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We discuss the basic elements of the discontinuous Galerkin methods
for the time-domain Maxwell’s equations. A one-dimensional example is
developed in detail from which the extension to two- and three-dimensional
algorithms are minimal. A few examples are offered as well as guidelines

for extensions, generalizations, and helpful software resources.

1. INTRODUCTION

The simplicity, robustness, and reasonable accuracy of the classical finite-difference
time-domain (FDTD) method [27] for solving the time-domain Maxwell’s equations
has propelled this method to become the method of choice among engineers and
scientist solving Maxwell’s equations in the time-domain. In particular the last
decade has seen an explosion in applications and developments, many driven by
the very influential texts by Taflove [24, 25].

By now it is also, however, clear that the FDTD methods have severe limita-
tions, e.g., its inherent 2nd order accuracy severely limits their ability to correctly
represent wave motion over long distances unless the grid is prohibitively fine. Fur-
thermore, the simplicity of the method, on one hand its very strength, also becomes
its most severe restriction by prohibiting the accurate representation of problems
in complex geometries. In recent years, a number of efforts have been aimed at ad-
dressing the shortcomings of the classical FDTD schemes, e.g., embedding schemes
to overcome staircasing [5] and high-order finite difference schemes [25, 14], and
body conforming nonorthogonal FDTD methods [15, 6] or contour path methods
[18]. Other techniques and improvements are discussed in [24, 25]. Most of these
methods, however, have not really penetrated into main stream user community,
partly due to their complicated nature and partly because these methods themselves
often introduce other complications.

For dealing with complex geometries, one can resort to the use of finite-volume
[22]/finite element methods [17, 26], these methods are, in their classic form, 2nd
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2 J.S. HESTHAVEN AND T. WARBURTON

order accurate as the FDTD method. Furthermore, the finite element method
becomes implicit.

For the accurate and efficient modeling of large scale EM applications the short-
comings of low order methods render them impractical due to the need for fine
grids to avoid prohibitive error accumulation. However, this understanding of the
very source of the limitations also suggest that a high-order time-domain solution
technique may offer the efficiency and accuracy required for future large scale CEM
modeling capabilities. High-order methods are characterized by being able to accu-
rately represent wave propagation over very long distances, using only a few points
per wavelength and with an error accumulation rate that is significantly reduced
as compared to 2nd order accurate schemes [21]. For three-dimensional large scale
computations, this translates into dramatic reductions in the required computa-
tional resources, i.e., memory and execution time, and promises to offer the ability
to model problems of a realistic complexity and size.

Traditionally, the development of suitable high-order solution techniques has been
held back by the difficulties associated with formulating stable and high-order ac-
curate schemes for solving wave-dominated problems in geometrically complex do-
mains. The recent development of stable discontinuous element/Penalty methods
[3] and efficient and accurate ways of representing solutions and operators on trian-
gles and tetrahedra [9, 10, 11, 12] has paved the way for overcoming the restrictions
associated with classical high-order methods. In contrast to high-order schemes
based on classical finite element techniques, the approach taken here leads to fully
explicit schemes.

In the following we provide a step-by-step tutorial on the key components needed
to formulate and implement these methods. The methods are, by any measure,
more complex that simple FDTD methods. They are not, however, as complex as
one could fear, given that they offer choice of arbitrary order of accuracy and sup-
port for fully unstructured grids. Furthermore, their very formulation ensures high
computational efficiency and excellent parallel performance and the generality to
address related problems, e.g., frequency-domain curl-curl equations and nonlinear
MHD, with only minor extensions. In the last section we shall discuss generalization
and offer some pointers to software resources which should enable a short startup
phase.

2. A ONE-DIMENSIONAL DETOUR

As a way of understanding the multi-dimensional scheme for solving Maxwell’s
equations, let us begin by considering the central elements of the scheme for the
one-dimensional Maxwell’s equations

oEY  9H®  OHF OBV
o T " er o Mar T e cElII=0 )

For simplicity we restrict the attention to a cavity type problem, with PEC bound-
aries, i.e., EY(0,t) = EY(L,t) = 0. Generalization to other types of boundaries,
e.g, absorbing boundary conditions are straightforward.

