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Abstract 
In this paper, we discuss the Transmission Line (TL) theory and its application to the problem of external 

electromagnetic field coupling to transmission lines. After a short discussion on the underlying 

assumptions of the TL theory, we start with the derivation of field-to-transmission line coupling equations 

for the case of a single wire line above a perfectly conducting ground. We also describe three seemingly 

different but completely equivalent approaches that have been proposed to describe the coupling of 

electromagnetic field coupling to transmission lines. The derived equations are extended to deal with the 

presence of losses and multiple conductors. The time-domain representation of field-to-transmission line 

coupling equations which allows a straightforward treatment of non linear phenomena as well as the 

variation in the line topology is also described. Finally, solution methods in frequency domain and time 

domain are presented. 

1 Transmission Line (TL) Approximation 

The problem of an external electromagnetic field coupling to an overhead line can be solved using a 

number of approaches. One such approach makes use of antenna theory, a general methodology based on 

Maxwell's equations1 [1]. When electrically long lines are involved, however, the antenna theory 

approach implies prohibitively long computational times and high computer resources. On the other hand, 

the less resource hungry quasi-static approximation [1], in which propagation is neglected and coupling is 

described by means of lumped elements, can be adopted only when the overall dimensions of the circuit 

are smaller than the minimum significant wavelength of the electromagnetic field. For many practical 

cases, however, this condition is not satisfied. As an example, let us consider the case of power lines 

illuminated by a lightning electromagnetic pulse (LEMP). Power networks extend, in general, over 

distances of several kilometres, much larger than the minimum wavelengths associated with LEMP. 

Indeed, significant portions of the frequency spectrum of LEMP extend to frequencies up to of a few 

MHz and beyond, which corresponds to minimum wavelengths of about 100 m or less (e.g. [2]).  

A third approach is known as transmission line (TL) theory. The main assumptions for this approach are:: 

1) Propagation occurs along the line axis. 

                                                            
1 Different methods based on this approach generally assume that the wire’s cross section is smaller than 

the minimum significant wavelength (thin-wire approximation). 
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2) The sum of the line currents at any cross-section of the line is zero. In other words, the ground – the 

reference conductor – is the return path for the currents in the n overhead conductors. 

3) The response of the line to the coupled electromagnetic fields is quasi transverse electromagnetic 

(quasi-TEM) or, in other words, the electromagnetic field produced by the electric charges and currents 

along the line is confined in the transverse plane and perpendicular to the line axis.  

 

If the cross-sectional dimensions of the line are electrically small, propagation can indeed be assumed to 

occur essentially along the line axis only and the first assumption can be considered to be a good 

approximation. 

The second condition is satisfied if the ground plane exhibits infinite conductivity since, in that case, the 

currents and voltages can be obtained making use of the method of images, which guarantees currents of 

equal amplitude and opposite direction in the ground.  

The condition that the response of the line is quasi-TEM is satisfied only up to a threshold frequency 

above which higher-order modes begin to appear [1]. For some cases, such as infinite parallel plates or 

coaxial lines, it is possible to derive an exact expression for the cutoff frequency below which only the 

TEM mode exists [3]. For other line structures (i.e. multiple conductors above a ground plane), the TEM 

mode response is generally satisfied as long as the line cross section is electrically small [3]. 

Under these conditions, the line can be represented by a distributed-parameter structure along its axis. 

For uniform transmission lines with electrically-small cross-sectional dimensions (not exceeding about 

one tenth of the minimum significant wavelength of the exciting electromagnetic field), a number of 

theoretical and experimental studies have shown a fairly good agreement between results obtained using 

the TL approximation and results obtained either by means of antenna theory or experiments (see for 

example [4]). A detailed discussion of the validity of the basic assumptions of the TL theory is beyond the 

scope of this paper. However, it is worth noting that, by assuming that the sum of all the currents is equal 

to zero, we are considering only ‘transmission line mode’ currents and neglecting the so-called ‘antenna-

mode’ currents [1]. If we wish to compute the load responses of the line, this assumption is adequate, 

because the antenna mode current response is small near the ends of the line. Along the line, however, 

and even for electrically small line cross sections, the presence of antenna-mode currents implies that the 

sum of the currents at a cross section is not necessarily equal to zero [1, 3]. However, the quasi-symmetry 

due to the presence of the ground plane, if present, results in a very small contribution of antenna mode 

currents and, consequently, the predominant mode on the line will be transmission line [1]. 

