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Abstrzct— The use of the compater program NEC-4
for the simulation of radiation from buried antennas is
considered. NEC-4 uses the “exact” Sommerfeld in-
tegral formulation for stratified media (in NEC-4, re-
stricted to an homogeneous half-space). Although the
formulation is rigorous, certain approximations have to
be made for numerical implementation. The formu-
lation, and some of these issues, are outlined in the
paper. Several validation examples comparing results
computed using NEC-4 and results available in the lit-
erature are presented for antennas buried in various
typical media, including ground, fresh water and the
sea. Satisfactory agreement has generally been ob-
tained:; where differences have been noted, we have able
to explain most in terms of approximate implementa-
tion issues.
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I. INTRODUCTION

Wire antennas or scatterers buried in the ground or
immersed in water are an important class of antenna.
Applications are legion, and include communication
with submarines, detection of buried pipes and other
metallic objects, grounding stakes for HF antennas,
and “hardened” antennas buried just below the sur-
face of the ground to protect against nearby explosions.
That this is still a topic of current interest is clear from
recent work in France [1] on VLF antennas immersed
in sea water. The classical approach (epitomized by
King [2]) concentrated on Hertzian dipoles and used
the Sommerfeld potentials. Recent versions of the Nu-
merical Electromagnetics Code - Method of Moments
Versions 3 and 4 (NEC-3 and 4) permit modelling of
such buried antennas [3], (4] and this paper describes
validation work of these capabilities that we have un-
dertaken. In the rest of this paper, we will refer only
to NEC-4 since this is the most recent, documented re-
lease. (The specific version used was NEC-4.1). NEC-
2, now readily available in the public domain, also con-
tains a Sommerfeld treatment for wires, but the formu-
lation restricts wires to be above the air/ground inter-
face. This restriction was removed in the subsequent
releases described above. The theory on which NEC-4

rests is openly available [5] but we caution that the
NEC-4 code itself has restricted distribution.

The organisation of this paper is the following.
Firstly, an outline of the Sommerfeld formulation will
be presented. Two different approaches are encoun-
tered in the Hterature, and we present a brief sum-
mary of both, before discussing the formulation used
by NEC-4. It is useful for users to have an appreciation
of the numerical integration used for near-field evalua-
tion, and the uniform asymptotic approximations used
for far-field evaluation, along with the problems associ-
ated with these, and we briefly review the approaches
used by NEC-4. Then the numerical tests will be de-
scribed, and an extensive comparison made of radiated
field strength in several different media with analytical
data available in the literature. The agreement is in
general quite satisfactory, but there are some signifi-
cant points of difference. '

The main contributions of this paper are twofold:
firstly, an evaluation of the accuracy of NEC-4 for fields
at distances ranging from very near to quite far from
antennas located just below the surface of represen-
tative media; and secondly, prominently highlighting
the limitations of NEC-4 for such applications. Al-
though the latter are discussed in the theory manual
[3], the implications may not be immediately clear to
the users without extensive experience with Sommer-
feld integrals.

1t should be noted that the conventional 1/r decay in
free space is modified substantially in stratified, lossy
media; hence, field strength vs. distance plots gen-
erally need to be computed for each combination of
frequency and media. Although extensive validation
results were reported in [5], these were all near-field
results, concentrating on impedance and current distri-
butions. Since we are comparing results computed us-
ing NEC-4 to published results in the literature which
also use the Sommerfeld formulation — albeit for in-
finitesimal dipoles — the term “validation” in this pa-
per should be understood to refer to the implementa-
tion of the formulation in NEC-4.
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1I. OVERVIEW OF THE FORMULATION

There are two approaches to the formulation of the
Sommerfeld integrals. One uses vector potentials, and
the basic approach follows rather elegantly from the
solution of the wave equation in the spectral domain.
The other approach uses dyadic Green’s functions and
the Sommerfeld integral identity.

A. Vector potential-based approach

In this section the theoretical background to the
problem of an infinitesimal dipole near a planar in-
terface is briefly discussed.

Figure 1 is a diagram of a short vertical and horizon-
tal dipole near a planar interface. It is assumed that
both mediums are non-magnetic in nature and there is
no source of free charge except for a current element
denoted by J. at a height h above the surface. The
differential equation for the magnetic vector potential
A in both regions is given by:

VZA + k2A = —p,J, (1)

where k is the wave number in the specific medium.
To exploit the two-dimensional rotational symmetry,
the two-dimensional Fourier transform A of A is cal-
culated:

A3z, By,2) = 5?2-/ / Al B=718u3) g dy. (2)
—o0 J =00

This results in
52
(5 -

The following two boundary conditions apply at the
interface between the two media:
+ The magnetic vector potential is continuous every-
where, in particular at the interface between the two
media,
+ By making use of the Lorenz gauge condition 1t fol-
lows that

2) & = pod. (3)

V-ZL,:U-{— =€_1 (4)
v 'Z‘zzo— €2

These two conditions, together with the fact the mag-
netic flux density B is a continuous function, results in
unique solutions to eqn. (3).

The basic strategy to solve the E and H fields is as
follows:
1. The two-dimensional Fourier transform of A is cal-
culated by solving eqn. (3) and making use of the
boundary conditions. For a vertical dipole A only has
a nonzero z-component, while A in general has nonzero
z and z components for a horizontal dipole.

VED Medium 1 (z > 0)

¥

Medium 2 (z < 0)

Vectical Electric Dipole (VED)

E:

HED Medium 1 (z > 0)

y

Medium 2 {z < 0)
z
Horizontal Electric Dipole (HED)

Fig. 1. Short vertical and horizontal dipoles near a planar in-
terface.

