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_ Abstract

A hybrid technique is developed to allow the scat-
tering from small appendages to be approximately
combined with the scattering from a large body of rev-
olution (BOR). The hybrid technique thus enables the
rotational symmetry of the large BOR to be exploited
to solve the scattering problem with much less com-
putational complexity than a fully three-dimensional
(3-D) solution. The technique combines the finite
element method (FEM) for BOR scattering with the
method of moments (MoM) for small appendages.
The hybrid formulation is discussed in detail, includ-
ing an approximate Green’s function which permits
the decoupling of the solutions from the FEM and the
MoM. Numerical examples are given to show the ap-
plicability and accuracy of the hybrid technique.

1 Introduction

The symmetry present in body of revolution (BOR) electro-
magnetic scattering problems permits an efficient numerical
solution using a two-dimensional (2-D) technique [1]-[5].
However, in many practical problems, the rotational symme-
try is broken by the presence of small appendages (see Fig. 1).
Thus, a three-dimensional (3-D) computational method is re-
quired to rigorously compute the electromagnetic scattering.
Because of the increased computational complexity of a 3-D
method, a hybrid method is developed to allow the scattering
from small appendages to be approximately combined with
the scattering from a large BOR in a manner similar to other
hybrid techniques [6]-[9]. The rotational symmetry can then
be exploited in the computation of the scattering from the
large BOR. The hybrid method makes use of the finite ele-
ment method (FEM) for BOR scattering as described in [4],
and the method of moments (MoM) for small appendages as
described in [8]. The remainder of this paper discusses the
hybridization of the two methods. The formulation is pre-
sented in Section 2, numerical results are given in Section 3,
and concluding remarks are found in Section 4.
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2 Formulation

As mentioned, the two methods to be hybridized are the FEM
for BOR scattering and the MoM for small appendages. The
FEM for BOR scattering makes use of edge-based vector ba-
sis functions to expand the transverse field components and
node-based scalar basis functions to expand the angular com-
ponent. This mixed edge-node formulation eliminates the
problem of spurious modes [4], and it directly computes all
components of the electric field. The coupled azimuth po-
tential formulation, which computes the angular component
of the electric and magnetic fields, is less accurate than the
mixed edge-node formulation [5]. Mesh truncation for the
FEM is accomplished using cylindrical perfectly matched
layer (PML), which is efficient and accurate. PML does not
alter the sparsity of the FEM matrix, and it avoids the wasted
computation required by a spherical mesh boundary for an
elongated geometry. Finally, the FEM equations are solved
using band matrix decomposition techniques. Validation ex-
amples showing the efficiency and accuracy of the method are
found in [4].

The MoM used with the hybrid method is straightfor-
ward and makes use of the well-known Rao-Wilton-Glisson
(RWG) basis functions. The MoM matrix equations encoun-
tered are typically of low dimension and are thus solved using
simple LU-decomposition techniques. If necessary, fast mul-
tipole techniques can be employed for larger problems [10].

The hybrid formulation is best understood by first con-
sidering the computation of the scattering from a BOR with
appendages (see Fig. 1) entirely by the MoM. Assuming that
the entire target consists of perfect conductors, the apphca—
tion of the MoM uses the integral equation

E(r) = E¥(r) — jkomo [ ] Go(r.r') - J)dS' (1)
8

where ko = w,/fip€p is the free-space wavenumber, 7o =
v/ o/ €0 is the impedance of free space, Gy is the free-space
dyadic Green’s function, E! is a known incident electric field,
J is the unknown current on the surface of the target, and S
is the surface of the entire target. When using the MoM, J

1054-4887 © 2000 ACES



14

ACES JOURNAL, VOL. 15, NO. 1, MARCH 2000

Figure 1: Example of a large BOR with small appendages.

is found by discretizing the surface S and applying the ap-
propriate boundary condition on the discretized surface. The
scattered field is then found from

E*(r) = —jkomo f/ Go(r,r') - J(r')dS'. )
S

This 3-D method generates a dense matrix equation; there-
fore, if the geometry is large, the method is computationally
very intensive. Further, if the BOR contains inhomogeneous
materials, the surface integral in Eq. (1) must be replaced with
a volume integral, further increasing the computational com-
plexity.

