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Abstract

This paper takes a fresh look at two classical EM shielding problems involving an
integral imperfectly conducting spherical shell and a perfectly conducting hollow sphere with
an aperture. Previous studies of the EM shielding provided by these objects have concentrated
on evaluating the E- and H-fields at the center of the shield, where only one term of the
spherical wave function expansion is needed. While the internal H-field in the shielded volume
of the conducting shell is very close to being constant, the same is not true for the E-field,
where there can be a significant variation in the E-field intensity from point to point within the
interior.

For both of these canonical shielding problems, the method of analysis is described
and then applied to determine cumulative probability distributions for the internal fields. In
Part 1 of this paper, the frequency-dependent analysis for the case of the complete shell is
discussed. To avoid certain numerical overflow problems in evaluating the spherical harmonic
solution for lossy media, the use of scaled Hankel functions is described. Additionally, closed-
form expressions for the wave expansion coefficients in the spherical coordinate system are
derived.

In Part 2 of this paper, the treatment of the hollow sphere with an aperture is obtained
using a quasi-static model that also permits the determination of the E-fields anywhere in and
around the sphere.

This paper also appears as Interaction Note 607, June 5, 2008, Dr. Carl Baum, editor, at
www.ece.unm.edu/summa/notes
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1. Introduction

There is a continuing need to understand and describe the electromagnetic (EM) field
environment inside a protective enclosure that is illuminated by an exterior source. There are
several EM standards [1, 2 and 3] that provide measurement procedures to try to obtain
shielding effectiveness parameters for enclosures and these standards are often used as
requirements for the design and procurement of systems that are protected against external EM
fields.

Most of the standards recognize the fact that the EM field within a real enclosure will
vary with position and polarization, so that test procedures usually involve making several
measurements of the internal field and determining a worst-case shielding estimate. However,
due to time and budget constraints, it is unusual to have sufficient measurements to develop a
robust statistical representation of the internal fields.

It is possible to use a computational model of an enclosure to determine the internal
EM field and its variability. Such models can be of simple canonical shapes like a conducting
slab, a cavity bounded by two slabs, a cylinder or a sphere [4, 5]. More complicated models of
realistic enclosures having apertures and conducting penetrations are also possible using a
finite-difference time domain (FDTD) procedure for solving Maxwell’s equations in and
around the enclosure [6].

The simplest, yet somewhat realistic, model for shielding is the sphere. Unlike the
infinite cylinder or one or more slabs, the sphere has a finite volume, which is typical of a
realistic enclosure. Moreover, the EM field in the vicinity of the sphere can be described by
relatively simple mathematical functions that permit a numerical computation of the shielding.

Using the spherical wave functions defined by Stratton [7], Harrison and Papas [8]
have developed expressions for the E- and H-field at the center of a thin spherical shield due to
an incident plane wave excitation. Lindell [9] has examined Harrison’s solution near the
natural resonances of the sphere, and Shastry [10] has analyzed a hemisphere being excited by
a point dipole source. Baum [11] has also examined this problem as a special case illustrating
the use of the boundary connection supermatrix (BCS) of a sphere. While all of these
investigators have used a modal expansion technique for the solution of the sphere shielding
problem, Franceschetti [12] has employed an integral equation method. In each of these
references, only the E-fields at the center of the sphere have been considered'.

' This may be due to two reasons. First, at the center only the n = 1 spherical harmonic is needed, so that
evaluating an infinite series summation is not required. Second, it is well-known that the quasi-static magnetic
field is constant within the sphere volume, and using the center as the B-field observation point is a good choice.
Perhaps it was thought that this location would also be suitable for the E-field. However, as will be shown later,
the E-field in the sphere varies significantly with position, and the E-field at the center is significantly lower than
the average value of E within the sphere.
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Real enclosures have openings, so perhaps a uniform spherical model is not the best
one to use for understanding the behavior of the internal fields. References [13, 14, and 15]
have described analysis procedures for treating a spherical shell with a circular aperture, but
their emphasis is on the scattered EM field, not the internal field distribution. Sancer [16] has
described a frequency dependent dual series solution for the internal field in a sphere with a
hole, and has used this model to determine the quasi-static E and H-fields. Casey [17] has
solved the same problem using a quasi-static dual series model. As in the previous references,
only the E-fields at the center of the sphere have been calculated in these latter references. A
more general frequency dependent solution for the internal fields in a sphere has been
described in [18]. This solution involves a modal expansion for the E-fields and is based on the
earlier work of [13]. The emphasis of this work, however, is in the resonance region of the
sphere.