For simplicity of the notation, we write Eq.(1) as a conservation law
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FIG. 1. Notation used in the one dimensional case.
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where

=[5] ro-[5] o=[3]

represent the statevector of unknown fields, the flux and the materials, respectively.
We shall now assume that the domain of interest, Q = [0, L], is segmented into

K non-overlapping elements, each covering x € [a:'i,a:ﬁ] and with 2 = 0 and
a:ff = L, as illustrated in Fig. 1. Furthermore, we shall call the length of each

kE_ .k
element, h* = z7

— z* . With this, we construct a simple linear mapping
r+1
2

such that r € [—1,1] represents a standard element of length 2.
In each of the K elements, we shall assume that the solution g* (z,t) = [E¥(2*,t), H* (2%, )]
can be expressed as a polynomial as

:rk(r) =zF 4 nk

N N
q"(z,t) = > ¢ (o, )l (r(2) =Y @b (OIF(=*) |
i=0 i=0

where z¥ represent N + 1 grid points within the k’th element and (¥(x) is the
classical Lagrange polynomial based on these grid points, i.e.,

Nk gk
k ki k
li(z) = H mk—mi ) li(xj)ztsij :
J=0;5i 7 J

Rather than using this formula, and to maintain generality, we express the local
Lagrange polynomials through the following relation

N N
" (a,t) = Y af (Ol («") = D an(t)pn(a®)
=0 n=0
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4 J.S. HESTHAVEN AND T. WARBURTON

where ¢, (z*) is a polynomial basis defined on the interval and g (¢) are the expan-
sion or modal coefficients. While many choices are possible, e.g., a simple monomial
basis, ¢, (x) = x", for computational reasons one should use an orthonormal basis
such as

Py (z)
T) = ————
o) = et
where P, (z) represent the classical Legendre polynomial [23]. Now defining the
matrix

Vij = Pj(xi)

where z; are the Legendre Gauss Lobatto quadrature points, we recover

ah =Vay . VIUh (k) = ¢(a*) |

where

T Tk R b T
qﬁv:[qg”q?v] ’ qI;V:[qkyaql;V] 9

are simply vectors of nodal and modal values and

(@) = [I§("), .. NG, d(a) = [do(a"), ..., on ()],
simply represent the vector of local Lagrange polynomials and polynomial basis
functions evaluated at z*.

In this approach, the matrix V, plays a central role as the transformation between
nodal values, q'fv, and modal coefficients, fﬁv, as well as a way by which to evaluate
the Lagrange polynomials. In this one-dimensional case, this may seem as an
unnecessarily complicated way of doing this. However, as we shall see shortly, the
advantage of this approach is that it generalizes to higher dimensions and general
distributions of grid points.

To arrive at the semi-discrete scheme, let us now require that local residual, i.e.,
the error when g%; is substituted into Eq.(1), vanishes in the following way

k
¢ oqk,  OF(qk
i€f0,...,N] : /+( %Jr#)lf(x)dx:o.

This can be recognized as a Galerkin approach, albeit on the local element only.
Integration by parts once yields

% [ gk i ek
[ (@%@~ Flab) 5 ) do == § i Pkt ds

k k

which one can recognize as the weak Galerkin form. Here i represent an outward
pointing normal vector which, in this one-dimensional case, simply takes the values
of 1 at ¥ and :rﬁ_, respectively.
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To complete the scheme, we must recognize that two neighboring elements will
both contain the same point, e.g., m’i = zF see Fig. 1. Thus, at this point we
will have two solutions and we must choose which one, or a combination of the two,

is the correct. For this we shall use a numerical flux, F’*,

ﬁ'F*:ﬁ'F*(q77q+) )

where g~ refers to the local solution and ¢* the solution in the neighboring el-
ements. There are several possible choices of this function and we return to this
issue shortly. It is important to appreciate the importance of this choice as it is the
numerical flux which is responsible for combining all local elementwise solution to
the global solution.

With the numerical flux introduced on the right hand side to connect the ele-
ments, we do integration by parts once more to obtain the final form

ol k k 2t
/x’i <Qag—7§v+%> lf(m)dm:j{x’i n-[F(q~)— F*] 1¥(z) de . (2)

To simplify matters further, assume that Q(z), i.e., the material coefficients, can
be taken to be constant on each element and let us define

hk 1

5 | Lo

k
Ty
Ml = / ESTIERr

k
Tt dl; ! dl;
Si;i = ¥ (%) —Lda* = I;(r)=Ldr
o= [ eGPt = [ oG
as the one-dimensional mass matrix and stiffness matrix. Note in particular that
due to the mapping, the matrices are the same for all elements up to a scaling
constant, i.e., only one copy should be stored.
Using the transformation matrix, V, introduced above we immediately obtain

1
M = (V_I)TV_1 , S= (VT)AWV_1 , Wi 2/ bi(r)d; (r)dr
-1

where the latter integrals can be computed by quadrature or by using properties of
the orthogonal polynomials.

