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Abstract— The development of efficient and effective
algorithms for sparse matrix bandwidth minimization is
of paramount importance for the enhancement of many
numerical techniques for the analysis of microwave cir-
cuits. The task of bandwidth reduction is computation-
ally hard. Several approaches have already been pro-
posed, but the problem is still open.

In this paper, a genetic solution is proposed. The ge-
netic algorithm is described, as well as its main character-
istics (choice of chromosomes, genetic operations, etc.).
Results demonstrate that the advantages of the genetic
approach vanish because of the huge computational ef-
fort required. This severe limitation is removed thanks
to the natural amenability of genetic algorithms to a par-
allel implementation. Results in the paper prove that a
parallel genetic approach is a state-of-the-art solution to
the problem of bandwidth reduction of sparse matrices
encountered in electromagnetic numerical methods.

I. INTRODUCTION

The use of numerical methods is nowadays the most
typical way to approach the design of complex mi-
crowave circuits with a high degree of accuracy, with
a low cost and a substantial reduction of times for trim-
ming and tuning. The solution of a linear system of
equations

Az =B | (1)

is quite often the computational core of numerical meth-
ods [1]. In some cases, the system (1) is solved many
times, with different right-hand-sides B and the same
matrix A, and generally the matrix properties affecting
the efficiency of the solution are

» its pattern

e its condition number

In many MW applications, both items have a pre-
dictable behaviour. For instance, some numerical ap-
proaches typically produce sparse matrices (such as in
the case of Mode-matching [1], or Finite Element Meth-
ods [2]), with a distribution of non-zero elements which
can be in some cases predicted. Other approaches,
such as the discretization with the Method of Moments
(MoM) of mixed-potential integral equations (MPIE) for
planar circuits, generate impedance matrices which can
be turned, with suitable thresholding actions over its en-
tries, into sparse matrices with a typical blocked-banded
pattern. The use of wavelet expansions, for instance
in conjunction with a MoM discretization of the solv-
ing equations, can improve the condition number (when

orthogonal wavelets are used) and increase the matrix
sparsity.

Several efforts have been produced to suitably treat
the matrix properties, so that efficient linear algebra
can be performed inside electromagnetic (EM) codes:
the use of appropriate solvers (3], [4], [5], or analyti-
cal/numerical approaches for reducing the filling-in of
the moment matrix [6], or the coupled use of appropri-
ate solvers with high-performance architectures (7], just
to mention some recent works.

It has been demonstrated [8] that, in many cases, the
most robust and efficient strategy is based on an ap-
propriate numbering of the problem’s unknowns (z in
(1)), so that the system is reduced to a banded sys-
tem with reduced bandwidth. This allows the use of a
banded direct factorize-and-solve algorithm, with high
efficiency (its complexity depends quadratically on the
matrix bandwidth [9]).

As a matter of fact, the efficiency and effectiveness of
algorithms for sparse matrix bandwidth reduction is cru-
cial for the high-performance analysis of MW circuits.
The identification of an optimum permutation matrix P
so that

(PAPT)(Pz) = PB (2)

is a banded system with minimum bandwidth is an NP-
hard task [10], and amenable for a possible solution with
a genetic algorithm.

In this paper, we propose a genetic method for the
reduction of bandwidth of sparse matrices attained in
different MW numerical methods. In Section II, we de-
scribe the problem and its general issues. In Section III
we describe the proposed genetic solution. In Section IV
we compare its results with other bandwidth reducers.
In Section V we briefly discuss a parallel version of the
genetic approach, and finally draw some conclusions.

II. THE PROBLEM OF BANDWIDTH REDUCTION: WHY
USING GENETIC ALGORITHMS

Referring to equation (1), the problem is the follow-
ing: consider the bandwidth 8 of the A matrix,

B =macli - j| Vi,j|ay#0 (3)

A sparse matrix of dimension N with symmetrical zero-
non-zero-pattern can be represented by a graph, as in
Fig. 1, once that each row/column is numbered. A
vector I = {m,m2,...mn} is a possible numbering, and



is represented by a permutation of the initial numbering
{1,2,....N}. The solution of the problem is represented
by an optimum IIop; so that

IB(Hopt) = mzn(ﬂ(n)) Vil (4)

In case of non symmetrical zero-non-zero pattern, this
graph representation has some troubles, and is, as far as
we know today, substantially useless.

