ACES JOURNAL, VOL. 15, NO. 2, JULY 2000 SI: GENETIC ALGORITHMS

Optimum Population Size and Mutation Rate for a Simple Real Genetic
Algorithm that Optimizes Array Factors

Randy L. Haupt
Utah State University
Electrical and Computer Engineering
4120 Old Main Hill
Logan, UT 84322-4120
haupt@ieee.org
435-797-2841

abstract The population size and mutation rate of a
genetic algorithm have great influence upon the speed
of convergence. Most genetic algorithm enthusiasts use
a large population size and low mutation rate due to the
recommendations of several early studies. These studies
were somewhat limited. This paper presents results that
show a small population size and high mutation rate
are actually better for many problems.

1. Parameter Selection for a Simple Genetic
Algorithm

Applications of a genetic algorithm (GA) to the
optimization of electromagnetics problems started in
the early 1990s [1], [2] and have exploded since then.
The optimization of array patterns using a GA is
particularly attractive for the synthesis of patterns that
have desirable characteristics. Most of the work has
followed traditional GA philosophy when choosing the
population size and mutation rate of the GA: a
relatively large population and a low mutation rate is
used. The choice of population size and mutation rate
can vary the run time of the GA by several orders of
magnitude.

The first intensive study of GA parameters was done by
De Jong [3] and is nicely summarized in Goldberg [4].
De Jong looked at both on-line and off-line
performance of the GAs. On-line performance is an
average of all costs up to the present generation. Off-
line performance is the best cost found up to the present
generation. He tested five algorithms of varying levels
of complexity on five different cost functions while
varying mutation rate, population size, crossover rate,
and the generation. De Jong found that a small
population size improved initial performance while
large population size improved long-term performance.
A higher mutation rate was good for off-line
performance while low mutation rate was best for on-
line performance. The highest mutation rate used was
0.1.

Grefenstette [5] used a meta GA to optimize the on-line

Sue Ellen Haupt
Utah State University
Mechanical and Aerospace Engineering
4130 Old Main Hill
Logan, UT 84322-4130
Suehaupt@helios.ece.usu.edu
435-797-2952

and off-line performance of GAs based on varying six
algorithm parameters: population size, crossover rate,
mutation rate, scaling window, and whether or not
elitism was used. A cost function evaluation for the
meta GA consisted of a GA running until 5000 cost
function evaluations were performed on one of the De
Jong test functions and normalizing the result relative to
that of a random search algorithm. Each GA in the
population evaluated each of the De Jong test functions.
The second step in this experiment took the 20 best
GAs found by the meta GA and let them tackle each of
the five test functions for five independent runs. The
best GA for on-line performance had a population size
of 30 and mutation rate of 0.01. The best off-line GA
had a population size of 80 and mutation rate of 0.01.
He concluded that good results could be obtained with a
wide selection of GA parameters.

Schaffer, et. al. reported results on optimum parameter
settings for a binary GA using a Gray code [6]. This
approach added five more cost functions to the De Jong
test function suite. They had discrete sets of parameter
values (population size=10, 20, 30, 50, 100, and 200;
mutation rate = 0.001, 0.002, 0.005, 0.01, 0.02, 0.05,
and 0.10; crossover rate = 0.05 to 0.95 in increments of
0.10; and 1 or 2 crossover points) that had a total of
8400 possible combinations. Each of the 8400
combinations was run with each of the test functions.
They averaged the results over 10 independent runs.
The GA terminated after 10,000 function evaluations.
The best on-line performance resulted for the following
parameter settings: population size =20 to 30 (relatively
small), crossover rate = 0.75 to 0.95, mutation rate =
0.005 to 0.01 (the highest rates tested), and two point
CTOSSOVer.

Thomas Back [7, 8, 9] has done more recent analyses of
mutation rate. He showed that for the simple counting
problem, the optimal mutation rate is 1/{ where { is the
length of the chromosome [7]. He later showed that an
even quicker convergence can be obtained by beginning
with even larger mutation rates (on the order of 2) and
letting it gradually adapt to the 1/0 value [8]. In later

1054-4887 © 2000 ACES

HAUPT, HAUPT: OPTIMUM POPULATION SIZE AND MUTATION RATE FOR A GENETIC ALGORITHM

work [9], he compared this evolutionary GA approach
with evolutionary strategies and showed that this
adaptation is similar to the self-adaptation of
parameters that characterizes evolutionary strategies
approaches.