Because of the unfavorable computational complexity in
solving Eq. (1) with the MoM, an alternate, hybrid method
is sought. In the hybrid method, the MoM is applied to the
small appendages only. Thus, Eq. (1) becomes

E(r) = Biox(r) — koo f ] Gror(r,r') - J()dS' (3)
Sapp

where Ej; represents the incident field on the appendages
in the presence of the BOR, Sap represents the surface of the
appendages, and Gigog represents the dyadic Green’s function
in the presence of the BOR. The solution of Eq. (3) requires
the discretization of Sapp rather than S and thus is much less
computationally intensive. The incident field Egqp is calcu-
lated using the FEM [4], but difficulty is still encountered in
solving Eq. (3) with the MoM because the Green’s function
Ggor 18, in general, unknown. The unknown Green’s func-
tion is needed not only for the solution of Eq. (3), but also to
compute the scattered electric field from

E*(r) = —jkomo f Gror(r,r') - J(x')dS’. (4)
SAW .

The difficulty posed by the unknown Green’s function Ggog
is alleviated in two ways. An approximate Green’s function

is used for the solution of Eq. (3), and an alternate method .

based on the reciprocity theorem is used to compute E*.
There are four steps to using the hybrid method. First, the
FEM described in {4] is used to compute scattering from the
large BOR alone. Then, the result of the first step is used
to compute E}qp, the incident field on the appendages in
the presence of the BOR. Next, the MoM with an approxi-
mate Green’s function is used to solve Eq. (3) for J, the cur-
rent on the appendages. Note that in the usual MoM analy-
sis with RWG basis functions, the unknowns are placed on

edges which are shared by two facets in the mesh. In the hy-
brid method, unknowns must also be placed on the boundary
edges connecting the appendages to the large BOR to account
for current flow from the appendages to the large BOR [8].
Finally, the scattered field generated by J is evaluated using
reciprocity and added to the scattered field from the BOR,
which is found in the first step. The result is an approxi-
mation to the scattered field from the entire structure. In the
remainder of this section, the construction of the approximate
Green’s function and the computation of the scattered field by
reciprocity are each discussed in turn.

2.1 Approximate Green’s function

The approximate Green'’s function used to solve Eq. (3) is de-
veloped by approximating the BOR on which the appendages
reside as a long cylinder. The approximate Green’s function
must model the significant field interactions between points
on the appendages but may neglect other, less significant in-
teractions. The interactions are classified into four types. The
first type of interaction is the direct path interaction between
two points, and examples of this type of interaction are illus-
trated in Fig. 2a. The second type of interaction involves a
reflection by the large BOR, and examples are illustrated in
Fig. 2b. The third interaction type is the surface wave interac-
tion which is illustrated in Fig. 2c. All other interactions are
classified as the fourth type. Most of these are complex inter-
actions which are not modeled by the cylinder approximation
to the BOR, and most are negligible.

If the line of sight between two points on the appendages
is unobstructed by the cylinder approximation to the large
BOR, the first two interaction types can be computed using
the haif-space Green’s function. This is done by finding the
reflection point on the cylinder and computing the tangent
plane to the cylinder at that point. If the line of sight be-
tween the two appendage points is obstructed by the cylinder,
both of the first two interactions are zero. For many prob-
lems, modeling the first two interactions produces acceptable
results. If better accuracy is desired, the third type of interac-
tion can be computed using the geometrical theory of diffrac-
tion (GTD) [11]. Also, if the appendages are near the end
of the BOR, it may be necessary to compute an interaction
based on edge diffraction from the nearby end. Note that the
effect of neglecting some of the interactions is to neglect the
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Figure 2: Interactions between appendage points.



16

corresponding field which is scattered by the appendages, re-
flected or diffracted back to the appendages, and scattered by
the appendages again [6]-[9].

In all of the examples presented in this paper, the approx-
imate Green’s function models the first two interaction types
(Fig. 2a-b) and neglects all other interactions. To compute
values of the approximate Green’s function, the geometry of
the protrusions is first examined, and the radius of the infinite
cylinder used to approximate the large BOR is found from the
points where the protrusions attach to the BOR. Given any
two points on the protrusions, the value of the Green’s func-
tion is then computed in a four step process. First, the direct
(line of sight) path between the two points is computed. If
this path is blocked by the infinite cylinder, there is no line of
sight interaction. Next, the interaction involving a reflection
by the infinite cylinder is considered. The reflection point is
found using Snell’s law. Note that it can be shown that if there
is no direct interaction, there is also no reflected interaction.
Thus, if there is no direct path, the value of the approximate
Green'’s function between the two points is zero. If there is
a direct path, the third step is the application of a coordinate
translation and rotation such that in the transformed space, the
reflection point is on the z = ( plane and the normal to the
cylinder at the reflection point is in the 2 direction. Finally,
the half-space Green’'s function is applied in the transformed
space to compute the value of the approximate Green’s func-
tion between the two given points.