Before writing down the final scheme, let us discuss choices of the numerical
flux, F'*. As this flux is responsible for combining the local solutions into a global
solution, these choices are clearly important.

One natural condition is that the resulting scheme must be consistent, i.e, the
exact solution must satisfy the scheme when refining the grid. A simple central flux
would ensure this, i.e.,

n-F*(q",q") =5 [F(g")+ F(q )]

DN | =
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6 J.S. HESTHAVEN AND T. WARBURTON

The advantage of this choice is its simplicity and energy conservation. However,
for general (multidimensional) problems an upwind flux is superior. To derive this
numerical flux one takes advantage of the fact that Maxwell’s equations propagates
waves around and, at any point, one can always determine which way information
is propagating by considering characteristic variables. This yields

n-F" =~ —1 ) (3)

. 1 Z7 (a, {ZH} + [EY])
21Y " (n.{YEY}+ [H?])

where [[q] = ¢~ — ¢ represent the local jump in function value and {q} = ¢" +¢~.
The material parameters of the problem are given by

£
7zt — /;_iyyi:(zi)fly

represent the local impedance and conductance with the average values

- Zt+Z- - YT4+Y-~
7 — AR , Y = rr+r- )
2 2
Combining Eq.(2) with the upwind flux, Eq.(3), and the definition of the matrix
operators above yields the local semi-discrete scheme

sk%led% +SHY = e % (_Z+ [E%] - [E%] )]
+oen |3 (zrimk - 1BA)] @
uk%led%+SE'fV — e {% (-v 1Bkl - [[va]])] k
+oev|g(rriBkl - k)| )

Here (E%;, H%,) are the vectors of locally unknown fields on element k and e; is
a N+1 long 4’th unit vector. Also [ - ], refers to evaluation of what is inside the
bracket at z = a.

Since M!? is entirely local, it can be inverted initially, making the semi-discrete
scheme fully explicit. Furthermore, the discontinuous nature of the formulation is
trivially parallel, essential to address large scale problems. We also note that all
operations can be cast as simple matrix-vector (or in the case of many elements,
matrix-matrix) operations which are both straightforward to implement and offers
high performance.

Equations (4)-(5) represents the basic scheme at all interior element interfaces.
At the metallic outer boundaries, one simply defines
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HY =H'

_ 1
ES = -E!

and likewise at the right end, i.e., one is imposing the Dirichlet conditions by a
simple mirror principle.

Without going into details, one can prove the following error estimate for the
above scheme [11]

o—1

lg(t) —an(®)]l < ||Q( )= an ()l + 1o max flq(®), - (6)

N3s=2 tefo,1)

Here ||-|| is the global energy norm, ||-||s is the energy norm of the first s-derivatives
(the Sobolev norm), and o = max(s, N + 1), while A is maximum element length,
h*.

Thus if the solution, g, is smooth, i.e., ||g||s is bounded for high values of s, we
have hp-convergence. Furthermore, the error can grow at most linearly in time and
the growth rate decays rapidly with increasing order.

This highlights the advantages of this method with general order elements, N, of
general length h and with a very slow error accumulation of time, making it ideally
suited for long time integration problems.

The semi-discrete scheme, Eqgs.(4)-(5), can be written schematically as

dgy

dt
i.e., it is simply a system of ordinary differential equations. These can be solved
using a variety of different methods, with a popular choice being a standard 4th
order explicit Runge-Kutta scheme

= G(qut) )

Glan(t),1)

G(gy(t) + 0.5AtK ¢ + 0.5At)
(t)
(t)

K,
K->
K3

G(qn(t) + 0.5AtK, ¢ + 0.5A¢)

Ky =G(qn(t) + AtKs,t + At)

At
gn(t+ At) = qn(t) + 5 (K1 +2K>+2K3+ Ky)

