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Abstract 
 
The modeling and solution of large-scale problems 
in computational electromagnetics (CEM) requires 
the application of the right tool for the right job in 
order to minimize the potential for error generation 
and propagation during each step of the process. 
The subtleties of this issue are associated with 
knowing where sources of error can arise, how to 
quantify them, and what methods can be used to 
control errors. Sources of error can be categorized 
as procedural, model-limited, technique-limited, 
problem dependent, numerical, and interpretive. 
These by no means represent a complete 
taxonomy of error sources in CEM, but provide a 
means of better understanding error budgets and 
how these may be controlled. This article provides 
a brief overview of some of the sources of error to 
be mindful of and the potential pitfalls that may 
lend to computational uncertainty. 
 
INTRODUCTION 
 
Generally, CEM techniques can be subdivided into 
two categories: frequency domain and time-
domain. These can be further expressed as either 
integral or differential formulations of Maxwell’s 
equations. Solutions to these equations 
fundamentally involve a series of partial differential 
equations that are subject to boundary constraints, 
except for some variations that are particular to 
the physics of a given problem. For instance, a 
CEM technique can be used to solve the Laplace 
equation that describes the potential distribution of 
a closed boundary. Also, a CEM technique can be 
applied to solving the Helmholtz wave equation, 
which arises in many electromagnetic radiation 
problems in open space. Clearly, there are 
different techniques and formulations for different 
problem solving applications. 
 
Integral equation methods traditionally involve a 
dense matrix system, in which tens of millions of 

unknowns can now be solved with today’s high 
performance computers [1]. Differential equation 
methods involve a sparse matrix system, in which 
problems with billions of unknowns have been 
solved [1]. In some problems, the unknowns are 
volumetrically distributed, whereas in others, they 
are distributed over a surface. 
 
In volumetric methods, grid dispersion error has 
been shown to be a significant issue [1]. As the 
authors in [1] have shown, in the case of a 
differential equation solver, the field is propagated 
from point to point via a numerical grid, giving rise 
to errors. In volume integral equations, the 
Green’s function in an inhomogeneous region 
usually can have the incorrect phase velocity to 
propagate the field from point to point, which is 
also a source of grid dispersion error. In surface 
integral equations, an exact closed-form Green’s 
function is used to propagate the field through 
space. Hence, as reference [1] reports, grid 
dispersion error is greatly mitigated except for 
surface waves that propagate on the numerical 
grid on the surface of the scatterer. 
 
The authors in [1] also cite the effects of numerical 
noise due to round off errors in ultra large-scale 
computational electromagnetics. For CEM 
problems involving hundreds of wavelengths, the 
solution is particularly sensitive to the phase 
velocity error. As the authors point out, an error in 
the phase velocity can generate numerical noise 
that is intolerable if the goal is to achieve high 
accuracy computations. It becomes incumbent 
upon the analyst to find ways of validating 
computed results using high-quality 
measurements (in which the measurement errors 
and uncertainty are also reasonably well 
quantified), or sometimes even comparing 
computed results to theoretical closed-form 
solutions such as the Mie series solution in the 
case of electromagnetic scattering from a sphere, 
to check the integrity of the calculations [1]. Once 
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again, the goal is to eliminate as much uncertainty 
in the computational process as is possible. In 
other words, it’s all about the accuracy. 
 
Indeed, there have been many such studies 
performed in recent years to identify and quantify 
the sources of error in CEM modeling in an 
attempt to find effective ways of countering their 
effect. Clearly, the main goal of research into 
controllable error methods is to increase the 
confidence factor in CEM modeling and simulation 
since we are relying more and more on simulation-
based acquisition to procure new systems. This 
involves the development of new standards and 
recommended practices for CEM [2] which are in 
process, as well as the application of novel 
mathematical algorithms and numerical methods 
to assure accuracy as well as computational 
efficiency. Although much progress has been 
made in implementing new computational 
methods such as the multi-level fast multipole 
algorithm (MLFMA), there is still much work ahead 
of us in terms of further stabilizing error budgets 
for state-of-the-art CEM techniques and codes. 
 