The solutions to the bandwidth minimization problem
proposed in the literature till now can be divided into
two main classes:

« Solutions based on a graph representation

o Alternative solutions
The most important approach based on graph represen-
tation is the one proposed by Cuthill and McKee (CM)
in 1969 [11]. They proposed some efficient heuristics
to identify IIope, by introducing: 1) a partitioning of the
graph into levels 2) new vertices at a maximum distance
3) heuristical rules for cutting some edges, and creating
new ones (see Fig. 1). Several upgrades of the CM ap-
proach have been proposed. The one by Gibbs, Poole
and Stockmeyer (GPS) [12] is extremely efficient, even
though it has recently been overcome by the one by Es-
posito, Malucelli and Tarricone (EMT) (8], [13], which
has been defined as the current state-of-the-art for the
bandwidth minimization of matrices generated by EM
codes [14].
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0011
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V2

Fig. 1. A sparse matrix with symmetrical zero-non-zero pattern
can be represented by a graph, once rows/columns have been
numbered. A level partitioning can be identified on the graph,
once two vertices V1 and V2 have been selected. A permu-
tation or renumbering of rows/columns modifies the matrix
pattern and the graph layout, with effects on the matrix band-
width.

The alternative approaches proposed till now are
based on combinatorial techniques based on global opti-
mization. Examples are the use of simulated-annealing
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(SA) [15] and of Tabu-Search (TS) [16]. In both cases,
heuristical laws are introduced, in conjunction with an
appropriate use of data structures to take into account
the evolution of the search, so that the risk of being
trapped into local optima is reduced.

Despite the strong efforts performed till now, several
problems are still open. For instance, CM and GPS
have severe troubles with some pathological cases aris-
ing from FEM simulation of boxed microstrip lines, or
MM analysis of rectangular waveguide circuits [1], [17].
Moreover, they cannot cope with the problem of non-
symmetrical structures of matrices encountered, for in-
stance, in some cases when wavelet expansions are used
with the MoM [4]. The EMT approach has solved these
problems, but its performance on non-symmetrical ma-
trices can be enhanced. As for SA and TS approaches,
they are quite appropriate to overcome the problem of
non-symmetrical patterns, but their numerical weight is
still too much to make their use appealing in routinely-
used CAD tools.

On such bases, an experimentation of a genetic ap-
proach (GA) to the problem is quite interesting. In
fact, especially for large matrices, the use of appropri-
ate global search strategies, with the possibility of em-
bedding complex heuristical laws, is essential for find-
ing satisfactory solutions. Moreover, a GA is natu-
rally amenable to represent non-symmetrical problems,
with a consequent advantage with respect to graph ap-
proaches. It is also easier to implement than graph ap-
proaches. Finally, its expectable drawback, i.e. its nu-
merical weight, can easily be circumvented by a migra-
tion to parallel platforms (GA is intrinsically amenable
to a parallel design).

III. THE GENETIC SOLUTION

Genetic algorithms are nowadays commonly used in
the design and optimization of EM circuits [18]. We
address to the pioneeristic works of Goldberg [19] and
Holland [20] for the basic concepts, and describe here
the main features of the GA proposed here.

A. Choice of chromosomes

As put forwards in (4), the problem unknown is a vec-
tor of natural numbers called II,,;. Consequently, it is
natural to define chromosomes as strings of natural num-
bers, of the same dimension of A matrix. This choice
has a major drawback. In fact, during the usual op-
erations over chromosomes, for instance when perform-
ing cross-overs, we risk the generation of non-feasible
chromosomes, such as permutations of IT with repeated
numbers. On the other side, cross-over, as quite well-
known, is of fundamental importance for the efficiency
and effectiveness of the GA. Therefore, in order to avoid
the problems of repeated numbers after crossing-over, a
set of data structures, and dedicated algorithms, have
been designed. The data structures are: 1) the cur-
rent permutation vector II; 2) an auxiliary vector Auz
initialized with a certain permutation without repeated
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numbers; 3) a vector NewlIl with the generated permu-
tation. It must be stressed that NewII can host permu-
tations with repeated natural numbers. The dedicated
algorithms allow the generation of permutations with
repeated numbers, and their transformation into per-
mutations without repeated numbers, so that a biuni-
vocal correspondence is guaranteed between each Newll
instance and each feasible II instance.