Gao [10] computed a theoretical upper bound on
convergence rates in terms of population size, encoding
length, and mutation probability in the context of
Markhov Chain models for a canonical GA. His
resulting theorem showed that the larger the probability
of mutation and the smaller the population, the faster
the GA should converge. However, he discounted these
results as not viable for long-term performance.

Most of these previous studies were done with binary
GAs. More engineers are discovering the benefits of
using real parameter GAs, namely that a continuous
spectrum of parameters can be represented. Our
previous work with real GAs [11] devised a simple
check to determine the best population size. The GA
optimized several functions, and the results were
averaged over 100 independent runs. The population
size times the number of iterations (i.e., the total
number of chromosomes evaluated) was kept constant.
The "goodness" of the algorithm was judged by the
minimum cost found. For both binary and continuous
parameter GAs, a small population size allowed to
evolve for many generations produced the best results.
Similar sensitivity analyses with a wider range of
mutation rates suggested that mutation rates in the
range of 0.05 to 0.35 found the lowest minima.

A quick search of web sites on GAs also show
conflicting evidence for the best parameters to use.
Some sites [12, 13] suggest that GA performance may
be improved for smaller population sizes and higher
mutation rates. In addition, enough of our colleagues
and students have found similar results for their GA
problems that we decided further study is necessary.

These previous studies have shown that parameter
settings are sensitive to the cost functions, options in
the GA, bounds on the parameters, and performance
indicators, which must be carefully considered. In
addition, the optimum parameters seem to depend on
whether the GA is just beginning its descent or whether
it has advanced into the fine-tuning of the solution
stage. Consequently, different studies result in different
conclusions about the optimum parameter values
depending on the problem and the parameters explored.
Davis recognized this issue [14] and outlined a method
of adapting the parameter settings during a run of a GA
[15]. He does this by including operator performance in
the cost. Operator performance is the cost reduction
caused by the operator divided by the number of

children created by the operator. Yet most GA
practitioners still stick to large population sizes and
very low mutation rates.

This paper extends the work in [11] from the
optimization of contrived mathematical functions to the
optimization of array factors. The goal is to help users
of GAs select appropriate population sizes and mutation
rates in order for their GAs to find the best answer as
quickly as possible. Thus, emphasis is placed on off-
line performance since we only care about the closeness
of the final answer to the actual answer and not all the
extraneous solutions included in the averaging of the
on-line indicator. This paper reports the results of
experiments to determine the optimum population size
and mutation rate for a simple real GA on the types of
problems that might be typical in electrical engineering.
Since we want to minimize the run time of the GA, the
criteria for judging the “goodness” of the results is the
number of calls to the objective function required for
solution. This is the metric that determines computer
wall clock time to complete the solution. In addition,
we choose to count function calls to the cost function as
the criteria for how well the GA is performing. This
choice is more in keeping with the usual engineering
requirement to minimize run time. The parameters that
produce the minimum number of function calls to
produce an acceptable solution are deemed the “best.”
A solution is “acceptable” when a predetermined value
close to the minimum is found. This definition is
consistent with finding the deepest well, then diving to
the bottom with a fast local optimizer. Determining the
optimum population size and mutation rate must take
into account the random components of the GA.
Therefore, we average over a large number of runs of
our GA before choosing the best parameters.

The GA used here is termed a real GA because the
variables to be optimized are continuous and are not
converted to binary values. Figure 1 shows a flow chart
of a simple real GA. In each block of the flow chart,
choices must be made on how to perform the GA
operations in that block. The GA in this paper uses a
roulette wheel proportional weighting selection and the
single point crossover using the method described in
[11]. Elitism is used. These are common choices used
in practice and are constants for this particular study.

The results of this investigation show that, for the
problems solved here, small population size and
relatively large mutation rate are far superior to the
large population sizes and low mutation rates that are
used by most of the papers presented in the
electromagnetics community and by the GA community
at large. Such results suggest that future research

95

consider carefully what parameters are appropriate to
the particular problem.