Nonetheless, the CEM community remains 
steadfast in its pursuit of developing new, highly 
accurate fast solvers. Today’s methods exploit 
variations on the Gaussian elimination method, 
matrix partitioning and pruning schemes, parallel 
computing, and other potentially effective 
methods. This remains an evolving branch of 
electromagnetics that continues to deal with the 
dichotomy of ensuring efficient computing without 
forsaking accuracy. Unfortunately, as the problem 
size becomes larger, numerical instabilities and 
computational errors begin to emerge and cannot 
be ignored─even with today’s sophisticated fast 
solvers. As mentioned above, this is the numerical 
noise due to inherent approximations, limited 
precision, and round-off error. This numerical 
noise is proportional to the number of floating point 
operations that is performed. This noise can be 
particularly devastating in ultra large scale 
computing as well as problems that are ill 
conditioned [1]. 
 
In addition to numerical noise error due to 
precision and round off, other sources of error can 
be attributed to the geometry, applied physics and 
mathematical algorithms utilized in the solvers. 
These and other sources of error are covered next 
within the context of the taxonomy mentioned 
earlier. 
 

CEM Error Budgets 
 
Sources of error can be categorized as 
procedural, model-limited, technique-limited, 
problem dependent, numerical, and interpretive. 
These are described below. 
 
First, consider the following fact: all CEM 
techniques are not necessarily alike even though 
they are all fundamentally cast from Maxwell’s 
equations. Recall the earlier discussion on the 
integral and differential formulations of Maxwell’s 
equations, frequency and time domain methods, 
and Laplace and Helmholtz equations. Specific 
implementations of electromagnetic theory and 
CEM techniques are usually aimed at solving 
certain problems in a certain way for a certain set 
of boundary conditions and for a certain range of 
electromagnetic problems. For instance, some 
techniques are more apt to be used in analyzing 
exterior radiation and scattering problems, 
whereas other techniques are better suited to 
analyzing interior cavity coupling problems. 
Therefore, even though CEM techniques are 
based on Maxwell’s equations, it is often difficult if 
not impossible to interchange them for practical 
problem solving applications or even to compare 
them in any valid and consistent way. 
 
The “accuracy” of any one CEM technique clearly 
depends on a number of inter-related factors. 
These are: (i) the applied physics i.e., how the 
theoretical equations are cast and what method is 
used to “map” Maxwell’s equations for an infinite 
space to a finite geometrical space (e.g., boundary 
element or moment method integral form, finite 
difference time domain form, finite element 
method, transmission line model, etc.); (ii) inherent 
limitations associated with the geometry modeling 
approach and the procedures followed in building 
a CEM model; (iii) the numerical solver method 
used (e.g., full-wave solution, full or banded matrix 
decomposition, non-matrix solutions, etc.); (iv) the 
type of problem to be solved (EMI/C, scattering 
cross section, antenna radiation, printed circuit 
board trace coupling, etc.); and (v) the methods 
used to interpret results for computed observables 
(total and scattered fields, normalized radiation 
patterns, surface currents, charge densities, etc.). 
 
Hence, the underlying physics formalism, model 
building blocks (primitives such as canonical 
surfaces, wires, patches, facets, etc.) and the 
procedures used to construct models as well as 
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the solution method all conspire to affect the 
convergence, accuracy, and overall validity of the 
computed results. The analysis frequency (mesh 
discretization) and time steps, mathematical basis 
functions, computer precision, and approximations 
employed further compound the problem. 
 
Model-Limited Errors. This refers to the errors 
that arise because of limitations associated with 
the geometrical elements that are used to 
construct computational models. Sometimes the 
modeling elements are too gross or simplistic to 
faithfully represent the geometry at the frequency 
of interest. For instance, the use of canonical 
objects in high-frequency ray tracing simulations 
offers a computationally efficient solution, but does 
not accurately represent the actual geometry, 
which in turn leads to approximate solutions. To 
overcome such difficulties, techniques have been 
developed to adapt detailed computer-aided 
design (CAD) models directly in order to derive 
high-fidelity CEM models. However, this results in 
a new source of error in that the CAD models 
themselves may contain subtle flaws that are not 
readily detected and which can result in errors 
downstream of the modeling and simulation 
process. 
 