2 Single-Wire Line Above a Perfectly-Conducting Ground 

We will consider first the case of a lossless single-wire line above a perfectly conducting ground. This 

simple case will allow us to introduce various coupling models and to discuss a number of concepts 

essential to the understanding of the electromagnetic field coupling phenomenon. Later in this paper 

(Sections 4 and 5), we will cover the cases of lossy and multiconductor lines. The transmission line is 
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defined by its geometrical parameters (wire radius a and height above ground h) and its terminations ZA 

and ZB, as illustrated in Fig. 1, where the line is illuminated by an external electromagnetic field. The 

problem of interest is the calculation of the induced voltages and currents along the line and at the 

terminations.  

It is worth noting that the external exciting electric and magnetic fields eE
r

 and eB
r

 are defined as the 

sum of the incident fields, iE
r

 and iB
r

, and the ground-reflected fields, rE
r

 and rB
r

, determined in 

absence of the line conductor. The total fields E
r

 and B
r

 at a given point in space are given by the sum of 

the excitation fields and the scattered fields from the line, the latter being denoted as sE
r

 and sB
r

. The 

scattered fields are created by the currents and charges flowing in the line conductor and by the 

corresponding currents and charges induced in the ground. 

Three seemingly different but completely equivalent approaches have been proposed to describe the 

coupling of electromagnetic fields to transmission lines. In what follows, we will present each one of 

them in turn. We will first derive the field-to-transmission line coupling equations2 following the 

development of Taylor et al. [5]. 
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Figure 1: Geometry of the problem. 

 

2.1 Taylor, Satterwhite and Harrison Model  

2.1.1 Derivation of the First Field-to-Transmission Line Coupling (Generalized Telegrapher’s) 

Equation 

Consider the single conductor transmission line of height h in Figure 1. Applying Stokes’ theorem to 

Maxwell’s equation BjE
rr

ω−=∇  for the area enclosed by the closed contour C yields 

dSeBjdlE
S

y
C

∫∫ ⋅ω−=∫ ⋅
rrr

 (1) 

                                                            
2  The field-to-transmission line coupling equations are sometimes referred to as generalized telegrapher’s 
equations. 

C 
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Since the contour has a differential width Δx ,  Equation (1) can be written as3  

[ ] [ ]

dxdzzxBj

dxxEhxEdzzxEzxxE

h xx

x
y

xx

x
xx

h
zz

),(

)0,(),(),(),(

0

0

∫ ∫ω−=

∫ −+∫ −Δ+

Δ+

Δ+

 (2) 

Dividing by xΔ  and taking the limit as xΔ  approaches zero yields 

dzzxBjxEhxEdzzxE
x

h
yxx

h
z ),()0,(),(),(

00
∫ω−=−+∫

∂
∂  (3) 

Since the wire and the ground are assumed to be perfect conductors, the total tangential electric fields, 

),( hxEx  and )0,(xEx , are zero. Defining also the total transverse voltage V(x) in the quasistatic sense 

(since h<<λ) as 

dzzxExV
h

z∫−=
0

),()(  (4) 

equation (3) becomes 

dzzxBjdzzxBjdzzxBj
dx

xdV h s
y

h e
y

h
y ),(),(),()(

000
∫ω−∫ω−=∫ω−=  (5) 

where we have decomposed the B-field into the excitation and scattered components.  

The last integral in (5) represents the magnetic flux between the conductor and the ground produced by 

the current I(x) flowing in the conductor.  

Now, Ampère-Maxwell’s equation in integral form is given by 

∫∫∫ ⋅ω+=⋅ sdDjI
C

ldsB
rrrr

'
 (6) 

If we use a path C’ in the transverse plane, defined by a constant x in such a manner that the conductor 

goes through it, Equation (6) can be rewritten as 

 

∫∫∫ ⋅ω+=⋅ dsxazyxxDjxI
C

ldzyxs
TB

rrrr
),,()(

'
),,(  (7) 

where the subindex T is used to indicate that the field is in the transverse direction,  
r 
a x  is the unit vector 

in the x direction, and where we have explicitly included the dependence of the fields on the three 

Cartesian coordinates.  

