool.  These applications are 
Foliage Penetration, Synthetic Aperture Radar, Landmine Detection, Re-Entry Vehicles with Chaff, and 
Antennas on Large Structures. 
 
Upon passing all of the CHSSI reviews with the set-forth requirements met, WIPL-DP will be installed on 
several Department of Defense High Performance Computers.  
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