Before describing the algorithms, we introduce a func-
tion foundpos(II(1)), which finds out the position inside
Auz of the first entry II(1) of array II. For instance, if
we have IT = {3,1,5,4,2}, and Auz = {1,2,3,4,5},
foundpos(II(1)) = foundpos(3) = 3. We also introduce
a function delete(arr(s)), which deletes the entry 7 from
array arr. For instance, if we have Auz = {1,2,3,4,5},
delete( Auz(3)) turns Auz into {1,2, 4,5} (its dimension
has been reduced by one).

The algorithm for generating a modified permutation
with repeated numbers is now described. The joint use
of Newll and Auz data structures guarantees a biunivo-
cal correspondence between each instance of NewIl and
one instance of II (i.e. a permutation vector without
repeated numbers):
for i=1,N

Newll(z) = foundpos(II(1))-1

delete(Aux(NewII(:)+1))

delete(II(1))
end

The implementation of this algorithms results, for in-
stance, in the following steps for a given current permu-
tation and auxiliary permutation:

11 Auz | Newll
31542 | 12345 2
1542 | 245 20
p) 24 202
2 p) 2021
20210

As apparent, the final Newll vector has some re-
peated numbers. Its use, in conjunction with Auz, is
sufficient to convert it into the corresponding II. The
conversion is performed by simply reverting the algo-
rithm to generate the modified permutation.

B. Initial Population

The proposed implementation of the GA has been
proved to be nearly unsensitive to the chosen starting
population, provided that its cardinality is suitable with
respect to the size of the problem (the matrix dimension
N).

As already observed for different combinatorial
heuristics [21], no deterministic laws have been deter-
mined to describe the convergence of the GA with re-
spect to the population generation, as well as to its car-
dinality. In the current implementation, we generate a
starting population by random extraction of permuta-
tion vectors from the starting choice IT = {1,2,....N}.

C. Cost function

The choice of a suitable cost function is of paramount
importance for the convergence of a combinatorial opti-
mization task. The bandwidth minimization can be per-
formed with different choices of the cost function. One
of the most important issues is the selection of a cost
function so that as few different solutions II as possible
have equal cost, and risk to be considered as equivalent.
For instance, the very trivial choice of a cost function

c(IT) = (1) ()

where the bandwidth corresponding to a certain permu-
tation vector is the cost, is not satisfactory at all. An
enhancement can be the following choice:

c(IT) = w1 B(TT) + w2 N (6)

where N is the number of rows/columns that have
maximum bandwidth 8, whilst w; and wq are tunable
weights. Of course, in case of unsymmetrical patterns,
the same function can be transformed into

c(I) = (w128 (1) +war Npr) + (wi1v By (IT) +w2UNﬁ((.7f,§

where subscripts U and L correspond to "upper” and
"lower” part of the matrix (with respect to the main
diagonal). The three proposed choices are still not com-
pletely satisfactory: even in the case of (6) or (7) there
are many different permutation vectors corresponding
to the same value of ¢(II).

Some new ideas have been proposed in [15], and sug-
gest the following solution to the problem of a suitable
cost function:

(M) =) F(N, i - jl) (8)
i’j
where N is the matrix size, and F is the following func-
tion:
elsewhere

&)

.. N
FN=30 = { (N = ji= 30 - (FQ¥ i 51— 1)

The choice of (8) guarantees an adequate partitioning
of the searching space, with a substantial reduction of
the risk of equivalence among different permutations.
This is the cost function implemented in the proposed
GA.

D. Convergence Criterion

The sparse matrix bandwidth reduction is typically
used in order to improve the solution time of lin-
ear systems by using banded solvers, which have a
quadratic complexity with respect to the matrix band-
width. Therefore, it is possible to evaluate the effec-
tiveness of each iteration by comparing the time needed
for a single iteration, with respect to the induced re-
duction of the solution time. This practical parameter,
averaged over a certain number of iterations, is appro-
priate to evaluate when the bandwidth reduction should
be stopped.



E. Genetic Operators

We use three operators: selection, crossover and mu-
tation.

E.1 Selection

We adopt the most typical way of performing selec-
tion, i.e. on a cost-proportional basis. This means that
N, elements of the population are randomly chosen,
and the one with the lowest cost is selected.