If the response of the wire is TEM, the electric flux density D in the x direction is zero and Equation (7) 

can be written as 

)(
'

),,( xI
C

ldzyxs
TB =⋅∫

rr
 (8) 

                                                            
3 The coordinate y will be implicitly assumed to be 0 and for the sake of clarity, we will omit the y-
dependency unless the explicit inclusion is important for the discussion. 
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Clearly, I(x) is the only source of ),,( zyxs
TB

r
. Further, it is apparent from Equation (8) that ),,( zyxs

TB
r

 is 

directly proportional to I(x). Indeed, if I(x) is multiplied by a constant multiplicative factor which, in 

general, can be complex, )(xs
TB

r
 too will be multiplied by that factor. Further, the proportionality factor 

for a uniform cross-section line must be independent of x.  

Let us now concentrate on the y component of ),,( zyxs
TB

r
 for points in the plane y=0. Using the facts we 

just established that I(x) and )(xs
TB

r
 are proportional and that the proportionality factor is independent of 

x, we can now write 

)(),0(),0,( xIzykzyxs
yB ===    (9) 

where k(y,z) is the proportionality constant.  

With this result, we now go back to the last integral in Equation (5),  

dzzx
h s

yB ),(
0
∫  

Note that, although the value of y is not explicitly given, y=0. The integral represents the per unit length 

magnetic flux under the line. Substituting (9) into it, we obtain  

dzx
h

Izykdzzx
h s

yB )(
0

),0(),(
0

∫∫ ==    (10) 

We ca rewrite (10) as follows 

 dz
h

zykxIdzzx
h s

yB ∫∫ ==
0

),0()(),(
0

   (11) 

Equation (11) implies that the per-unit-length scattered magnetic flux under the line at any point along it 

is proportional to the current at that point. The proportionality constant, given by dz
h

zyk∫ =
0

),0( , is the per-

unit-length inductance of the line.  

 

This results in the well-known linear relationship between the magnetic flux and the line current, the 

proportionality constant being the line per-unit-length inductance: 

)('),(
0

xILdzzxB
h s

y =∫  (12) 

Assuming that the transverse dimension of the line is much greater than the height of the line, (a<<h), the 

magnetic flux density can be calculated using Ampere’s Law and the integral can be evaluated 

analytically [1].  For h>>a, ⎟
⎠
⎞

⎜
⎝
⎛

π
μ

≅
a
hL o 2ln

2
' .  

Inserting (12) into (5), we obtain the first generalized telegrapher’s equation 
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dzzxBjxILj
dx

xdV h e
y ),()(')(

0
∫ω−=ω+  (13) 

Note that, unlike the classical telegrapher’s equations in which no external excitation is considered, the 

presence of an external field results in a forcing function expressed in terms of the exciting magnetic flux. 

This forcing function can be viewed as a distributed voltage source along the line. 

Attention must paid to the fact that the voltage V(x) in (13) depends on the integration path since it is 

obtained by integration of an electric field whose curl is not necessarily zero (Equation (4)).   

2.1.2 Derivation of the Second Field-to-Transmission Line Coupling Equation 

 

To derive the second telegrapher’s equation, we will assume that the medium surrounding the line is air 

( oε=ε ) and we will start from the second Maxwell’s equation EjJH o
rrr

ωε+=×∇ . Rearranging the 

terms and writing it in Cartesian coordinates for the z-component: 

o
zxy

oo
z

J
y

zxB
x

zxB
zxEj

ε
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−
∂

∂

με
=ω

),(),(1),(  (14) 

The current density can be related to the E-field using Ohm’s law, EJ
rr

airσ= , where airσ  is the air 

conductivity. Since the air conductivity is generally low, we will assume here that airσ =0 and will 

therefore neglect this term4. 

Integrating (14) along the z axis from 0 to h, and making use of (4), we obtain  

dz
y

zxB
x

zxB

dz
y

zxB
x

zxB
xVj

h s
x

s
y

oo

h e
x

e
y

oo

∫ ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂
∂

−
∂

∂

με
+

∫ ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂
∂

−
∂

∂

με
=ω−

0

0

),(),(1

),(),(1)(

 (15) 

in which we have decomposed the magnetic flux density field into the excitation and scattered 

components.  