Create population:
population size

v

Evaluate cost

v

Mate selection:
roulette wheel
proportional selection

v

Reproduction:
single point crossover
50% replacement

A v

Mutation: mutation rate

Yes +

Continue?

*No

Stop

—>

Figure 1. Flow chart of the real GA. Finding the
optimum mutation rate and population size would
cause the GA to find an acceptable solution faster.

II. A Simple Undulating Function

The first example is a highly undulating function with
many local minima. This function is

f(x,y) = xsin(x)+1.1sin(y) for 0< x,y <10- (1)
Figure 2 shows a graph of this function. The global

minimum over the specified range is -18.5547 at (x,y) =
(9.0390,8.6682).

ACES JOURNAL, VOL. 15, NO. 2, JULY 2000 SI: GENETIC ALGORITHMS

3

.
o

xsin{dx)+ 1. 1ysin{2y}
Lo

Figure 2. Plot of the first function minimized by the
GA.

Doing single runs of a GA for different sets of
population sizes and mutation rates doesnt yield
sufficient information due to the statistical nature of the
GA. To dampen the effects of the random processes,
results are averaged over many runs for each set of
parameters. Thus, the GA is run for one set of
parameters until the solution is found. After performing
T independent runs, the results for the T trials are
averaged.

We posed the problem to minimize the function with
the fewest number of function evaluations. Many
engineering and scientific applications require the
evaluation of very complex fitness functions. These
function evaluations drive the time needed for the GA
to converge. Therefore, our criteria for how “good” a
GA run performs are a count of the number of calls to
the cost function. A function evaluation is necessary for
each new offspring (mutated or not) plus each mutated
member of the old population. If a new offspring is
selected to be mutated 3 times, then only one function
evaluation is done. Otherwise, a high mutation rate
would force a large number of unnecessary function
evaluations.

One problem with a GA is determining when the
"correct” answer is found. We addressed this issue in
two ways for the function in (1). The first method used
-18.5 as stopping criteria. Figure 3 shows the number
of function calls vs. the number of GA runs averaged
for a stopping point of —18.5. Oscillations occur until
the GA is averaged about 150 times. For these criteria,
we would not consider the average to be stable until
about 150 runs have been averaged.

The second method of defining the "correct” solution
was less rigorous but probably more realistic. The

HAUPT, HAUPT: OPTIMUM POPULATION SIZE AND MUTATION RATE FOR A GENETIC ALGORITHM

second lowest minimum for is -16.9847 and occurs at
(x,y) = (7.4697,8.6681). Thus, if we obtain a value less
than this local minimum, we are assured that we have
found the valley of the global minimum. From there,
we could use the solution as a first guess for a local
optimizer that would quickly converge on the actual
minimum point. Since this two-step process is often
applied in practice, we stop the function when the cost
is less than —17. Figure 4 shows the number of function
calls vs. the number of GA runs averaged for a stopping
point of —17. These results indicate that averaging as
few as 40 or 50 runs would give a reasonably consistent
average. Note that using -17 as the stopping point
resulted in about % of the runs needed for averaging
than using —18.5 as the stopping point.

§88

L2

e —— lowest averag
, --- lowest std

function evaluations

N
[41]
o
T
-
.

\II J

o 50 100 150 200 250

number of GA runs averaged

Figure 3. These plots show both the average and the
standard deviation of the number of function
evaluations when the GA was stopped for a fitness
that was less than -18.5.

[}
$ — lowest average
S140l --- lowest std
g
o
§120]
g
g .-
2100} Pabhh SN
’
8of ./
Il \\l/)
&% 50 100 150 200 250

number of GA runs averaged

Figure 4. These plots show both the average and the
standard deviation of the number of function
evaluations when the GA was stopped for a fitness
that was less than -17.

Now that we have determined the number of runs
needed to average the GA to find the optimum
parameter set, the GA with stopping criteria of -17 is
averaged over 40 runs with mutation rates and
population sizes of:

mutation rate: .01 to .49 in increments of .02
population size: 4, 12, 20, 28, 36, 44, 52, 60

We analyze the number of cost function evaluations
required to converge for three different cost functions.
Figure 5 shows the number of function calls required to
find a point lower than —17. Very low mutation rates
result in a huge number of function calls. Small
population sizes seem to generally require fewer
function calls than larger ones. The results indicate that
a GA with a small population size (<16) and a mutation
rate between .15 and .5 works best.

averaged over 40 runs

mean function calls

population size

mutation rate
Figure 5. The mean number of function calls are
plotted vs. the mutation rate and population size
when the GA is averaged over 40 runs.