The work reported in this paper is a re-visitation of two classical canonical shielding
problems: a thin spherical shell made of imperfectly conducting material, which is presented in
Part 1, and a perfectly conducting hollow sphere with an aperture, which is discussed in Part 2.

In this Part 1, we describe the analysis of the penetrable sphere by using expansion of
spherical vector wave functions in the three regions of the problem: inside and outside the
sphere and in the wall material of the sphere. In performing this analysis, closed form
expressions for the expansion coefficients are determined and tabulated, and a method for
eliminating numerical overflow errors in evaluating the Hankel functions in the wave
expansions is described. With a computer program developed to evaluate the E- and H-fields
anywhere within the shielded volume of the shell, a Monte Carlo simulation has been
performed to generate data suitable for describing the cumulative probability distributions
(CPD) for the internal fields.

In Part 2, a quasi-static model useful for computing the internal E-field in a sphere with
a hole is reviewed. Because the dual H-field problem can be solved from the E-field solution in
this case, only the E-field shielding is discussed here. A Monte Carlo simulation is also
performed for this shield, and the corresponding CPDs for the E-field are presented.
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2. EM Shielding by a Spherical Shell

In this section, the classical solution for shielding of a spherical shell of imperfectly
conducting material is reviewed, and the behavior of the internal and external E and H-fields
examined. This solution is essentially the same as described by Harrison [8] and many others,
although [8] only provides the expressions for the E-field expansion coefficients for the
internal fields. In the development here, we will provide closed-form expressions for the EM
field coefficients for all regions. In addition, in the present development we pay special
attention to the machine computation of the spherical Hankel functions, which are needed in
the solution for the E-fields. In particular, we describe a simple modification of the classical
spherical wave expansion functions that permit an accurate evaluation of the E and H-fields
inside and outside of the shell.

2.1 Problem Geometry

The geometry of the spherical shell illuminated by an incident plane wave propagating
in the z-direction is shown in Figure 1. The incident E-field is taken to be in the x-direction,
with the H-field being in the y-direction. The spherical shell is designated as region #1, and has
outer and inner radii of a and b, respectively. The thickness of the shell is denoted by A = a —
b. The shell is assumed to have the constitutive parameters p; and &; and electrical

conductivity o;. The material inside and outside the sphere is usually free space and is
nonconductive. This material is designated as region #2, with parameters u,, €, and o, = 0.

The spherical coordinate system is described by the usual (p, 6, ¢) coordinates, as noted in the
figure.

z
Imperfectly |
Conducting
Sphere Observation
Region #1 #  Point
My, €15 Oy
a_ |e.r
b=k y
A=~ ¢ /
(ab) X @ .
Region #2
X K Hp, €, 0, =0
H
E

Incident Plane Wave

Figure 1.  Illustration of a spherical shell illuminated by an incident plane wave.
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2.2 Representation of Fields in Spherical Coordinates

In region #1, the wave propagation constant is

k, ~ ‘/a)p;al (1-j) foro;>>weg (1a)

k, = o\ 1,¢, . (1b)

and in region #2

For use later in this paper, the following ratios are defined:

K:k2 and Q=2 (1c)

k, H

As developed by Stratton [7] (page 414), the EM field in a spherical coordinate system
can be expressed as weighted sums of spherical wave vector functions 7’ and n(Z . where

indices n =0, 1, - 00, and m = 0, 1, --- n. The symbols e and o denote solutions that are even or
odd with respect to the x axis, and the index (i) denotes the type of radial function used in the
expansion. These vector wave functions are expressed as
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where the radial function z\” (kr) is

Ju(kr) i=1
y (kr) i=2
WO (kr) =3
K (kr) i=4

2, (kr) = (4)

and £ denotes the propagation constant for the specific medium in which the spherical waves
are propagating.
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The function P"(x) in Eqs.(2) and (3) are the associated Legendre polynomials?,
which according to [19, §8.66] , are defined from the Legendre polynomials P, (x) by

o d"B(x)

P (x)=(-1)"(1-x7) paT

)

From [8] the x-directed incident plane wave shown in Figure 1 may be expressed by the
spherical wave functions as