Since the excitation fields are the fields that would exist if the line were not present, they must satisfy 

Maxwell’s equations. Applying Maxwell’s equation (14) to the components of the excitation 

electromagnetic field and integrating along z from 0 to h along a straight line directly under the line yields 

dzEjdz
y

B
x

B h e
z

h e
x

e
y

oo
∫ω=∫ ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂
∂

−
∂

∂

με 00

1  (16) 

Using (12), (16) and given that 0=s
xB  by virtue of the assumed TEM nature of the line response, 

Equation (15) becomes 

                                                            
4 This term will eventually result in an equivalent parallel conductance in the coupling equation (see 
Section 5). 
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dzzxECjxVCj
dx

xdI h e
z∫ω−=ω+

0
),(')(')(  (17) 

where C’ is the per-unit-length line capacitance related to the per-unit-length inductance through 

''CLoo =με . Equation (17) is the second field-to-transmission line coupling equation.  

For a line of finite length, such as the one represented in Fig. 1, the boundary conditions for the load 

currents and voltages must be enforced. They are simply given by 

)0()0( IZV A−=  (18) 

)()( LIZLV B=  (19) 

2.1.3 Equivalent Circuit 

 

Equations (13) and (17) are referred to as the Taylor et al. model. They can be represented using an 

equivalent circuit, as shown in Fig. 2. The forcing functions (source terms) in (13) and (17) are included 

as a set of distributed series voltage and parallel current sources along the line. 
 

I(x+dx+-
L'dx

C'dxZ A Z B 

I(x)

V(x) V(x+dx) V(L) V(0) 

∫−
h

0

e
y(x,z)dzBjω

dz(x,z)Ejω
h

0

e
z∫−

    0              x                                               x+dx             L  
Figure 2: Equivalent circuit of a lossless single-wire overhead line excited by an 

electromagnetic field. Taylor et al. model. 

 

2.2 Agrawal, Price and Gurbaxani Model 

An equivalent formulation of field-to-transmission line coupling equations was proposed in 1980 by 

Agrawal, Price and Gurbaxani [6]. This model is commonly referred to as the Agrawal model. We will 

call it the model of Agrawal et al. or the Agrawal et al. model hereafter.  

The basis for the derivation of the Agrawal et al. model can be described as follows: The excitation fields 

produce a line response that is TEM. This response is expressed in terms of a scattered voltage Vs(x), 

which is defined in terms of the line integral of the scattered electric field from the ground to the line, and 

a scattered current Is(x) which flows in the line. The total voltage V(x) and the total current I(x) (the 

quantities that are actually measurable) are computed as the sum of the excitation and the scattered 

voltages and currents. 
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The coupling equations in the model of Agrawal et al. are used to obtain the scattered voltage and the 

scattered current only. Specific components of the incident fields appear either as a source term in the 

coupling equations or are used to compute the total voltage V(x), which corresponds to that used in the 

model of Taylor et al. In the model of Agrawal et al., the total current I(x) is identical to the scattered 

current and it is obtained directly from the coupling equations. As we will see in the next section when we 

present the Rachidi’s model [7], it is possible to define a distinct excitation current Ie(x). 

In the model of Agrawal et al., the rational behind the writing of the telegrapher’s equations in terms of 

the scattered quantities only is that, whereas the incident fields are arbitrary (they are of course 

constrained to satisfy Maxwell’s equations and the ground boundary conditions), the scattered response is 

TEM, which allows for them to be calculated using TL theory.  

The total voltage can be obtained from the scattered voltage through 

dzzxExVxVxVxV
h e

z
ses ∫−=+=

0
),()()()()(  (20) 

 

The field-to-transmission line coupling equations as derived by Agrawal et al. [6] are given by 

),()(')( hxExILj
dx

xdV e
x

s
=ω+  (21) 

0)(')(
=ω+ xVCj

dx
xdI s  (22) 

 

Note that in this model, only one source term is present (in the first equation) and is simply expressed in 

terms of the exciting electric field tangential to the line conductor ),( hxEe
x .  