III.. Optimizing Side Lobe Tapers -
Example 1

It is well known that a low sidelobe taper can be
analytically found using a variety of methods including
the Dolph-Chebychev and Binomial distributions. The
point here is to just use a test case for the GA where we
know the best solution — a binomial array. In fact, local
optimizers provide excellent solutions for this problem
as well. The authors are not advocating that an antenna
designer should use a GA to find an amplitude taper for
an array. There are many other much better techniques.

Problem Formulation

The goal of the optimization is to find the weighting for
a linear array that produces the minimum maximum
sidelobe level. The objective function is given by

97

N
f =max sidelobe of { E a, e’ I } @

n=1

where
N = number of array elements
a = vector of amplitude weights
p = vector of phase weights
k = 2n/wavelength
d = element spacing
u = angle variable

In the cases presented, only a or p are optimized but not
both in the same GA run. Thus, the number of
parameters to be optimized is the length of the a or p
vector. The array factor is calculated from broadside to
endfire, and a search is performed to find all the peaks.
The highest peak (outside the main beam) is returned as
the cost of the function call. Most of the
electromagnetics community use elitism and off-line
performance for the various applications reported.
These assumptions are used but not tested here.

The GA was run 500 times to find the minimum
maximum sidelobe level for a 29 element array. Figure
6 shows three independent plots of the average number
of function calls to reduce the sidelobe level below 25
dB vs. the number of GA runs included in the average.
The lines become very close when the number of runs
exceeds 250. That’s a lot of averaging. Figure 7 shows
the previous plot enlarged in the region of 1 to 25
averages. This region clearly shows that averaging the
runs is critical to making valid interpretations of the
data. When averaging is used, the number of function
calls varies within a range of 500 for the three trials. At
ten runs in the average, the number of function calls
varies by 90 and at 20 the variation is down to 76.
Averaging more than 100 runs adds a high level of
confidence in any conclusions made concerning the
optimum population size and mutation rate.

Results

The GA is first used to find the optimum
amplitude taper for an 18 element uniformly spaced
array (d = 0.5 wavelengths). The taper is symmetric
about the center of the array and the two center
elements have an amplitude of one. Whenever the
minimum maximum sidelobe level falls below 25 dB
below the peak of the main beam or the number of
function calls exceeds 50,000, the algorithm stops. The
GA was run 20 independent times and the results were
averaged for the following population sizes and
mutation rates:

Population size = 4, 8, 12, ..., 64

ACES JOURNAL, VOL. 15, NO. 2, JULY 2000 SI: GENETIC ALGORITHMS

Mutation rate=.01, .02, .03,..., 4

g 8

g

average §numbeé of function calls

g

3

100 200 300 400 500
number of GA runs averaged

Figure 6. Plot of the average number of function
calls used by a GA to find the minimum maximum
sidelobe amplitude taper of an 18 element linear
array. The GA was run for up to 500 averages on
three independent occasions.

800 y ™

g

g

average §numbeé of function calls

4

i

5 10 15 20 25
number of GA runs averaged

Figure 7. This plot magnifies the left region of the
graph in Figure 6.

Figure 8 displays a plot of the average number of
function calls vs. population size and mutation rate
when the results were averaged over 20 independent
runs. This graph is very low when the mutation rate is
less than 20%, except for a subregion where the
population size and mutation rate are small. Figure 9
shows another result where 20 independent runs were
averaged and the population size varied from 4 to 128
and the mutation rate was between 1 and 19%. This plot
shows the minimum number of function calls gradually
increases as population size increases. GAs take a long
time to converge when the population size is small and
the mutation rate is small because population diversity
comes at a slower rate. -

HAUPT, HAUPT: OPTIMUM POPULATION SIZE AND MUTATION RATE FOR A GENETIC ALGORITHM

averaged over 20 runs

ean wnGuUIl cans

40 “0.2
20 0.1

population size *

mutation rate

Figure 8. The GA performed best (used the lowest
number of function calls) when the population size
was small and the mutation rate around 10%.

averaged over 20 runs

60004}

H
[=]
o
o
L

20004

mean function calls

o
n

20 .
40 o>

o O 04
80 400 0.15

120 mutation rate

population size
Figure 9. The lower mutation was run again and the
range of population sizes was increased.