E'=Ee "™}

- 2n+1 (6a)
=E Y () ——|m], + i)
o;( J) I’l(l’l-i—l)l: 0,l,n .] c,l,n]
; k = 2n+1
H =—"2E N (—jy———[m", - a1, 6b
CO,UZ o n:I( ]) n(l’l+1)[ e,l,n .] o,l,n:l ( )

and the scattered (or “reflected”) field for » > a is

r c N 2n+1 ;o o
E = E{,Z(_J) —n(n 1) [an m(()i),n +jb, ne(j’)n] (rza) (7a)
n=1
r k = N 27’l+1 - o —
H ==t E 2 ) e Lo Al - e ] ¢ 2a). (7
2 n=1

Note that the arguments of the radial functions in Eqgs.(6) and (7) are (k»a) and the leading
factor for the H-field k,/mu, 1s simply the characteristic wave impedance in medium 2.

Inside the material of the spherical shell, the EM fields are represented in a similar
manner, as

2 It is unfortunate that there is an inconsistency in the definition of the associated Legendre polynomials in the

literature. Some references, such as Abramowitz [19] include the (-1) parameter in the definition, as shown in
Eq.(5). However other authors, including Stratton, omit this factor, with the result that the definition of the vector
wave functions of Egs. (3) and (4) can vary from text to text. In this paper, we use Abramowitz’s definition and
have modified the wave functions of Stratton by adding the term (-1)”* to Egs. (3) and (4). Butler [20] has
surveyed a number of widely used texts for their usage of this term with the following results. Those authors using

the (-1)" term include Abramowitz & Stegun, R. Harrington, D. S. Jones, Magnus & Oberhettinger and S.
Schelkunoff. Authors that exclude this term include J. Van Bladel, J. Stratton, A. Sommerfeld and W. Smythe.
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with the radial functions arguments being (k;a).

Inside the sphere void, the E-field representation is

- 2n+1
E°=FE - a’m' +jbnt) r<b 9a
0;( ]) l’l(l’l+1)[ n uln ] n eln] ( ) ( )
: k = 2n+1 .
H =——2F - —=—| b m" ja‘ ') r<b). 9b
CO,UZ o;( J) I’l(l’l+1)[ n el,n .] n oln] ( ) ( )

with the radial functions arguments (k»a).

The eight parameters a’, b’, p,.q,,d,, f., a° and b° in Egs.(7 — 9) are unknowns’

that can be determined by the boundary conditions at the interfaces at » = a and r = b of the
sphere. These boundary conditions are that the tangential components of E and H must be
continuous through the interfaces, and are

(E"+E’) :(E) and (E"+E’) :(E"
i rg f ,~ "’ | (atr=a) (10)
(H +H )9:(1{ )9 and (H +H )¢:(H )

and with the same conditions at » = b.

In ref. [8], only the » = 1 case was considered, as the EM fields were to be calculated
only at the center of the sphere. At that location, higher order terms of »n in the E-field
expansion vanish. For the more general case, however, other values of » must be considered.
By applying the boundary conditions independently for each value of #, one can obtain a set of

eight equations relating the coefficients a, b’ ---b; . These equations are

n® “n

3 These parameters are named in the same way as in ref. [8].
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Jo(kya) + ayh? (kya) = p, > (ka) +d,h" (ka) (11a)

nn

{[kza J @) 48 [kyah® (kza)]’} — K an [kah®ha)] + 1, [ kah (kla)]'J (11b)
St + b1 (k)| = 4,17 (k) + £, () (11c)

é{[kzajn (k)] +a;[ kya hﬁ”(kza)]'} = p,[kah®(ka)] +d,[kah® (ka)] (11d)

P hO (kb +d WY (kb) = af j (k,b) (1le)

K {qn [kbh®(kb)] + 1, [kbh (klb)]’} = b¢ [kyb J, (yb)] (116)
Qr o 1 .

—[ @) (kb)+ £, ) | =, (k:b) (11g)

Q { [ kbh®(kb) ] +d, [kph" (klb)]'} = a’[kb j, (k,b)] (11h)

where the parameters k and Q have been defined in Eq.(1c¢).