The boundary conditions in terms of the scattered voltage and the total current as used in (21) and (22), 

are given by 

∫+−=
h e

zA
s dzzEIZV

0
),0()0()0(  (23) 

∫+=
h e

zB
s dzzLELIZLV

0
),()()(  (24) 

The equivalent circuit representation of this model (equations (21)-(24)) is shown in Fig. 3. For this 

model, the forcing function (the exciting electric field tangential to the line conductor) is represented by 

distributed voltage sources along the line. In accordance with boundary conditions (23) and (24), two 

lumped voltage sources (equal to the line integral of the exciting vertical electric field) are inserted at the 

line terminations. 
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L'dx

C'dx

Z A Z B

I(x) I(x+dx)

VS (x) VS(x+dx) VS(L)V S (0)

dxh)(x,Ee
x

∫ 
h 

0 
e 
z dz z) (0, E ∫

h

0

e
z dz (L, z)   E

0             x                                          x+dx                    L 
 

Figure 3: Equivalent circuit of a lossless single-wire overhead line excited by an 

electromagnetic field. Agrawal et al. model. 

 
It is also interesting to note that this model involves only electric field components of the exciting field 

and the exciting magnetic field does not appear explicitly as a source term in the coupling equations. 

2.3 Rachidi Model 

Another form of coupling equations, equivalent to the Agrawal et al. and to the Taylor et al. models, has 

been derived by Rachidi [7]. In this model, only the exciting magnetic field components appear explicitly 

as forcing functions in the equations: 

0)(')(
=ω+ xILj

dx
xdV s  (25) 

dz
y

zxB
L

xVCj
dx

xdI h e
x

s
∫

∂
∂

=ω+
0

),(
'

1)(')(  (26) 

in which )(xI s  is the so-called scattered current related to the total current by 

)()()( xIxIxI es +=  (27) 

where the excitation current )(xI e  is defined as 

dzzxB
L

xI
h e

y
e ),(

'
1)(

0
∫−=  (28) 

The boundary conditions corresponding to this formulation are 

 

dzzB
LZ

VI
h e

y
A

s ),0(
'

1)0()0(
0
∫+−=  (29) 

dzzLB
LZ

LVLI
h e

y
B

s ),(
'

1)()(
0
∫+=  (30) 

 

The equivalent circuit corresponding to the above equivalent set of coupling equations is shown in Fig. 4. 

Note that the equivalent circuit associated with the Rachidi model could be seen as the dual circuit - in the 

sense of electrical network theory - of the one corresponding to the Agrawal et al. model (Fig. 3). 
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h

0

e
x dz
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∫ 
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e 
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1 ∫

h

0

e
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1

       0             x                                               x+dx           L 

 
Figure 4: Equivalent circuit of a lossless single-wire overhead line excited by an 

electromagnetic field. Rachidi model. 

 

3 Contribution of the Different Electromagnetic Field Components 

Nucci and Rachidi [8] have shown, on the basis of a specific numerical example that, as predicted 

theoretically, the total induced voltage waveforms obtained using the three coupling models presented in 

Sections 2.1, 2.2 and 2.3 are identical. However, the contribution of a given component of the exciting 

electromagnetic field to the total induced voltage and current varies depending on the adopted coupling 

model. Indeed, the three coupling models are different but fully equivalent approaches that predict 

identical results in terms of total voltages and total currents, in spite of the fact that they take into account 

the electromagnetic coupling in different ways. In other words, the three models are different expressions 

of the same equations, cast in terms of different combinations of the various electromagnetic field 

components, which are related through Maxwell’s equations.  

 

4 Inclusion of Losses 

In the calculation of lightning-induced voltages, losses are, in principle, to be taken into account both in 

the wire and in the ground. Losses due to the finite ground conductivity are the most important ones, and 

they affect both the electromagnetic field and the surge propagation along the line [9].  