A strong region of performance in Figure 8 occurs
between a population size of 4 to 16 and a mutation rate
of 0.1 to 0.2. Figure 10 shows this region when the GA
is averaged over 50 runs. The plot shows a population
size of 8 or less and a mutation rate of 13% or less
produce excellent results. Still afraid of abandoning
conventional wisdom, the region between a population
size of 4 and 128 and a mutation rate of 0.0 to 0.05 is
examined, averaging the GA over 50 runs. Results,
shown in Figure 11, are best for the smallest population
sizes and mutation rate of 5%. Again, the region of low
population size and low mutation rate yields slow
convergence. Avoiding that range, it’s quite apparent
that the average number of function calls increases as
the population size increases. Mutation rate doesn’t
seem to play much of a factor above a population size
of 30. The next best mean number of calls was for a
population size of 8 and mutation rate of 15% then
mutation rate of 20%. These results are consistent with
those in Figure 8. The poor performance of the large

population sizes and a population size of 4 with
mutation rate of 20% was predicted in Figure 10.

In order to become more confident with the results
presented in the previous figures, the GA was averaged
over 500 runs for several different mutation rates and
population sizes as shown in Table 1. Results (in
number of function calls) from running a GA 200 times
to find the optimum amplitude taper for an 18 element
array that minimizes the maximum sidelobe level. A
single GA run stopped when the sidelobe level went
below —-25dB or the number of function calls exceeded
50,000. The minimum and maximum number of
function calls over the 200 runs as well as the mean,
and standard deviation of the number of function calls
are shown here. A population size of 4 with a mutation
rate of 15% produced the best average results.

averaged over 50 runs

2000w
15004

10004

mean function calls
o
o
t=]

o
/1

0.2

10 ~0.15

5

population size 0.1 mutation rate

Figure 10. This graph shows that a small population
size and mutation rate of 0.1 causes a GA to find an
answer in the fewest number of function evaluations.

averaged over 50 runs

0.01
0.02
- 0.03
0.04
0.05 mutation rate

mean function calls

20 0 e .
80 400" ;50

population size

Figure 11. Small population sizes and low mutation
rates cause the GA to perform poorly. Note that,
aside from very small population sizes, the mean
number of function calls increases with population
size independent of mutation rate.

100

ACES JOURNAL, VOL. 15, NO. 2, JULY 2000 SI: GENETIC ALGORITHMS

Table 1. Results (in number of function calls) from running a GA 200 times to find the optimum amplitude
taper for an 18 element array that minimizes the maximum sidelobe level. A single GA run stopped when the
sidelobe level went below —25dB or the number of function calls exceeded 50,000. The minimum and
maximum number of function calls over the 200 runs as well as the mean, and standard deviation of the
number of function calls for the 200 runs are shown here.

Run Mutation rate Population size minimum maximum mean standard deviation
1 0.15 4 26 3114 398 455
2 0.20 4 110 50002 7479 12798
3 0.15 8 60 2457 461 332
4 0.20 8 49 2624 654 466
5 0.01 64 300 50031 1158 3498
6 0.02 64 277 11818 1028 911
7 0.01 128 393 2535 1410 365
8 0.02 128 1215 50071 10208 16077

IV. Optimizing Side Lobe Tapers —
Example 2

The next example finds a low sidelobe taper for a linear
array. Table 2 shows the results (in number of function
calls) from running a GA 100 times to find the optimum
phase taper that minimizes the maximum sidelobe level
of a 40 element array. A single GA run stopped when
the sidelobe level went below —14dB or the number of
function calls exceeded 50,000. The minimum and
maximum number of function calls over the 100 runs as
well as the mean, and standard deviation of the number
of function calls for the 100 runs are shown here. Once
again the number of function calls is smallest for the
smaller population sizes coupled with relatively large
mutation rates.