2.3 Scaling of the Hankel Functions and Expansion Coefficients

In trying to use these equations for determining the expansion coefficients, there is a
problem that arises in the evaluation of the wave functions in region #1 where k = k;, due to

the exponential variation of the Hankel functions A" (ka) and h"(kb). To see this, ref[19,
§10.1.16] provides the following representations for the spherical Hankel functions

. k)! —k
Y (kr)y=j " (kr) " e’ Z—k 'F(Z:— k)+ 5 (—2,jkr) (120
=/ h” (hr)
e k) —k
h? (k)= j"* (k)™ e Z—klr(?;_ k) ey (2jkr) (12b)

= (hr)
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These relationships define fl,ﬁl)(kr) and fzsz)(kr), which are scaled Hankel functions®. These

scaled functions maintain reasonable accuracy over a wide range of the complex parameter (kr)
and are provided by many special function routines. Note that this is not an approximation to
the Hankel functions, but rather, just a factorization of the functions.

WOy

As a consequence of Eq.(12a), we observe that in region #1 4"(kr) ~e' 2  and this

function becomes unbounded as ® — oo. The direct use of this function in a numerical
calculation becomes impossible at high frequencies — even if its exponential growth may be
ultimately cancelled somewhere in a complicated expression by the exponential decrease of

_ OO, »
functions like 2”(kr) ~e ¥ > .

To solve this problem, we express the boundary conditions and Hankel functions in
region #1 using the scaled spherical Hankel functions and the appropriate scaling factors as

. 1 ~
hr(rl)(kla) = Tl h;gl)(lﬂa) hIiZ) (kla) = ?hz?)(kla) (13)

1

1 (kb = ;-1/2,5“<k1b) 1 (kb) = %ﬁ;”(klb) (14)

A 1
where T, =™ and T, = /""" = ¢/,

Using these scaled Hankel functions in region #1, the boundary conditions in Eqgs.(11)
can be written in a compact matrix form as

* In this paper, any parameter or function with the A symbol is designated as a scaled quantity.
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To observe the effects of using the scaled Hankel functions and to provide an
alternative to a strict numerical inversion of Eq.(15), it is useful to develop closed-form
expressions for the expansion coefficients. Reference [8] provides expressions for the
coefficients g and b; for the E-fields at the center of the sphere, and here we generalize their

results for arbitrary n and for all regions. It should also be mentioned that Baum [11] in his
Appendix A also provides expressions for the expansion coefficients, but not in stand-alone
terms, but as ratios of confidents, relative to the coefficients of the incident plane wave.

Obtaining such a symbolic solution is tedious but it can be accomplished using a
symbolic solver to invert Eq.(15) and obtain algebraic expressions for the coefficients. In doing
this there are two terms that occur in the denominators of the various expressions for the
coefficients. These are denoted as Denl and Den?2 and are

Denl, _TIKQ Jueb)| ki ﬁ;‘)(k,b)] ~[k,b j, (k,b)] ﬁ;”(klb)j(ﬁ,‘f)(kla) [kah® (ka) | ~Q 1 (koa) [ a) (1 6a)

A

+T, KQ jl (kzb)[klbﬁ,‘f’(klb)] —[k,b J, ()] AP (e, b)j{Q n?(k, a)[k ah®(k, a)] ~ b (ka)| Ky b (kya) | }

It is important to note that the scaling function 7'; does not occur in these denominator

Den2, = |:(K2 jn(kzb)[klbﬁg“(klb)]—Q[kzb_jn(kzb)]'ﬁ;”(kb) [Qh(z)(ka) [kah(ea) | KOGk, o kah‘z)(ka) (16b)

1
TA

+T, |:[K2jn (k)| Kb ﬁ,ﬁz’(klb)]' ~Q[kp j, (k,b)] A (kb) [K 1 ()| Ko B a)] ~ QA" (k) koa h? (kya) | H

functions as they have cancelled out in the products of terms like A" (kb)- A (ka) . There

still is the scaling function 7 = e’* present in these expressions, but for thin shells, this term
is easily computed and it does not become so large as to cause numerical round-off problems.