E.2 Crossover

The basic idea is of generating hybrid chromosomes,
by crossing together two selected chromosomes. This
idea is here coupled with another empirical observation:
for each matrix pattern, some rows/columns are more
effective than others when performing the permutation.
Therefore, when the optimum or quasi-optimum posi-
tion is found for them, the corresponding information
should be preserved in the permutation vector. The nat-
ural translation of this idea is the principle of building-
blocks, further described.

Now we quickly describe when and how crossover is
to be performed.

o When crossover is to be performed: this is decided
following a probabilistic approach [22]. Two vectors
from the old population are selected in accordance
with the selection operator. One random number
p1 is generated. The two vectors are inserted into
the new population if p; > 1—p.. A second random
number p, is generated, and crossover performed if
p2 > pe. The value of p. is a heuristically tunable
parameter.

« How crossover is performed: two random numbers
are generated to identify the beginning and the end
of the crossing site. Two new chromosomes are
attained by exchanging the crossing sites between
the two vectors. For instance, if we indicate with
n,; and ny the two random numbers, and with IT;
and II; the two permutation vectors, the entries
O;(ny,---,ne) are swapped with II(ny, - - -,n2).
In accordance with the principle of preserving build-
ing blocks [23], we know that a purely random
choice of the crossing site is often unsatisfactory.
Therefore, by using some statistical data about
the role of each element of the permutation vec-
tor I during the search, some positions inside the
chromosome are prevented from destruction during
crossover. The protected positions typically corre-
spond to rows/columns of the matrix giving a low
contribution to the value of the cost function (8).
For instance, referring to the previous example, if a
position within the range (ni,---,n2) is ranked as
a building-block, no swapping is performed on it.
Of course, when performing crossover, the data
structures Auz and NewlIl must be suitably man-
aged, so that the modified permutation can be
turned into a permutation vector IT without rep-
etitions. The algorithm mentioned in Section III.A
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is still valid, and must only be adjusted to cope
with the problem of beginning and ending point of
the crossing site. '

E.3 Mutation

Three kinds of mutations are performed: swap, left
and right shift. One tunable parameter p,, is chosen,
and two random numbers pos; and pos; generated. A
new random number is generated. If it is larger than pp,,
genes pos; and posz in the chromosome are swapped,
and a left and right shift is performed over the partition
of vector starting at pos; and ending at pos,.

When mutation is performed, the principle of pre-
serving building blocks is not respected. Moreover, a
distance-dependent mutation is implemented [24]. In
fact, it is well known that, especially when small popu-
lations of chromosomes are used, the use of a fixed value
of p,» does not prevent from the premature convergence
over local minima. Therefore, the value of p,, is dy-
namically adapted, in order to avoid being trapped into
unsatisfactory solutions.

IV. RESULTS ON SERIAL PLATFORMS

We propose two types of results. The former one
refers to matrices encountered in the analysis of 1) rect-
angular waveguides inhomogeneously filled with dielec-
tric (Fig. 2) or 2) boxed microstrip lines (Fig. 3). A
revisited version of a public-domain FEM code, called
EMAPI, based on a variational scalar formulation [25],
is used.

Fig. 2. A rectangular waveguide inhomogeneously filled with
dielectric. Different dielectrics and geometries have been cho-
sen. One of the examples is shown in the figure.

The latter refers to matrices generated during the
analysis of microstrip circuits with an MPIE-MoM for-
mulation [26]. In all the proposed cases, the perfor-
mance of the GA is compared with a commercial CM
approach available in MATLAB, a GPS and TS solu-
tion implemented by the author, and with the previously
mentioned EMT solution described in (8], [13].

A. FEM Analysis

Table I proposes results for problems such as the one
in Fig. 2. A standard WR90 is studied in the range 8-
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Fig. 3. A boxed microstrip line. Different cases with different
dimensions and dielectric layers have been simulated.

12GHz, and the electric field distribution evaluated with
different dielectric fillings.

N [In. B[GPS]CM [ EMT [ TS [ GA
284 92 115 | 74 62 62 | 62
374 | 107 | 122 | 102 72 106 | 96
639 | 151 178 | 172 87 [102 ] 91
1231 | 251 | 247 | 242 | 199 | 233 | 212

Table I: Results for different matrices generated during
a FEM analysis of inhomogeneously filled rectangular
waveguides. Matrix size N, initial bandwidth 8, and

final bandwidth attained with different approaches are

reported.