A rigorous expression for the stable time step, At, is not known, but good estimate
is

At < CFL mS%n VekukAz® = CFL m(%n VekukhEAr

with CFL being of O(1) and minAr ~ CN 2,

To illustrate the performance of the above scheme, let us consider the simple
test case of a metallic cavity, z € [—1,1], filled with two different nonmagnetic
materials. The material interface is assumed to be at x = 0 and the two materials
have e, = 1.0 and &, = 2.25 respectively. The exact solution is well known [5].
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FIG. 2. On the left is shown the global error at final time 7" = 1 for the one-dimensional
cavity problem solved using K elements, each with N’th order polynomials. On the right is shown
the time-dependence of the error with K = 64 elements, confirming linear growth.

In Fig. 2 we illustrate the accuracy of the computed solution at 7' = 1, confirming
the essence of the error estimate given in Eq.(6, i.e., both h (= K !, decreasing
the grid size) and p (increasing the local polynomial order) convergence is achieved.
In Fig. 2 we also illustrate the very limited accumulation of errors over time, in
accordance with the above result.

This all suggests that these methods are well suited for situations where

e High-accuracy and large dynamic range in solution is required
e Long time integration is needed

e Electrically large problems, requiring minimal points per wavelength to achieve
a reasonable accuracy.

These are clearly all properties of relevance to problems of the future and, more
pressing perhaps, for many current technology problems.

Furthermore, as we shall discuss in the following, the approach outlined for the
very simple one-dimensional problem generalizes with minimal changes to problems
requiring three-dimensional fully unstructured grids and very complex, realistic
geometries.

3. EXTENSION TO TWO DIMENSIONS

With the detailed derivation of the one-dimensional scheme above, the extension
to two- (or three- ) dimensional problems is relatively straight forward. In the
following we shall highlight the general approach to see the similarities and minor
differences.

For simplicity, we consider the two-dimensional form of Maxwell’s equations, e.g.,
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oOE*  OH*

ot T oy M
OEY _ OH*

SW__ or ’

OH*  OE* OBV

ot = T8y " oz

known as the TE form. The dual form is found simply by substituting (E*, EY, H*)
with (H®, HY, —E*) and exchange ¢ and u. This yields the TM form.
In both cases we have

nx[E] =nx[H] =0,

i.e., tangential continuity, at all nonmetallic interfaces. At a PEC boundary

nxE=n-H=0.

In both cases, n represents an outward pointing normal vector.

3.1. The Nodal Element

The key difference between the one-dimensional and the multidimensional scheme
is that the latter has to allow for the modeling of problems in geometrically com-
plex settings, i.e., it does not suffice to consider simple dimension-by-dimension
extensions of the one-dimensional approach.

To ensure this geometric flexibility, we assume that the computation domain, 2,
can be filled by some standard element, Dk, e.g., triangles or quadrilaterals. We
shall furthermore assume that this multi-element grid is performed in a geometry
and material conforming way, i.e., elements are assumed to have edges aligned with
material/metallic interfaces.

Following the one-dimensional approach, it is clear that with the local element,
Dk, we should seek an orthogonal polynomial basis, ¢;(x), as well as a set of grid
points, =¥ € D*. For the quadrilateral, one could simply use a dimension-by-
dimension extension of the one-dimensional case. Let us therefore focus on the
case of triangles which also has the main interest due to its geometric flexibility,
possibility of utilizing existing finite element/finite volume grid generation software,
and ease of exploring adaptive strategies.

The number of grid points needed per triangle is

(n+1)(n+2)
>
which also becomes the number of local unknowns. Here n is the order of the local
polynomial approximation. The question we must address is where to put these
grid points, e.g., there is no obvious extension of the one-dimensional case.

As for the one dimensional case we shall assume the existence of a mapping
which maps the standard right angle triangle, | : {(r,s) € [-1,1];7 + s < 0}, to

N =
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10 J.S. HESTHAVEN AND T. WARBURTON

FIG. 3. Examples of nodal distributions in the triangle for different orders, n, of approxi-
mation. N2 lists the total number of grid points.

the particular triangle, D¥. Assuming for simplicity that D* is straightsided, this
mapping is simply given as

. r+s , 14+r . 1+s
w’”(r,s):— 5 'u’l”+ 5 v’5+ 5 vlg, (8)

where v¥ represent the 3 vertices of D* and (r,s) € | are the coordinates in the
standard triangle while z* € D*. From this simple map, we can compute the
metric of the mapping, needed for computing derivatives as we shall see shortly,
as well as the transformation Jacobian. An important observation to make is that
the transformation Jacobian, J, is a constant for any straightsided triangle, D*.
The details are all given in [9, 10] and is essentially a generalization of the one-
dimensional case.