The unscaled parameters a , b/, p,,q,,d,, f,, a, and b’ are given in closed form as

follows:
@ =~ D;ﬂn TIK (k) [kya ()] -, (kza)[kla/%5”(&@]’](91,, () kA (6b) | = (e e (@b)]'ﬂ
‘fnlﬁ Kﬁs”(kla)[kzajn (k)] Q. (ko) K B! (km]'][é,f”(klb)[kzb Jnkeb)] =€, (kzb)[klbﬁ:”(klb)]'ﬂ
(17a)
by = Deil12 Tl KQh‘”(k O[ka j, (k)] =], o) ka i (ha) | J[KZ Jy (kzb)[klbﬁ,ﬁ”(klb)] ~ Qi (kb)[kb J, (kzb)]’ﬂ

T, HKZJ; (k)| Ky ﬁ,i"(kla)}' ~Qh (ka)[ka j, (kza)]'][;c2 jn(kzb)[klbﬁj”(klb)] ~ Qi (kb)[k,b (kzb)]'ﬂ
(17b)

Den2,
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Denl T,

n TA

p=-— TlH;f][ﬁ;“(klm[kzbjn(ka)]'—an<k2b>[klbl%5”<klb)]'ﬂ (17¢)
2(1

g =——= Kk_f [ R (kb) kb Jj, (sb)] =12, (k,y b)[kbh“)(kb)} H (17d)

(2)(k b)[k,b j, (k, b)] -Qj (k,b) [klb ﬁ,ﬁz)(klb)]ﬂ (17¢)

QA (kb)[lob j, (sb)] =12, (K, b)[kbh(z)(k b)} ﬂ (17f)

e_ Q[ —j[2)
_ =/ |2/ 17
@ Denln(kzaj( lb) (17g)

(ﬁ (17h)

Equations (17¢) through (17h) have been simplified somewhat through the use of
appropriate  Wronskian relationships between the radial functions. Reference [11] also
discusses this simplification. Furthermore, if 2 = 1, additional simplifications are possible.

Notice that in Eqs.(17a, b, g and f) for parameters a,,b,a; and b, the scaling factors
T; and 1/T; have all canceled with each other, and these parameters do not occur in the

solution. The evaluation of these parameters using the scaled Hankel functions poses no
problem at all. However, if Eq.(16) were to be solved numerically, there would be serious
overflow and underflow problems due to the presence of the scaling factors.

Furthermore, in Eqs.(17) we observe that the parameters p,, and g,, are proportional to
T, and parameters d,, and f,, are proportional to 1/7;. These expressions show symbolically

why the direct evaluation of even these closed-form coefficients is prone to error due to the
very large or very small values of these proportionality constants. By removing the 7; scaling

parameter from Eqs.(17¢c) — (17f) as

. (18)
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we can define scaled expansion parameters p,, q,, d,, f, , which are

.1 o g o
b= " Den, 1, Kk j{h (kb [ j, ()] = j, (sb)| kb A" () | H (192)
TR QA (kib)[ kb j, (hb)] =5 j, (K b)[kb/%“’(kb)] (19b)
" Den2 T k n n\2 1971, 7K

A 1 s . . . . R ,
&= Do || (hi”(klb)[kzbjn(kzb)] —Q, (k)| kb R (k) H (19¢)

K =/ p(2) ; "2 p(2) '
Doz || e [th (kb [k J,(eb)] =K%, eb) [ Kb A (D) | ﬂ(wcu

f =

The use of these scaled parameters in evaluating the E- and H-fields is discussed in the next
section.

It is worth pointing out that the evaluation of the required set of unscaled parameters
a,,b’,a, and b and scaled parameters p,, g,, d,, f can also be computed from a numerical

n?o n

inversion of Eq.(15). This may be done by setting the scaling parameter 7; = 1 and using
scaled Hankel functions A" (ka), h?(ka), h""(kb) and h® (kb) as indicated in Eq.(15) to
obtain a numerically stable matrix equation that can be easily inverted. Although there is not
much insight into the structure of the solution for these parameters in this numerical approach,

the coding of this equation is certainly much simpler (and less error-prone) than developing
code for the closed-form expressions.

2.4 Use of Scaled Parameters in Determining E- and H-fields

To use these scaled coefficients in the solution for the E-fields in the sphere, we
observe that in Eq.(8) the p, and g,, parameters are always multiplied by 4'”(k,r) and d,, and

f,, occur together with 4" (k,r) . Thus, in Eq.(8) the product p, m'* can be written as

o,l,n

p, i (()41)” _Tp e*ﬂwr (4) (20)

oln

where the exponential scaling factor e /" has been extracted from the Hankel function
h? (k7). The term moln

Hankel function fzﬁz’(klr) .

denotes the spherical harmonic function evaluated with the scaled

The scaling terms in Eq.(20) can be combined into a common factor S(k;7) as
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P, ;0 =S (kr) b, Y, (21)
with