As apparent from Tab. I, GPS and CM have a critical
behaviour with some pathological cases. The EMT ap-
proach is the more robust, even though the GA is quite
effective as well. An essential issue is the time needed
to achieve the solution. It is reported in Tab.Il, on a
Pentium 166MHz:

N |GPS |[CM | EMT | 1S | GA |

284 | 0.218 | 0.22 | 0.215 6.9 7.2
374 | 0.74 | 0.87 | 0.560 19.1 18.9
639 24 | 3.2 | 1.44 498 480

1231 | 188 | 16 | 3.74

Table II: Times to find out the optimum II for the
cases in Tab. I

gt. 10000

Tab. II clearly demonstrates the real limitation of
the GA: it is quite effective, but too computationally
heavy. For instance, if we consider that the FEM gen-
erates banded matrices, we can compare the standard
use of banded direct solver (BDS) without bandwidth
reduction (i.e. what EMAPI routinely does), with the
case of a banded direct solver (BDS) used after band-
width reduction. The time (in seconds) needed for a 100
frequency-point analysis is reported in Tab. III:

g.t. 10000

"N [ EMAPI | EMT+DBS | GA+DBS |
374 | 2648 186.1 242

639 | 7984 395.2 961
1237 [ 12270 | 1376 g.t. 30000

Table III: Times in seconds to analize at 100 frequency
points some circuits with the FEM-code EMAP1, with
respect to the use of bandwidth reduction in
conjunction with a direct banded solver (DBS).

It is easily seen that when the problem dimension
grows up the numerical complexity of the GA becomes a
substantial limitation, whilst the EMT approach is quite
advantageous. Similar results are attained in the case
of circuits such as the one in Fig. 3. Table IV reports
some results, with the same scheme of Tab. III:

N [ EMAPI [ EMT+DBS | GA+DBS
484 | 284.8 24.6 212.1
720 | 737.5 162.7 13211

Table IV: Times in seconds to analize at 100 frequency
points some circuits with the FEM-code EMAP1, with
respect to the use of bandwidth reduction in
conjunction with a direct banded solver (DBS).

The matrices generated in the case of boxed mi-
crostrip lines have a smaller bandwidth with respect to
the case of inhomogeneously waveguides, and this ex-
plains the reduced simulation times.

B. MPIE/MoM Analysis

We refer to a MPIE formulation using closed-form
spatial-domain Green’s functions, discretized with a
Galerkin MoM with roof-top functions. As described
in [26], the analysis of microstrip circuits with this ap-
proach originally generates dense impedance matrices;
anyway, a thresholding action can be performed over the
matrix, so that all entries smaller than a certain value
are zeroed. This can imply a very small approximation
error (around 1%) provided that a suitable threshold is
identified. In the large majority of cases, a value of 10~¢
with respect to the largest entry in the matrix is appro-
priate, and a matrix sparsity between 70 and 85 % is
achieved.

Referring to the circuits of Fig. 4, we report results
in Tab V, where we compare times for the analysis of
the circuit by using an iterative sparse solver (ISS), with
respect to the use of different bandwidth reduction ap-
proaches in conjunction with DBS. Both the ISS and
the DBS come from the same public domain library (La-
pack). A dispersion curve of 100 frequency point is eval-
uated for both circuits. The single-stub circuit operates
in the range 7.5-12 GHz, the double stub between 8 and
18 GHz.



92

N ISS | EMT+DBS | GA+DBS
280 | 113.4 23.6 57.1
448 | 312.5 84.1 412

Table V: Times in seconds to analize at 100 frequency

points the two circuits in Fig. 4 with the MPIE/MoM

with ISS, with respect to the use of MPIE/MoM with
bandwidth reduction in conjunction with a DBS.

Also in this case, it is appareént that the performance
of the GA is less attractive than the EMT’s one, and,
above all, it decreases when enlarging the size of the

problem.

wl

ELsE

%
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Therefore, a parallel version of the GA, called PGA,
has been implemented using Parallel Virtual Machine
(PVM) programming interface, on an IBM SP2 with
8 nodes. The PGA performs a parallel generation of
a farm of initial populations, and periodically collects
the results of the evolutionary search from each popu-
lation, so that cross-over and mutations are performed
over chromosomes from different populations, with an
increase of the level of hybridization. This can be de-
scribed as a first coarse level of parallelism. A second
fine level of parallelism is represented by the evaluation
of the cost function, which is performed in parallel. This
task is quite heavy, especially when large problems are
attacked, and can be performed in parallel with a suit-
able block-decomposition of both the matrix and the
permutation vector II.