The choice of the nodal distributions inside the triangle has received some atten-
tion recently and such distributions, allowing for the construction of well behaved
unique Lagrange polynomials up to order 19, can be found in [8]. There are exactly
N grid points in a triangle and, furthermore, the nodes along the edges are the one
dimensional Legendre Gauss Lobatto points, also used in Sec. 2. A few examples
of how the grid point distributions look like are shown in Fig. 3.

An orthonormal basis on the triangle is given as [20]

e =p” (55 -1) (150) pieo

. a
z:a1+na2—?2(—1+a2)+1 ,

(2 1
Vi = 2a1+1 CM1+C22+1 ’

) = B
Yi(r) = i (9)
(0,0)

P,E”"B)(a:) represents the classical Jacobi polynomial of order n [23], e.g., Pn " ()
is the Legendre polynomial also used in the one dimensional case.
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This may seem a bit complicated. However, there are standard ways of com-
puting/evaluating Jacobi polynomials and software for doing so can be found from
online sources (see Sec. 5).

With this, all essential operators, i.e., mass and stiffness matrices as well as
the transformation matrix V, can be defined and generated exactly as in the one-
dimensional case discussed in the above.

3.2. The Scheme
With the local elementwise treatment in place, we can continue the development
of the global scheme. As in the one dimensional case, we write, for simplicity,
Maxwell’s equations as

0q B
Oz +V-Fla) =0,

where Q represent the materials, g the 3-vector of fields and F(q) the flux. The
detailed definition of these depends on which polarization is considered, i.e., for the
TE form we have

£00 E? 0 —H?
Q=|0c0| ,q=|E]| , Flg=|H 0
00 p H* EY —E°

Exactly as in the one dimensional case we shall require that the polynomial ap-
proximation

satisfies the equation as

vk / (Q% + V-F’;“V) L (z*) dz* :7( LF(zF )i - [Ffv —F*] dz* .
pt \ Ot aD*
(10)
Specifying the numerical flux, n - F*, follows exactly the same lines as in the one-
dimensional case, i.e., a central flux is obtained directly from the average of the
two fluxes while the upwind flux can be derived from the general three-dimensional

expression

A [F - B = 7 'nx (—Z*t[H] +n x [E]) )
Y 'nx (Y*[E] +nx [H])

This suffices to write down the local two-dimensional scheme for TE scheme as

OE~ L
ok gk p2d 8tN S, H5 :F[% (—Z+[H%] +[[ET]])} : (12)
o OFY e p
EkaMZd 8tN +SzH7V =F |:_n7 (Z+[[HN]] _ [[E'T]] ):| ,
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Mk Jk M2d 6‘?’?\[

1
—S,Ex +S.E% =F = (Y*[Er] + [HX])

Here (E%, EY%, Hy) represent the N-long vectors of unknowns on the element
D* and we have defined Ep = f x E as the tangential component of E along
the boundary of the element. Furthermore, (¥, u*) represent the local material
parameters and J* represents the local transformation Jacobian, recovered from
Eq.(8).

Most of what remains in the above translates exactly from the one-dimensional
case, e.g., M?? represents the local mass matrix constructed directly from V; the
stiffness matrices S, and S, are given as

M2 = (v Tyt

_ 7\ 1 ry/—1 a¢]
S = (V) Wy wg = [ G gy
o= () wv = [ a2

where 7 = (r, s) are the local coordinates in the reference element. Using the chain
rule this simply yields

or 0s or 0s
Se =Sr5=+8s7— , Sy =S5 +Ss5
ox + ox v oy + dy
where the matrix coefficients are obtained directly from the mapping given in

Eq.(8).
The main difference between Eqs.(4)-(5) and Eq.(12) is found in the matrix F
which is the finite dimensional approximation of the surface integral.