Let us make reference to the same geometry of Fig. 1, and let us now take into account losses both in the 

wire and in the ground plane. The wire conductivity and relative permittivity will be denoted σw and εrw, 

respectively, and the ground, assumed to be homogeneous, is characterized by its conductivity σg and its 

relative permittivity εrg. The Agrawal et al. coupling equations extended to the present case of a wire 

above an imperfectly conducting ground can be written as (for a step by step derivation see [1]) 

),()(')( hxExIZ
dx

xdV e
x

s
=+  (31) 

0)(')(
=+ xVY

dx
xdI s  (32) 

18



where Z' and Y' are the longitudinal and transverse per-unit-length impedance and admittance, 

respectively, given by [1, 9]5 

 

gw ZZLjZ '''' ++ω=  (33) 

( )
g

g
YCjG

YCjG
Y

'''

'''
'

+ω+

ω+
=  (34) 

in which 

- L', C' and G' are the per-unit-length longitudinal inductance, transverse capacitance and transverse 

conductance, respectively, calculated for a lossless wire above a perfectly conducting ground: 

⎟
⎠
⎞

⎜
⎝
⎛

π
μ

= −
a
hL o 1cosh

2
' ⎟

⎠
⎞

⎜
⎝
⎛

π
μ

≅
a
ho 2ln

2
       for h >> a (35) 

 

( )ah
C o

/cosh

2
'

1−
πε

= ( )ah
o
/2ln

2πε
≅             for h >> a (36) 

'' air CG
oε

σ
=  (37) 

- wZ '  is the per-unit-length internal impedance of the wire; assuming a round wire and an axial 

symmetry for the current, the following expression can be derived for the wire internal impedance (e.g. 

[10]): 

)(I2
)(I

'
1 aa

a
Z

ww
wow

w γσπ
γγ

=              (38) 

where ( )rwowow jj εωε+σωμ=γ  is the propagation constant in the wire and Io and I1 are the 

modified Bessel functions of zero and first order, respectively; 

 

- gZ '  is the per-unit-length ground impedance, which is defined as [11, 12] 

'
),(

' Lj
I

dxzxBj
Z

h s
y

g ω−
∫ω

= ∞−              (39) 

where s
yB  is the y-component of the scattered magnetic induction field. 

Several expressions for the ground impedance have been proposed in the literature (e.g. [13]). Sunde [14] 

derived a general expression for the ground impedance, which is given by  

dx
xx

j
Z

g

hx
o

g ∫
+γ+π

ωμ
=

∞ −

0 22

2e'  (40) 

                                                            
5 In [1] the per unit length transverse conductance has been disregarded. 
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where )( rgogog jj εωε+σωμ=γ  is the propagation constant in the ground. 

As noted in [13], Sunde’s expression (40) is directly connected to the general expressions obtained from 

scattering theory. Indeed, it is shown in [1] that the general expression for the ground impedance derived 

using scattering theory reduces to the Sunde approximation when considering the transmission line 

approximation. Also, the results obtained using (40) are shown to be accurate within the limits of the 

transmission line approximation [1]. 

The general expression (40) is not suitable for a numerical evaluation since it involves an integral over an 

infinitely long interval. Several approximations for the ground impedance of a single-wire line have been 

proposed in the literature (see [11] for a survey). One of the simplest and most accurate was proposed by 

Sunde himself and is given by the following logarithmic function 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

γ

γ+

π
ωμ

≅
h

hj
Z

g

go
g

1
ln

2
'  (41) 

It has been shown [11] that the above logarithmic expression represents an excellent approximation to the 

general expression (40) over the frequency range of interest.  

Finally, gY '  is the so-called ground admittance, given by [1] 

g
g Z

Y g

'
'

2γ
≅  (42) 

5 Case of Multiconductor Lines 

Making reference to the geometry of Fig. 5, the field-to-transmission line coupling equations for the case 

of a multi-wire system along the x-axis above an imperfectly conducting ground and in presence of an 

external electromagnetic excitation are given by [1, 4, 15] 

)],([)](]['[)]([]'[)]([ i
e
xigiij

s hxExIZxILjxV
dx
d

iji =+ω+  (43) 

]0[)]([]'[)]([]'[)]([ =ω++ xVCjxVGxI
dx
d s

ij
s

iji ii  (44) 

in which  

- )]([ xV s
i  and )]([ xIi are frequency-domain vectors of the scattered voltage and the current along the 

line; 

- )],([ i
e
x hxE  is the vector of the exciting electric field tangential to the line conductors; 