Research of late has led to the use of curved 
elemental facets and higher order basis functions, 
which result in more accurate geometry 
descriptions and more uniform current distributions 
on the surfaces of these elements. However, with 
the exception of certain high-fidelity CEM 
techniques used for radar cross section 
simulations, certain limitations still exist with 
regard to consistently handling the following 
special cases, which can significantly contribute to 
the model-limited error budget: 
 

• Multilayer materials, interfaces and 
discontinuities involving dielectrics 

• Open vs. closed boundaries or regions 
including incomplete geometry definitions, 
voids, and overlaps (geometrical intersection, 
union, and subtraction) 

• Presence of long, skinny facets 
• Modeling doubly-curved surfaces 
• Adaptive, non-uniform mesh discretization 
• Staircasing at edges and over curved 

surfaces. 
 

Procedural Errors. This refers to the step-by-step 
approach used in generating and analyzing a CEM 
model. How one goes about modeling and 
analyzing a real-world problem is dependent on 
the type of problem to be solved and what 
electromagnetic phenomena and observables are 
of interest among other considerations. 
 
For example, consider the problem of assembling 
a computational model, and integrating 
components and their individual electromagnetic 
contributions to compute a total budget 
solution─not to be confused with error budget. 
This problem is one of resolving a complex system 
into its parts, analyzing the electromagnetic 
interactions or relative contributions, and then 
integrating results in order to arrive at an accurate 
system analysis─a procedure called combinatorial 
modeling. First, this is an approximate idea. Linear 
superposition does not work. By solving a problem 
in components, finding its component radar cross 
section, for instance, and later adding up the 
contributions, the total budget solution found this 
way is a lower bound to the true solution. The 
difference between the budget solution and the 
true solution is a function of how strongly the parts 
interact. The stronger they interact, the larger the 
difference between the budget solution compared 
to the true total solution. 
 
For example, five walls of a cavity are not strong 
scatterers individually, but when the five walls 
cooperate with each other to form a cavity, they 
can give rise to resonance scattering, which is 
much stronger than the scattering from the 
individual walls. So, a possible approach is to 
break the system up into weakly interacting 
components. Then the budget solution is not too 
different from the true solution. This method can 
be modified to suit the requirements of subdividing 
a complex system into weakly interacting 
components. 
 
This is just one of many illustrations of the 
importance of defining the step-by-step 
procedures for modeling and analyzing a problem 
in order to reduce errors and ensure accuracy in 
the computed results. An ill-posed problem can 
result in computational instabilities and numerical 
inaccuracies, for example, when improper 
sampling is used to try and capture 
electromagnetic phenomena at resonance or 
about singularities or at near field caustic points. 
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Yet other procedural errors again point back to 
how the basic geometry and CEM model were 
built─as in the case of canonical modeling objects 
that are used to approximate a physical system for 
high-frequency ray tracing computations. Here we 
can see the relationship between procedural 
errors and model-limited errors. 
 
The lesson to be learned is this: building and 
analyzing a CEM model without some a priori 
understanding of the type of problem to be solved, 
the basic physics of the problem, and what 
observables are most appropriate based on the 
boundary conditions, frequency, and so forth, will 
likely lead to errors and lend to the uncertainty. In 
other words─one needs to properly define the 
problem and the desired “metrics.” 
 
Technique-Limited Errors. This category 
pertains to the approximations and potential errors 
that are introduced when Maxwell’s equation are 
constrained to a particular subset of boundary 
conditions and modeling problems (also referred 
to by some as quadrature error), expressed either 
in differential or integral form. As a result, the 
applied physics can have certain limitations. 
Examples of the limitations in the physics include: 
 

• Lack of edge and surface traveling wave 
models 

• Approximations to knife-edge, wedge, tip and 
point diffraction models 

• Phase error (loss) over large distances or 
dimensions at very high frequencies 

• High-frequency asymptotic ray tracing 
approximations (ansatz error) 

• Lack of a robust set of current expansion or 
basis functions 

• Inability to handle material discontinuities at 
interfaces (multilayer, anisotropic or 
inhomogeneous materials, frequency selective 
surfaces or FSS, etc.) 