A. Results with PGA

In Tab. VI results of PGA for the matrices encoun-
tered in the FEM analysis are reported (see Tab. I).
The achieved bandwidth, and the computing time when
using 8 SP2 nodes, are reported.

d$ < w2

Fig. 4. The two circuits analized with the MPIE/MoM. For
the single stub & = 10.65, d=1.27mm, wl=w2=1.44mm,
L=17.28mm, Ls=2.16mm. For the double stub &, = 9.9,
d=10mm, w1=9.2mm, w2=23mm, L=110.6mm.

V. PARALLEL GA SOLUTION

The recent progresses in parallel computing, and
above all the development of low-cost and efficient par-
allel platforms, such as clusters of PCs, can change the

perspective opened by the previous observations. As

apparent in previous sections, the several advantages of
the GA, i.e. its easy implementation, its amenability to
cope with pathological cases, as well as to deal with non-
symmetrical or unstructured patterns, are ineffectual,
due to its large numerical complexity. Luckily, the na-
ture of GA renders it intrinsically amenable to a parallel
design. The large majority of tasks inside it, such as the
generation of a farm of initial populations and the evo-
_ lution of each population, can be performed in parallel

on different processors. The percentage of potentially-
parallel tasks, with respect to the overall serial work,
ranges between 80 and 95 %, depending on the problem
size (II dimension) and the selection of some heuristical
parameters, such as p,, and p..

N | In. B | Opt. B | Time (s)
284 92 54 14
374 | 107 66 2.5
639 | 151 74 54
1231 | 251 151 1123

Table VI: Results for PGA on matrices from FEM
analysis of MW circuits. Matrix size N, initial
bandwidth B, and final bandwidth are reported.

As shown in Tab. VI, computing times are reduced,
and the effectiveness of bandwidth reduction is im-
proved. The use of PGA results in the times reported
in Tab. VII for a 100-frequency-point dispersion curve

of circuits as in Fig. 2 (compare with Tab. III):

N [ EMAPI [ EMT+DBS | PGA+DBS
374 264.8 186.1 193.1
639 798.4 395.2 422.7
1231 | 12270 1376 1642

Table VII: Times in seconds to analize at 100 frequency
points some circuits with the FEM-code EMAP1, with
respect to the use of parallel bandwidth reduction in
conjunction with a direct banded solver (DBS).

As demonstrated in Tab. VII, the performance
of PGA turns the genetic approach into an effective
method to reduce the time for the numerical analysis
of MW circuits, thanks to the substantial decrease of
bandwidth reduction time, as well as to the improve-
ment in the effectiveness of the search. PGA'’s efficiency
is similar to the state-of-the-art EMT’s one. Speed-ups
in the simulation times up to a factor 8 have been ob-
served.
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VI. CONCLUSIONS

A genetic solution (GA) to the problem of sparse ma-
trix bandwidth minimization has been proposed. The
main characteristics of the approach have been de-
scribed, with respect to the choice of chromosomes, ge-
netic operators, and other heuristical parameters. A
suite of functions has been developed so that the cross-
over can be performed without risks of non-feasible chro-
mosome generation. Results have proved that the GA,
despite of its several attractive features (simplicity, flex-
ibility, amenability to global optimization), is not effi-
cient enough to be considered as an appropriate tool for
CAD environments of MW circuits. Thanks to its natu-
ral parallelism, the approach has been migrated towards
parallel platforms (PGA), with a substantial increase in
its efficency and effectiveness, which are similar to those
of state-of-the-art bandwidth reducers based on graph
theory (EMT).

On the other side, the GA and PGA are rather simple
to be implemented, whilst EMT is complex and deserves
a deep knowledge of graph theory. Furthermore, it is
reasonable to expect a substantial increase in the scala-
bility and efficiency of clusters of PCs in the next future,
thanks to the continuous evolution of switch and fast-
ethernet technologies. As a matter of fact, with very
affordable costs, parallel environments for the analysis
of EM circuits can be predicted as the natural future
infrastructure for MW CAD of large and complex cir-
cuits. In conclusions, the opening of such new perspec-
tives turns the genetic approach into a candidate solu-
tion to improve the efficiency of numerical methods for
EM circuits via sparse matrix bandwidth reduction.
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