It should be noted that even for the best parameters
used in these tables, not all runs converged as
evidenced by the maximum entries greater than 50,000.
This fact has two implications. The first is that the

mean number of function calls in the table would
actually be higher if a limit were not in place. The
second implication is that one should always be
prepared to do multiple runs when using a GA since
convergence is not assured.

V. Optimizing Side Lobe Tapers —
Example 3

In this example, a GA is run for 100,000 function
evaluations in order to find the optimum amplitude
taper for a 20 element array that minimizes the
maximum sidelobe level. Table 3 shows the results in
dB. The minimum and maximum result as well as the
mean and standard deviation of the best sidelobe level
for the 100 runs are shown here. The population size of
4 and 8 with 15% mutation rate outperformed the GA’s
with population sizes of 64 and 128 with a mutation
rate of 2%.

Table 2. Results (in number of function calls) from running a GA 100 times to find the optimum phase taper
that minimizes the maximum sidelobe level of a 40 element array. A single GA run stopped when the sidelobe
level went below —14dB or the number of function calls exceeded 50,000. The minimum and maximum
number of function calls over the 100 runs as well as the mean, and standard deviation of the number of

function calls for the 100 runs are shown here.

Run Mutation rate Population size minimum maximum mean standard deviation
1 0.15 4 134 50002 2973 5856
2 0.20 4 163 50000 5232 9744
3 0.15 8 168 8223 1827 1510
4 0.20 8 124 21307 3220 3604
5 0.01 64 614 50024 7914 15040
6 0.02 64 546 50036 6624 13130
7 0.01 128 955 50043 4791 9708
8 0.02 128 933 50033 3942 7636

HAUPT, HAUPT: OPTIMUM POPULATION SIZE AND MUTATION RATE FOR A GENETIC ALGORITHM

Table 3. Results (in dB) from running a GA for 100,000 function evaluations in order to find the optimum
amplitude taper for a 20 element array that minimizes the maximum sidelobe level. The minimum and
maximum result as well as the mean, and standard deviation of the best sidelobe level for the 100 runs are

shown here.

101

Run Mutation rate Population size minimum maximum mean standard deviation
1 0.15 4 -57.5 -28.4 -36.1 4.6
3 0.15 8 -46.0 -29.5 -36.5 33
6 0.02 64 -42.5 -27.1 -32.5 3.3
8 0.02 128 -41.2 -28.0 -32.5 2.5

VI. Conclusions

The results of the numerical experiments presented in
this paper suggest that the best mutation rate for GAs
used on these problems lies between 5 and 20% while
the population size should be less than 16. These results
disagree with some of the previous studies cited and
common usage. The primary reasons for these results
are that off-line performance was used and that a
broader range of population size and mutation rate was
included. In addition, the criteria judged here is the
number of function evaluations, which is a good
indicator of the amount of computer time required to
solve the problem.

A way to interpret these results is in the context of
analyzing the trade-offs between exploration versus
exploitation. Traditionally, large populations have been
used to thoroughly explore complicated cost surfaces.
Crossover is then the operator of choice to exploit
promising regions of phase space by combining
information from promising solutions. The role of
mutation is somewhat nebulous. As stated by Back [8],
mutation is typically considered as a secondary operator
of little importance. Like us, he found that larger values
than typically used are best for the early stages of a GA
run. In one sense, greater exploration is achieved if the
mutation rate is great enough to take the gene into a
different region of solution space. Yet a mutation in the
less critical genes may result in further exploiting the
current region. Perhaps the larger mutation rates
combined with the lower population sizes act to cover
both properties without the large number of function
evaluations required for large population sizes. Iterative
approaches where mutation rate varies over the course
of a run such as done by Back [8, 9] and Davis [15] are
likely optimal, but require a more complex approach
and algorithm. Note that when real parameters, small
population sizes, large mutation rates, and an adaptive
mutation rate are used, the algorithm begins to lurk
more in the realms of what has been traditionally
referred to as evolutionary strategies. We feel that

names are a mute point and choose to do what we find
works best for a problem. In particular, we prefer the
engineering approach of switching to a different
optimization algorithm once the global well is found,
since at that point the more traditional optimization
algorithms become more efficient.