7{ LY (x®)n - [Ffv - F*} dx* :7{ L¥(x®)g(z) dee |
oD* oD*

where g(x) has been introduced for simplicity. This clearly breaks into 3 edge
integrals (I = 1,2, 3) of the form

72 o, @ota) de = 72 Y gg@j)lf(m‘

where [¥(z) is the one-dimensional Lagrange polynomial based on the grid points
along the edge [, i.e.,

1d __ k k\1k k
M —fmli(r ek dr

is simply the one-dimensional mass matrix. Note that the two-dimensional La-
grange polynomial, L¥(x¥), restricted to the one-dimensional edge reduces the
familiar one-dimensional Lagrange polynomial, [¥(z*), due to uniqueness of the
polynomials. If we now define the R; is an (n + 1) x N restriction operator that
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FIG. 4. On the left is shown finite element grid (950 elements) used to model plane wave
TM scattering of a ka = 207 metallic cylinder. A snapshot of E# is shown on the right. The
computational domain is terminated with high-order global boundary conditions.

-1 -08 -06 -04 -02 0 0.2 04 06 0.8 1

extracts the (n + 1) nodes along edge I, then the edge integral along edge [ is given
as

% LY (x*)g(x) dz = ;R M'"R,g
aD¥

where s; is the Jacobian associated with mapping the edge length to the standard
interval [—1,1]. The complete operator edge operator then becomes

F=> sR MR, .
1
Clearly the components of this can be computed a priori for the standard element
added with the geometry weights.
The semi-discrete form of the equations, Eq. 12, can be advanced in time using
the 4th order Runge-Kutta discussed in the above with a time-step scaling like

h
At < CFLmin /ebpk — |
Q n?

where h is the smallest edge length of the element.

3.3. A Few Examples
In the following we shall offer a few examples of two- and three-dimensional
tests. The emphasis here is on evaluation and verification of the scheme. Many
other examples, including hard benchmarks and very large scale application, can
be found in [11, 12, 14].
As a first, and familiar example, we consider plane wave TM scattering of a
ka = 207 metallic cylinder. As simple as the case is, it allows for a thorough
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FIG. 5. The error in E* for plane wave TM scattering by a ka = 207 metallic cylinder as
a function of time for increasing resolution.

validation through the exact solution. We use 950 elements and an high-order local
boundary condition [7]. The grid as well as a snapshot of E* is shown in Fig. 4.

To measure the accuracy of the solution we compute the error in E* as a function
of time for increasing resolution. The results are shown in Fig. 5. For 5th order
polynomials n = 5 there are 8-10 points per wavelength. The results confirm
exponential convergence as expected. This is also a indication of the excellent
performance of the high order local boundary conditions which is introduces errors
well below the approximation error.

As a slight more challenging, although still two-dimensional, test case we consider
plane wave TM scattering by a '"Pacman’ shaped metallic cylinder. The grid, con-
taining approximately 3800 elements, and a snapshot the E* component is shown in
Fig. 6. To truncate computational domain we use in this case a perfectly matched
layer [25], to illustrate that one can terminate the domain in a variety of ways as
appropriate.

This scattering problem does not have a known exact solution. To estimate
the accuracy of the computed result we consider the convergence of the bistatic
radar cross section (RCS). In Fig. 7 we show the computed RCS obtained using 3
different orders of approximation, clearly suggesting convergence. This example not
only illustrates the ability to solve general problems but also highlights the added
flexibility one has by using a high order methods on a general grid. Without having
to redo the computational grid, a time consuming process for general geometries,
one can obtain a sequence of solutions of increasing accuracy by simply raising the
local order of approximation. This dual path to a converged result is one of the
significant advantages of a flexible hp-type scheme as it decreases the significant
complications associated with grid generation. Furthermore, high order elements
are found to be significantly more robust to elements with bad aspect ratio.

As a final example, we consider the computation of eigenfrequencies of a [—1,1]3
PEC air filled cube. The computation is done by initially having a broadband pulse
which excite a number resonant frequencies. By doing a Fourier transform of a time
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FIG. 6. On the left is shown finite element grid (3800 elements) used to model plane wave
TM scattering of a Pacman shaped metallic cylinder. A snapshot of E* is shown on the right. A
Perfectly Matched Layer (PML) is used to terminate the computational domain.

trace one can then compute the resolved modes. In this simple case, the resonant
frequencies are given as

w=amvmz+nZ+P2Zm+n+1>2

We solve the problem by tiling the cube with 286 tetrahedra, each of 4th order, and
advance the initial conditions for 250 fundamental periods. The results are shown
in Fig. 8.