S(kr)=e™ . (22)
Similarily, the other products of the parameters and wave functions can be written as

q,my, =S(kr)g,my,  p,y,=S(kr)p,ny,  q,1,=5(kr)q,ny, 23)

The other terms in the expression involving d,, and f,, are of the form

d m® = d 2(3) —(3) _ F1E)
moln S(klf") moln f eln S( ) eln
(24)
1
d7® = d n® —(3) _ e
nnoln S(klr) nnoln nneln ( ) n eln

Thus, in region #1 where b < r < a, the E and H-fields are expressed using a
relationship similar to that of Eq.(8), but with the scaled expansion coefficients and Hankel
functions and the scaling factor S:

o, . 2n+1 .
>y 2 s (k) B 4,7
n=1

E'=FE _ ) (b<r<a) (25a)
n 5 20 3
Z( ]) (I’l+1) S( )|: n 01n+]f;1neliz:|
3y 2l S (k)| g, m, — b, 3, |
k p n(n+1) 1 cln n"Yo,l,n
H' =——-E _ (b<r<a) (25b)
O N L a® d 3)
+,,Z::( ) ( +1)S )[f;l el,n ] oln:|

This scaling procedure permits the computation of the E-fields over a broad frequency
range, which is impossible with the conventional wave expansion of Eq.(8). For the E-fields in
the other regions where » > a and r < b, the unscaled expressions in Egs. (6), (7) and (9) can be
used.
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2.5 Numerical Results

A computer program was developed to evaluate Egs. (6), (7), (9) and (25) using the
closed form expressions for the expansion coefficients. As a check of this solution, it was
verified that the various boundary conditions on the sphere were met, and that the overall
behavior of the E-fields was correct.

As an additional check, the E-field and H-field transfer functions at the center of an
aluminum shell (¢ = 3.54 x 107 S/m) with radius @ = 0.914 m (36 in) and thicknesses A =
0.794, 1.587 and 3.175 mm (corresponding to 1/32, 1/16 and 1/8 inches) were computed. This
sphere is the same as that used in [8]. For these comparisons, transfer functions relating the
total E and H-field magnitudes to the magnitude of the incident E-field are defined as

—|E(”j’¢)| and TH(r.0.9) =—|H(';9’¢)| 26)

o o

TE(r,0,¢) =

In Eq.(26), the transfer function TE is unitless and TH has units of Siemens, which is
not ideal, but this is done to permit a direct comparison with the results of [8]. Figure 2
presents plots of the E-field and H-field transfer functions, expressed in dB, at the center of the
aluminum sphere with different shell thicknesses, A. These plots are identical with those in
Figures 2 and 8 of ref. [8], and this serves as a partial validation of the computational
procedure. Note that usually the H-field transfer function is shown relative to the incident H-
field, not the E-field, and at low frequencies, H/H, — 0 dB. The low frequency limit in Figure

2a1s —51.53 dB, which is exactly 1/Z, expressed in dB.
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Figure 2.  Plots of the total E-field and H-field transfer functions at the center of an
aluminum sphere with radius ¢ = 0.914 m for different shell thicknesses, A. (To be
compared with Figures 2 and 8 of ref. [8].)

It is interesting to see that the upper frequency response of the transfer functions in
Figure 2 is 1 MHz. Even for this relatively low frequency, the spherical wave function series is
difficult to evaluate without scaling the Hankel functions. To illustrate the robustness of the
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present scaled solution at higher frequencies, Figure 3a presents a plot of the E-field transfer
functions for the sphere for frequencies up to 1 GHz. The responses are reasonable in
appearance, and if one carefully examines the transfer function for the thinnest shell, a hint of
small peaks in the curves are seen at frequencies above about 200 MHz. Figure 3b plots the
transfer function for this shell on a linear scale and these peaks are seen more clearly.

These peaks are due to the internal resonances in the shell. Since the shell material is
highly conducting, we expect that these resonances will occur close to the classical internal
resonances of a perfectly conducting sphere. According to Harrington [21, §6-2], such internal
resonances occur at the roots of J,(k,b) = 0 for the TE modes, and at the roots of

[k>b J,(kyb)]" = 0 for the TM modes. Table 1. presents the roots for the first four TM modes,

along with the resulting resonant frequencies for the sphere with a radius of about 0.914 m. We
see that the agreement with the frequencies of the resonances in Figure 3b is very good. Of
course, since the conductivity of the shell is so high, the internal E-field is extremely small —
1000 to 2000 dB down from the incident field.