- [0] is the zero-matrix (all elements are equal to zero); 
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- ]'[ ijL  is the per-unit-length line inductance matrix. Assuming that the distances between conductors are 

much larger than their radii, the general expression for the mutual inductance between two conductors i 

and j is given by [1] 
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The self inductance for conductor i is given by 
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- ]'[ ijC  is the per-unit-length line capacitance matrix, which can be evaluated directly from the 

inductance matrix using the following expression [1] 

[ ] [ ] 1'' −με= ijooij LC  (47) 

 - ]'[ ijG  is the per-unit-length transverse conductance matrix. The transverse conductance matrix 

elements can be evaluated starting either from the capacitance matrix or the inductance matrix using the 

following relations 

[ ] [ ] [ ] 1''' −μσ=
ε

σ
= ijoairij

o
air

ij LCG  (48) 

In most practical cases, the transverse conductance matrix elements ijG'  are much smaller than ijCj 'ω  

[3] and can therefore be neglected in the computation. 

- Finally, ]'[ ijgZ  is the ground impedance matrix. The general expression for the mutual ground 

impedance between two conductors i and j derived by Sunde is given by [14] 
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In a similar way as for the case of a single-wire line, an accurate logarithmic approximation is proposed 

by Rachidi et al. [15] which is given by 
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Note that in (43) and (44), the terms corresponding to the wire impedance and the so-called ground 

admittance have been neglected. This approximation is valid for typical overhead power lines [9]. 

The boundary conditions for the two line terminations are given by  
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in which [ZA] and [ZB] are the impedance matrices at the two line terminations. 

hi
hj

hkrik
rij rjk

2ai

2aj

2ak

i

j

k

Be

Ee

Ground Plane, σg, εrg
 

Figure 5: Cross-sectional geometry of a multiconductor line in presence of an external 

electromagnetic field. 

 

6 Time-Domain Representation of the Coupling Equations  

A time domain representation of the field-to-transmission line coupling equations is sometimes preferable 

because it allows the straightforward treatment of non linear phenomena as well as the variation in the 

line topology [4]. On the other hand, frequency-dependent parameters, such as the ground impedance, 

need to be represented using convolution integrals. 

The field-to-transmission line coupling equations (43) and (44) can be converted into the time domain to 

obtain the following expressions 

[ ] [ ] ⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡

∂
∂

⊗ξ+⎥⎦
⎤

⎢⎣
⎡

∂
∂

+⎥⎦
⎤

⎢⎣
⎡

∂
∂ ),,(),('),('),( thxEtxi

t
txi

t
Ltxv

x i
e

gij
s

xiijii    (53) 

[ ] [ ] [ ] 0),('),('),( =⎥⎦
⎤

⎢⎣
⎡

∂
∂

+⎥⎦
⎤

⎢⎣
⎡+

∂
∂ txv

t
CtxvGtxi

x
s

ij
s

iji ii  (54) 

in which ⊗  denotes convolution product and the matrix [ ]ijg'ξ  is called the transient ground resistance 

matrix; its elements are defined as 
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The inverse Fourier transforms of the boundary conditions written, for simplicity, for resistive terminal 

loads read 
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where [ ]AR  and [ ]BR  are the matrices of the resistive loads at the two line terminals. 

The general expression for the ground impedance matrix terms in the frequency domain (49) does not 

have an analytical inverse Fourier transform. Thus, the elements of the transient ground resistance matrix 

in the time domain are to be, in general, determined using a numerical inverse Fourier transform 

algorithm. However, analytical expressions have been derived which are shown to be reasonable 

approximations to the numerical values obtained using an inverse FFT [13]. 

7 Frequency-Domain Solutions 

Different approaches can be employed to find solutions to the presented coupling equations. This section 

and Section 8 present some solution methods in the frequency domain and in the time domain, 

respectively.  

To solve the coupling equations in the frequency domain, it is convenient to use Green’s functions that 

relate, as a function of frequency, the individual coupling sources to the scattered or the total voltages and 

currents at any point along the line.  Green’s functions solutions require integration over the length of the 

line, where the distributed sources are located. This approach is the subject of section 7.1.  

Under special conditions, it is possible to obtain more compact solutions or even analytical expressions. 

In particular, if the solutions are required at the load terminations only, it is possible to write the load 

voltages and currents in a compact manner, where the complexity is essentially hidden in the source 

terms. This formulation, termed the BLT equations, will be presented in Section 7.2.   