The results in Fig. 8 not only confirms that the correct eigenfrequencies are
reproduced but also suggests that at least frequencies of w ~ 20 is well resolved.
This correspond to wave numbers between 6 and 7. With about K!/3 ~ 6.5 element
per edge and 5 grids points per edge, this corresponds to 4-5 points per wavelength,
clearly demonstrating the excellent performance of a high order method even while
using a coarse grid.

4. FURTHER EXTENSIONS AND GENERALIZATIONS

The most natural extension of the schemes discussion above is to include full
three-dimensional Maxwell’s equations. As we have seen in the last example of
the previous section this is certainly possible. In fact, going from two- to three-
dimensions introduces nothing new from the two-dimensional case discussed in de-
tail in the last section. Once the nodes [9] and the orthogonal polynomials are
identified, all the operators can defined and the scheme formulated. The three-
dimensional flux is already given in Eq. (11). The only new component is that the
F matrix now must correspond to a surface and not a line integral. The details of
how to do this as well as numerous examples, further details of implementation,
full analysis, and examples of parallel performance are discussed in [11, 12].
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FIG. 7. Bistatic RCS(db) computed for Pacman shaped metallic cylinder in Fig. 6.
Computation done using 3rd, 5th, and 7th order approximations and results plotted on same
scale, confirming convergence.

The discontinuous Galerkin formulation does not, in contrast to FDTD methods,
preserve the divergence free nature of the fields, although the associated error is
well controlled and generally negligible. Some efforts have focused on this issue,
either by having additional slaved variables which are approximations to divergence
free fields [12], or by using a locally divergence free basis [4]. In both cases only
local divergence is preserved.

Another relevant issues is that of time stepping, something we dealt with in the
above by using a simple 4th order Runge-Kutta method. However, the local nature
of the formulation enables the elegant use of local time stepping as discussed in [2].
Other important extensions to deal with locally refined grids are explicit-implicit
methods [1] as well as low storage methods [19].

With the significant success of the above methods for solving the time-domain
Maxwell’s equations, one can speculate whether the same formulation can be used
to solve the curl-curl equation of harmonic problems or even eigenvalue problems.
Questions of this character has been considered in [13, 16], concluding that this is
indeed possible and paves the way for a completely general discontinuous Galerkin
approach for solving Maxwell’s equations both in frequency and time-domain.

5. CONCLUSIONS AND FURTHER INFORMATION

It has been the intention of this little manuscript to offer an introduction to the
formulation and development of discontinuous Galerkin methods for solving the
time-domain Maxwell’s equations. As we have seen, these methods have matured
to a level where their implementation is relatively straightforward and resulting in
algorithms which are flexible, efficient, accurate, and robust.

Many further examples and validations can be found in the listed references. Fur-
thermore, at HTTP: //WWW.USEME.ORG numerous other examples and animations
are displayed. This page also contains examples and extensions of the same es-
sential formulation to enable solution of magnetohydrodynamics and gasdynamics.
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FIG. 8. Eigenfrequencies in a [—1,1]®> PEC cavity, computed by the Fourier transform of a
time series of 500 periods. 286 4th order fully unstructured tetrahedral grid was used. The solid
line represents the computed spectrum while the vertical dashed lines signify the exact solution,

w=avmZ+nZ+Zm+n+1>2.

A small startup company, HyPerComp Inc. (HTTP://WWW.HYPERCOMP.NET) is
pursuing the development of a commercial environment based on these techniques.

However, as we all know and appreciate, doing is superior to anything else when it
comes to understanding a new idea. For this purpose we implemented both one and
two-dimensional versions of the algorithms in Matlab and will make these scripts
available to interested parties. The key elements in these implementations are a set
of files, one for each order, which contains the nodal coordinates in the standard
element, the critical V matrix, the one- and two-dimensional mass matrices, M'¢
and M2¢, the restriction matrix, R, as well as the stiffness matrix, S. This suffices
to completely specify the local scheme and should enable a very short startup time
in the development and exploration of these methods as it more or less reduces the
solution problem to one of grid generation and logistics.

The scripts and files as well as further information can be downloaded from
HTTP://WWW.DAM.BROWN.EDU/USEME or by contacting the authors.
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