Table 1. Interior TM resonances for a perfectly conducting shell.

Freq.

No. kyb (GH°Z')
1 2.744 0.143
2 6.117 0.320
3 9.317 0.487
4 12.486 0.653
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The primary motive for this study is to understand the behavior of the internal E- and
H-fields within the shell. Using the same spherical shell as in the previous example, the
transfer functions for the individual components of the E- and H-fields have been evaluated
along the radial path in the direction defined by the angles 8= 90° and ¢ = 45°. With reference
to Figure 1, this path is in the x-y plane at z = 0 and at an angle of 45° to the x axis. Figure 4
shows these E-fields as a function of normalized radial distance /b from the origin to »/b = 2
for a frequency of /= 100 kHz.

The important thing to observe from this plot is that for both the E- and H-fields inside
the shell, there are observable spatial variations in the E-field components. For the H-field, the
H, and Hycomponents are equal in magnitude (on this particular radial trajectory), but there is
a definite variation of the H, component. For the E-field, the principal component is Eg and
its spatial variation is significant. Outside the sphere both the E- and H-fields approach the
incident field at distances of /b = 2.

100 3 -50
kb = 1.913x 10 E Kb — 1.913x 10-3 v
0 =90 r o - 90 r
of 4 —45 ?=— - 100 e th Hin
. h Eth _ D
[an] _
2 100 ( ) 150
= Eth___| £
~— Hin
—200 -200
3% 0.4 08 1.2 1.6 -2%0 04 0.8 12 16 2
r/b r/b
a. Electric field b. Magnetic field
Figure 4. E- and H-field transfer functions for the r, 0 and ¢ field components for the

spherical shell of inner radius » = 0.914 m and shell thickness A = 0.794 mm, at a
frequency of 100 kHz. (These E-fields are shown as a function of radial distance on a
path defined by the angles =900 and ¢ = 45°.)

Perhaps a more intuitive measure of the internal shell fields is the total field transfer
functions given by Eq.(26). Figure 5 illustrates the behavior of the E-field transfer functions in
the equatorial (z = 0) plane along different trajectories defined by the angle ¢. Parameters are
the same as in the previous example: » = 0.914 m, A = 0.794 mm, and f= 100 kHz.

In this figure, it is clear that the total internal H-field in the shell is constant for all
practical purposes. However, there can be a significant variation of the total E-field inside the
shell — about 60 dB, or a factor of 1000. Furthermore, we see that the value of TE for this
shield reported in ref. [8] (at the center of the shell) is about — 198 dB. This is clearly not a
representative measure of the shielding provided by this shell.
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Figure 5.  Plots of the total E- and H-field transfer functions in the equatorial (z = 0)
plane along different trajectories defined by the angle ¢. (Parameters are b =0.914 m, A =
0.794 mm, and f= 100 kHz.)

Another way of visualizing the EM field distribution in and around the shell it to plot
the total field transfer function as a contour plot. This is done in Figure 6 for TE and in Figure
7 for TH. In these figures we see that for all practical purposes, the H-field is uniform within
the shell. However, this is not the case for the E-field transfer function, where the TE at the
center is considerably smaller than that elsewhere in the shell.

The frequency dependence of the solutions for the E-and H-fields of the shell are
shown in Figure 8 over a frequency range from 100 kHz to 10 MHz. As this is a range of
relatively low frequencies for the ~ 1 meter sphere size, we do not expect much of a change in
the shape of the E-fields, but only a change in the E-field amplitudes within the shell. This is
confirmed by the data in these plots. Clearly, as the frequency increases, the internal field
strength is reduced, due to the inductive shielding provided by the currents flowing in the shell
[22].
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Figure 6. Contour plot of the total E-field transfer function (in dB)n the equatorial
plane, inside and outside the aluminum shell, for 5 = 0.914 m, A = 0.794 mm, and f= 100
kHz.
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Figure 7. Contour plot of the total H-field transfer function (in dB) in the equatorial
plane, inside and outside the aluminum shell, for 5 = 0.914 m, A = 0.794 mm, and f= 100
kHz.
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Figure 8. Illustration of the frequency dependence of the E- and H-field transfer
functions, along a radial path defined by the angles 6= 90° and ¢ = 45°-for the aluminum
shell with 5 = 0.914 m and A = 0.794 mm.
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2.6 Statistical Description of the Internal Fields