• Approximated near-to-far-field extrapolation 
techniques 

• Shadow boundaries, creeping wave and 
related dispersion losses 

• Consistent models and techniques for 
computing rapidly-varying current or field 
levels in the vicinity of singularities or caustics 

• Radiator feed modeling, FSS and mutual 
coupling for multi-region problems. 

 

Some of the subtle issues here pertain to the 
applied mathematical algorithms and methods for 
truncating infinite series and controlling the 
number of second and higher order 
electromagnetic interactions (i.e., bounces) to be 
considered. Government and academic institutions 
are presently conducting research to find ways of 
overcoming these and other limitations in the 
applied physics formalisms and mathematical 
algorithms. 
 
Problem-Dependent Errors. Understanding the 
physical problem to be solved goes a long way in 
reducing the potential for errors. For example, one 
would not necessarily want to use a full-matrix 
decomposition moment method technique to solve 
a simple antenna coupling problem at 10 GHz 
(recall that the effects of numerical noise become 
more pronounced due to round off and phase 
velocity errors in ultra large scale computational 
electromagnetics!). However, for scattering cross 
section problems at 10 GHz, moment method 
based techniques in conjunction with the use of 
fast solvers are desirable in order to obtain highly 
accurate results. Similarly, a transmission line 
modeling (TLM) technique may be quite suitable to 
analyzing an internal cable coupling problem for a 
closed or bounded cavity, but may not be 
appropriate for calculating antenna radiation 
effects for exterior problems involving large, 
complex structures. 
 
In this case, it is imperative that one defines the 
problem to be solved. The most suitable physics 
formalism(s) and solution method(s) can then be 
determined with a greater degree of confidence. 
Generally, at a very high level, problems can be 
classified as one of he following types: EMI/C, 
scattering cross section, antenna radiation, signal 
integrity, shielded enclosure problems, and 
materials problems. These categories can be 
further subdivided as necessary. EMI/C, for 
instance, can apply to printed circuit boards or 
devices as well as to large-scale systems. 
Remember the rule─use the right tool for the right 
job! 
 
Numerical Errors. Solution error is closely tied to 
the category of technique-limited error in that the 
physics and the numerical solvers work together to 
provide a total budget solution. However, in ultra 
large scale computational electromagnetics, a 
variety of errors can arise. Solution errors are 
attributed to the solver method employed e.g., 
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banded matrix iteration, full wave or lower-upper 
decomposition (LUD) of matrices, exploitation of 
block Toeplitz matrices, and additional forms of 
partitioning in conjunction with the application of 
the Green’s function and other methods to arrive 
at a total solution. 
 
In [1], the authors describe errors arising from an 
inconsistent Green’s function for an MLFMA based 
technique in which there was a 4th-digit error in the 
wave number as a result of the speed of light 
constant, c, which was defined in two different 
ways. In this case, the following equations apply. 
 

f (r) = ⌡⌠
 

 
Ω

 g (r, r')s (r') dr'  

 
and where 
 

y = Ax. 
 
Here, the MLFMA used the exact value 
(299,792,458 m/s) whereas the triangular mesh 
algorithms used the approximate value (3x108 
m/s). Therefore, extinction theorems will not apply 
with an inconsistent Green’s function. Hence, 
surface currents may not be correctly calculated in 
such a way to cancel the internal fields resulting in 
residual noise. This noise and error propagation 
can be enhanced with large-scale problems and 
dense matrix systems [1]. 
 
The enhancement of numerical noise and round 
off error propagation stems from the application of 
the Green’s function and the process of solving for 
the large number of current or field unknowns (N) 
for a dense matrix system. Ax typically requires N2 
operations, whereas MLFMA can perform the 
action in O(N) or O(NlogN) operations for densely 
packed sources and sparsely packed sources, 
respectively [1]. Therefore, one could conclude 
that a fewer number of operations would result in 
less error propagation. However, there are actually 
various numerical noise contributions at play in 
solving for the unknowns. These are product 
noise, subtraction noise, Gaussian elimination 
noise, matrix error noise (quadrature error in 
evaluating matrix coefficient terms), as well as 
phase velocity error where the phase velocity is 
incorrectly defined, which in turn can give rise to 
errors in the exponential function calculations [1]. 
This is related to the process of solving an integral 

equation which formulates a cooperative behavior 
among the current elements so as to produce a 
field that exactly cancels the incident field within a 
metallic scatterer, for instance. The authors in [1] 
point out that this cooperative behavior requires 
that all the current elements “talk” to each other on 
the same “wavelength” or the same phase 
velocity. Hence, any inconsistency in the phase 
velocity will not allow the current elements to 
cooperate effectively with each other. 
 