When the population sizes are as small as found here,
tournament selection offers no advantage to roulette
wheel selection, so an evaluation of the trade-off
between these selection operators was not done.
Selecting a small population size takes a very small
amount of computer time. When doing the calculations
for Table 3, the GA runs with large population size took
at least 10% longer to run than the GAs. with small
population sizes for a fixed number of function calls.
This difference can be attributed to the weighting and
ranking in the selection operator.

These results are not totally alone. They are confirmed
by our own prior results in [11] as well as those of Back
[7, 8, 9] and predicted by the theory of Gao [10]. Also
De Jong [3] found that a small population size and high
mutation rate worked best during the initial generations
and off-line performance. This is consistent with the
results here since the algorithm is stopped when a
prescribed minimum in the valley of the true minimum
is found. If the GA were then used to pass results to a
local optimizer, the GA need only work on the problem
a short time.

Although these conclusions strictly apply to only the
problems presented, in practice we have found many
other problems where similar principles applied. No
attempt has been made to thoroughly investigate all
possible combinations of parameters. We chose to
concentrate on population size and mutation rate after
our own experience with optimizing GA performance.
‘We make no claims that this is a definitive analysis: our
purpose is merely to suggest that future GA
practitioners consider a wider range of possible
combinations of population size and mutation rate.

102

Bibliography

[1] E. Michielssen, et. al.,, "Design of lightweight,
broad-band microwave absorbers using genetic
algorithms," IEEE MTT Transactions, Vol. 41, No. 6/7,
Jun/Jul 93, pp. 1024-1031.

[2] RL. Haupt, "Thinned arrays using genetic
algorithms," IEEE AP-S Transactions, Vol. 42, No. 7,
Jul 94, pp. 993-999.

[31 K. A. De Jong, "Analysis of the Behavior of a Class
of Genetic Adaptive Systems," Ph.D. Dissertation, The
University of Michigan, Ann Arbor, MI, 1975.

[4] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Reading, MA:
Addison-Wesley, 1989.

[5] J. J. Grefenstette, "Optimization of control
parameters for genetic algorithms," IEEE Trans. on
Systems, Man, and Cybernetics 16, January/February
1986, p. 128.

[6] J. D. Schaffer, et. al., "A study of control parameters
affecting online performance of genetic algorithms for
function optimization,” in Proceedings of the Third
International Conference on Genetic Algorithms, ed. J.
D. Schaffer, Los Altos, CA: Morgan Kaufmann, June 4-
7, 1989, pp. 51-60.

[7]1 T. Back, “Optimal mutation rates in genetic search,”
in Proceedings of the 5" International Conference on

ACES JOURNAL, VOL. 15, NO. 2, JULY 2000 SI: GENETIC ALGORITHMS

Genetic Algorithms, ed. S. Forrest, Morgan Kaufmann,

1993, pp. 2-9.
[8] T. Back and M. Schutz, “Intelligent mutation rate
control in canonical genetic

al§orithms,” in
Foundations of Intelligent Systems 9" International
Symposium, ed. Z.W. Ras and M. Michalewicz,
Springer Verlag, Berlin, 1996, pp. 158-167.

[9] T. Back, “Evolution strategies: An alternative
evolutionary algorithm,” in Artificial Evolution, ed.
J.M. Alliot, et al., Springer Verlag, Berlin, 1996, pp. 3-
20.

[10] Y. Gao, “An upper bound on the conVvergence rates
of canonical genetic algorithms,” Complexity
International, Vol. 5, 1998.

[11] R.L. Haupt and S.E. Haupt, Practical Genetic
Algorithms, New York: John Wiley & Sons, 1998.

[12] http://www.revolver.demon.co.uk/ga/
[13]http://www.irg.Ibl.gov/COMPS/numerica/NUMga
s.html

[14] L. Davis, "Adapting operator probabilities in
genetic algorithms," in Proceedings of the Third
International Conference on Genetic Algorithms, ed. J.
D. Schaffer, Los Altos, CA: Morgan Kaufmann, 1989,
pp- 61-67.

[15] L. Davis, **Parameterizing a genetic algorithm," in
Handbook of Genetic Algorithms, ed. L. Davis, New
York: Van Nostrand Reinhold, 1991.