2.2 Computation of scattered field

While the use of the approximate Green’s function allows
Eq. (3) to be solved for J, the approximation is not accurate
when computing E* from Eq. (4). Therefore, an alternate
method of computing E® is used. The alternate method is
based on the reciprocity theorem. Consider a short dipole,
located at point r and oriented in the @ direction. From the
reciprocity theorem,
e—Jkor
B*(r) -4 = —kom p— [[ Bhou()-3@)as’

Sapp

where Efp is the field radiated by the dipole in the pres-
ence of the large BOR. Recall that this field can be computed
by the FEM. In fact, when backscattering is being computed,
Efop is the same as E§p that is used in Eq. (3). Thus, all
components needed to compute E*® using Eq. (5) are known.

3 Numerical Results

Several numerical results are presented to show the validity
and capability of the hybrid technique. In all of the results
presented, the direct and reflected interactions are modeled
by the approximate Green’s function, and all other interac-
tions are neglected.
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First, the validity of the technique is tested by comput-
ing the scattering from metallic cylinders with capped ends
and one, two, or four wings. The scattering is compared with
computations from the Fast Illinois Solver Code (FISC) [10],
which is an MoM program that uses a multilevel fast multi-
pole algorithm to speed up the matrix solution. The cylinders
considered have a radius of 1.25) and height of 5, where A
is the free-space electromagnetic wavelength. The cap at one
end of the cylinder is pointed, while the cap at the other end
is rounded. The attached wings are 1A by 0.5 by 0.025\.

The monostatic RCS as a function of azimuth angle from
the capped cylinder with one wing is shown in Fig. 3. The
agreement between FISC and the hybrid method is very good.
The scattering from the cylinder without the wing is flat as a
function of azimuth angle, so it can be seen that the wing has
added approximately 5 dB peak-to-peak swing to the RCS
in the VV-polarized case and about 4 dB peak-to-peak swing
in the HH-polarized case. Although adding a second wing
presents the possibility of more complex interactions, the re-
sults shown in Fig. 4 continue to show good agreement be-
tween FISC and the hybrid method. The peak-to-peak varia-
tion in the RCS is about 4.5 dB in the VV-polarized case and
almost 6 dB in the HH-polarized case when two wings are
present. The scattering from the cylinder with four wings is
shown in Fig. 5, where the agreement between FISC and the
hybrid method remains very good. With four wings present,
the peak-to-peak swing in the RCS is about 5 dB in the VV-
polarized case and about 6 dB in the HH-polarized case.

To further illustrate the capability of the hybrid method,
two more computed results are presented. Both of these
results involve 1-GHz scattering from a missile with ap-
pendages. The missile is 12.5 m (41.7A) long and has a radius
of 0.625 m (2.1)). For the first case, a 3-cm (0.1\) by 3-cm
(0.1)) by 8.125-m (27.7)) ridge is located on the missile at
azimuth angle 0°, and computed results for an azimuth scan
and for an elevation scan are presented in Fig. 6. Note that in
the azimuth scan, the ridge causes the scattering to vary over a
3.5-dB range in the VV-polarized case and over a 3-dB range
in the HH-polarized case while the missile alone, because of
its rotational symmetry, has a constant RCS as a function of
azimuth angle. In the second case, two fins are located on the
missile at azimuth angles 90° and —90°. The fins are trape-
zoidal in shape with a height of 0.375 m (1.25), bases of
1 m (3.33)) and 0.5 m (1.67]), and a thickness of 0.01 m
(0.03)). The scattering is shown both for an azimuth cut and
for an elevation cut in Fig. 7. In the azimuth cut, the scatter-
ing has changed from flat for the missile alone to a function
with a 3 dB peak-to-peak variation in the VV-polarized case
and a 2 dB peak-to-peak variation in the HH-polarized case.
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Figure 3: RCS of a metallic capped cylinder with a wing. The cylinder has a radius of 1.25) and height of 5, and the wing is
1A by 0.5A by 0.025A.
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Figure 4: RCS of a metallic capped cylinder with two wings. The cylinder has a radius of 1.25) and height of 5, and the
wings are 1A by 0.5 by 0.025A.
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Figure 7: RCS of a missile with two fins at 1 GHz. The missile is 12.5 m (41.7)) long and has a radius of 0.625 m (2.1A).
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4 Summary

The hybrid method is a useful extension of the FEM/BOR
capability described in [4]). While rigorous computation of
scattering from a BOR with appendages requires a 3-D com-
putational method, the hybrid method separates the BOR part
of the problem from the appendages. The rotational sym-
metry of the BOR part of the problem can then be exploited
for computational efficiency while only the appendage part,
which is typically much smaller than the BOR part, requires
a 3-D method. Numerical results show the impact of the ap-
pendages on the scattering from the entire structure and verify
the validity and capability of the hybrid method.
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