Next, the sources of matrix error can be traced to 
the problem of (i) geometrical modeling error; (ii) 
integral equation discretization (including basis 
function expansion error and quadrature error); (iii) 
matrix equation solution error (using iterative 
solvers, LUD, and banded matrices); (iv) matrix 
vector product error due to matrix equation 
factorization error (in the case of fast algorithms) 
and pre-corrected FFT errors; and (v) associated 
round off and numerical precision errors [1, 3]. 
 
Interpretive Errors. The human’s own ability to 
interpret the computed observables can invoke a 
Heisenberg uncertainty principle of sorts. The 
process of modeling and analyzing problems that 
reveal singularities, caustics, and harmonic 
resonance behavior as well as situations where 
abrupt discontinuities of currents or field point 
mismatches exist at/between multiple region 
(multilayer material) interfaces, can call into 
question the suitability of the technique and/or the 
solution method let alone the accuracy of the 
computed results. Oftentimes, there is a balance 
of objective and subjective reasoning at play at 
this stage of the modeling and simulation task. 
The proof comes in validating the results against 
ground truth or measurement benchmarks. 
 
Research has been conducted to establish a 
standardized method of interpreting computed 
data results in a highly objective and consistent 
way using novel technique comparison and 
Feature Selective Validation (FSV) methods that 
are design to reduce uncertainty [4, 5]. 
 
Controlling Error 
 
Some possible ways to enhance accuracy and 
control error in the CEM modeling and simulation 
process include: 
 

• Use of high-fidelity geometrical models and 
automated CAD healing capabilities 
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• Incorporating additional physics models to 
more accurately handle special cases such as 
surface and edge traveling waves 

• Using higher-order surface modeling elements 
• Applying robust current expansion functions 

(e.g., RWG type) 
• Applying new hybrid techniques to accurately 

model multiple regions (enforcing current 
continuity and field point matching at 
interfaces) 

• Novel exploitation of symmetry and bodies of 
revolution (BOR) techniques 

• Using “adaptive” optimization algorithms for 
accuracy and computational efficiency 

• Utilizing novel partitioning and decomposition 
of submatrices 

• New and effective ways of sifting out, ranking, 
and suppressing “off diagonal” noise error 
sources 

• Applying ensemble parameter reasoning 
(using AI/expert systems to automatically build 
valid CEM models) 

• Applying novel smoothing functions to control 
staircasing error 

• Using extended precision computing 
• Exploiting matrix-free fast solvers and HPCs to 

handle large problems across a broad 
frequency range 

• Developing component-level techniques that 
can be integrated and extrapolated to provide 
accurate system-level (total budget) solutions. 

 
Some errors can be easily removed by extending 
bit precision. Other errors can only be removed by 
employing better algorithms and methods. 
 
SUMMARY 
 
This article highlighted the various sources of error 
in the overall CEM modeling and simulation 
process. An overview of some of the sources of 
error and the potential pitfalls that may lend to 
computational uncertainty was provided. This is 
applicable to a broad range of problems ranging 
from the modeling of printed circuit board radiated 
and conducted emissions/immunity to analyzing 
large, complex system electromagnetic effects. 
Concerns have been raised regarding the lack of 

well-defined methodologies to achieve CEM 
technique validations within a consistent level of 
accuracy. This points to the need to identify and 
quantify the sources errors and to employ 
controllable error schemes when and where 
feasible. 
 
The modeling and solution of large-scale problems 
in CEM requires the application of the right tool for 
the right job in order to minimize the potential for 
error generation and propagation. This starts by 
knowing where sources of error can arise, how to 
quantify them, and what methods can be used to 
control errors. Sources of error were generally 
categorized as procedural, model-limited, 
technique-limited, problem dependent, numerical, 
and interpretive. These are by no means complete 
and inclusive, but these provide insights into better 
understanding error budgets and how these may 
be controlled. 
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