7.1 Green’s Functions 

The field-to-transmission line coupling equations, together with the boundary conditions, can be solved 

using Green’s functions, which represent the solutions for line current and voltage due to a point voltage 

and/or current source [1]. In this section, we will present the solutions, using the Agrawal at al. model for 

the case of a single-conductor line. Similar solutions can be found for the case of a multiconductor line 

(see, for instance, [1], [3]). 
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Considering a voltage source of unit amplitude at a location xs along the line6, the Green’s functions for 

the current and the voltage along the line read, respectively [1], 
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and 
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where  

- x< represents the smaller of x or xs, and x> represents the larger of x or xs.  

− δ =1 for x > xs and δ = -1 for x < xs. 

- ''YZ=γ  is the complex propagation constant along the transmission line, 

- '/' YZZc =  is the line’s characteristic impedance.  

- ρ1 and ρ2 are the voltage reflection coefficients at the loads of the transmission line given by  
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The solutions in terms of the total line current and scattered voltage can be written as the following 

integrals of the Green’s functions [1] 
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Note that the second and the third terms on the right hand side of (61) and (62) are due to the contribution 

of equivalent lumped sources at the line ends (see Fig. 3). 

The total voltage can be determined from the scattered voltage by adding the contribution from the 

exciting field as 

                                                            
6 Since only distributed series voltage sources are present in the model of Agrawal et al., it is not 
necessary to consider a parallel unitary current source. 
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7.2 BLT Equations 

If we are interested in the transmission line response at its terminal loads, the solutions can be expressed 

in a compact way by using the so-called BLT (Baum, Liu, Tesche)  equations [1], 
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where the source vector is given by 
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 (66) 

 

Note that, in the BLT equations, the solutions are directly given for the total voltage and not for the 

scattered voltage. 

For an arbitrary excitation field, the integrals in Equation (66) cannot be performed analytically. 

However, for the special case of a plane wave excitation field, the integrations can be performed 

analytically and closed-form expressions can be obtained for the load responses. General solutions for 

vertical and horizontal field polarizations are given in [1]. 

8 Time-Domain Solutions 

Several approaches can be used to solve the coupling equations in the time domain ([1, 3]). We will 

present here simple analytical expressions that can be obtained for the case of a lossless line involving 

infinite summations.  

Under the assumption of a lossless line, it is possible to obtain analytical solutions for the transient 

response of a transmission line to an external field excitation [1]. In this case, the propagation constant 

becomes purely imaginary cj /ω=γ  and the characteristic impedance is purely real '/' CLZc = . If we 

assume further that the termination impedances are purely resistive, the reflection coefficients 1ρ  and 
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2ρ , too, become real. For 12
21 <γ−ρρ Le , the denominator in Green’s functions (58) and (59) can be 

expanded to7 
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With the above transformation, it is easy to show that all the frequency dependences in (64) and (65) will 

be in the form ωτ− je , τ  being a constant. Therefore, it is possible to convert the frequency domain 

solutions analytically and to obtain the following transient responses for the load voltages (for details, see 

[1]) 
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where 
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Note that ),,( thxE s
e
x , ),,0( tzE e

z  and ),,( tzLE e
z  are time-domain components of the exciting field. 

9 Conclusions 

We discussed the Transmission Line (TL) theory and its application to the problem of external 

electromagnetic field coupling to transmission lines. After a short discussion on the underlying 

assumptions of the TL theory, the field-to-transmission line coupling equations were derived for the case 

of a single wire line above a perfectly conducting ground. Three different but completely equivalent 

approaches that have been proposed to describe the coupling of electromagnetic field coupling to 

transmission lines were also presented and discussed. The derived equations were extended to deal with 

the presence of losses and multiple conductors. The time-domain representation of field-to-transmission 

line coupling equations which allows a straightforward treatment of non linear phenomena as well as the 

variation in the line topology was also described. Finally, solution methods in frequency domain and time 

domain were presented. 

 

 

 

                                                            
7 For a lossless line with reflection coefficients of magnitude 1, the condition 12

21 =γ−ρρ Le  will be met 
at a number of resonance frequencies causing the solutions to be unbounded.   
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