To get a better quantitative description of the behavior of the EM fields within the
spherical shell, Monte Carlo calculations were conducted for a wide range of frequencies on
the aluminum shell (b = 0.914 m and A = 0.794 mm). In these simulations, the total E and H-
fields at about 1000 randomly selected points within the shell were calculated and the response
amplitudes were binned into histograms representing probability density functions. As an
example, Figure 9 presents the histograms for the E-fields, computed at a frequency of 100
MHz. Clearly the H-field is a constant within the sphere, but the E-field has a wide range of
values.

100 1.5x10°
80
5 5 1x10°
3 60 2
E 40 §
>
Z > 500
20
0 ‘ 0
180 —170 —-160 -150 —140 140 -120 -100 -80
TE (dB) TH (dB)

Figure 9. Example of the histogram functions for the internal E and H-fields for the
aluminum sphere, at a frequency of 100 MHz.

From the histogram distributions, cumulative probability distributions (CPDs) can be
calculated. Such distributions for the E-field are shown in Figure 10. These distributions
represent the probability of a randomly selected point in the shell having a TE less than the
value specified on the x-axis.

As seen in this figure, at very low frequencies (from 100 Hz to 10 KHz), the E-field
CPDs are virtual overlays. At higher frequencies, the shielding begins to improve and the
average values of the shielding becomes larger, with slight changes in the shape of the
distributions.

As expected, the H-field CPDs are much less interesting, due to the almost uniform
nature of the internal H-field in the shell. Figure 11 presents these results, where there is a
slight hint of a change in the slope of the CPD at high frequencies.
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One way of summarizing the distributions of the internal field is by the mean value and
standard deviation of the histograms. These quantities have been computed for the aluminum
shell and are listed in Table 2. In addition to the data computed for the E-fields within the
entire shell volume, the shielding values for the E-field and H-field at the center of the sphere
from [8] are also listed.

From this summary, it is clear that the use of the H-field at the center of the shell as a
representative sample of the shielding anywhere in the shell is a good measure. However, the
same is not the case for the E-field at low frequencies, say below 1 MHz.

Table 2. Summary of the mean values and standard deviations of the distributions
computed for the internal E- and H-fields of the aluminum shell.

Case Frequency| Avg. TE | TE Std. TE (dB) |Avg.TH| TH Std. |TH (dB) from
(Hz) (dB) | Dev. (dB) |from Ref.[8]] (dB) | Dev. (dB) Ref.[8]
1 1.0E+02 -142 4.3 -251 -68 0.1 -68
2 1.0E+03 -142 4.2 -231 -88 0.1 -88
3 1.0E+04 -142 4.4 -211 -108 0.0 -108
4 1.0E+05 -149 4.4 -199 -135 0.0 -135
5 1.0E+06 -195 4.7 -224 -201 0.1 -201
6 1.0E+07 -360 3.1 -370 -388 0.4 -387
7 1.0E+08 -902 2.3 -900 -956 3.8 -958

3. Summary

This part of the paper has examined a simple canonical shielding problem with the goal
of trying to gain a better understanding of the EM shielding provided by real shielding
enclosures. The shield considered here was a spherical shell — one being made of finitely
conducting material (aluminum) and having a finite wall thickness.

The reason for choosing this simple shape was that the calculation of the internal fields
could be done mathematically through the use of spherical harmonics. This provides the
possibility of evaluating the E- and H-fields anywhere inside or outside the sphere. In
developing this analysis, closed form expressions for the expansion coefficients have been
found, and these do not appear to be generally available in the literature. Moreover, a unique
scaling technique was introduced that permits the accurate evaluation of the spherical Hankel
function terms of the wave functions. This scaling is not an approximation to the Hankel
functions as obtained by [11] and others, but is exact.
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The benefit of this type of solution is that a Monte Carlo simulation can be used to

develop probability distributions for the internal fields that show the variability of the field
magnitudes. The difficulty, however, is that the solution is in the form of an infinite series of
factors, which, at times, is difficult to sum. Moreover, there are numerical challenges in
calculating the required Hankel functions of complex argument inside the lossy material due to
numerical overflow and underflow.

This paper will conclude with Part 2, which deals with the quasi-static analysis of a

spherical shell having an aperture.
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