9. The inverse Fourier transform of A is calculated.
This leads to the well-known Sommerfeld integral
which can in general only be solved numerically. We
return to this in the following section. However, by
making use of complex analysis (in particular the the-
ory of branch cuts and Cauchy’s theorem) some general
conclusions can be made concerning the surface waves:
At the boundary the z-component A, of A consists of
three components

A; =Qp+ Q1+ Q2 (5)

which are associated with three singularities in the
Sommerfeld integral. @, gives rise to the so-called Zen-
neck surface wave — we return to this subsequently.
Were it present, the Zenneck surface wave would de-
crease with p‘%. €, is associated with a singularity
at —k; in the Sommerfeld integral and results in the
Norton surface wave. This wave decreases with %. Qs
is associated with a singularity at k;. The surface wave
associated with this singularity decreases significantly
faster than that of @Q;. (We also return to these waves
in § I11I-B).
3. Once the magnetic vector potential is known the E
and H fields can easily be calculated from the relations
B=pH=V x A and jweE =V x H.

A very readable outline of the procedure for a ver-
tical electric dipole (VED) may be found in Collin [6};
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however, the complexities of the integration required
by the Sommerfeld integrals are not covered in de-
tail. The derivation for the horizontal electric dipole
(HED) is rather more complex than for the VED and
was not readily available in the literature we consulted;
a derivation may be found in [7].

B. Dyadic Green’s function approach

This is essentially the approach used by NEC-4 —
it might also be called the “field oriented” approach.
Chew presents a very extensive discussion of this for-
mulation {8, Chapter 2], from which the following is
abstracted. (Note that Chew uses the e~ time con-
vention. The necessary substitution ¢ — F7 has been
made in the following.) The geometry of Fig. 1 applies
again in this section; the interfaces between different
strata lie on planes on constant z. For the VED in
Fig. 1, the TM component of the field is given by [8,
eqn.(2.3.3a)]:

e—jkr

—jwplt, o, 8%
ke ainkil % ST

4rk? ( 822) T (6)
Here, /£ is the current moment. Note that Chew uses

the convention TM,. Now, the Sommerfeld identity is
introduced {8, eqn.(2.2.30)]:

E, =

e-——_ykr

) o« b .
= —2 / ) Jg(kpp)e Jk;lﬂdkp (7)
r o} kz

Jo is the Bessel function of first kind, order 0. The
physical interpretation of the Sommerfeld identity 1s
that a spherical wave can be expanded as an integral
summation of conical waves or cylindrical waves in the
p direction [8, p.66]. This identity, eqn. (7), is now
substituted — in slightly modified form — into eqn. (6}
to yield [8, eqn. (2.3.4)]:

~I¢ k3
= / kP HO (kpp)

Bmwe -

e~ikbigk,  (8)

This expression expands F, as a superposition of
cylindrical waves in the p direction, and plane waves
in the z direction. Hence, the various strata result in
reflection and transmission of the plane waves propa-
gating in +z, and the appropriate coefficients follow
from simple plane wave theory.

This plane wave insight is one of the major attrac-
tions of this formulation, and renders multi-layered me-
dia tractable. As an example, the field in region 1 (air
in NEC-4) for a dipole located at height z = d; over
an interface at z = 0 can be written as [8, eqn. (2.3.5)]:

~1¢ kﬂ (1)
= —=Hy'(k
Ez“ 87?(-#6 / kl ( )

fendtolel o+ R g2k )dk, (9)
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where ki = y/k? — k2, k; is the wavenumber of the
upper medium (kg in NEC-4), and the ¢j subscript on
E, indicates the source and field points are located in
medium i and j respectively. The Fresnel reflection
coefficient for the air/medium interface is given by {8,

(2.1.14a)]

_ eqki, —erka,
€aky, +€1ka;
For a source embedded in region 2, with the interface

at z = 0, the field in region 1 is the field transmitted

through the interface. The z dependence is thus ~
gik2=2 TIM g=jka:z for 2/ < 0 and z > 0. Noting that

(from [8, eqn. (2.1.14b)], with the indices interchanged

in this case):

R3 (10)

TTM _ 2e1kz;
e1ka; + €2k,

(11)

and that the k, term in eqn. (8) is that of the medium
surrounding the source, we find that

Bz ~ / kin(ll)(ka)'
-0
ejk2¥z}_jk1zz

—_—dk 12
€1k, + €2kyz d ( )

where the constants have been dropped for clarity.
This expression is consistent with [8, eqn.(2.4.15)],
once the necessary simplifications are made for the two-
media case.

The Sommerfeld potentials listed in the NEC-4 doc-
umentation [3, p.35] appear somewhat different, but
this is simply due to notation. As an example, consider
the following expression |3, eqn(5-7b},p.35], which rep-
resents the same field as eqn. (12):

-[ e‘vlz —-7Y27
k1')’2 + kg'Tl

Jo(Ap)A3dA

Ez12 £,z
(13)

Noting the differences in notation and convention (for
instance, NEC-4 and Chew interchange the medium
numbering, and the wavenumbers have the relationship
kiz = %jvz), it is clear that these capture the same
physics. A summary of the corresponding notation is
given in Table L

I11. EVALUATION OF THE SOMMERFELD
POTENTIALS

The Sommerfeld potentials cannot be evaluated in
closed form, and numerical integration is required. For
even the simplest case of a homogeneous half-space, as
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Parameter Chew’s notation NEC-4

Integration k, A
variable

Medium # | Upper medium — | Upper medium -

# 1(arbitrary) # 2 (air)

& properties
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Ar
p£o

o=V B

Wavenumber

klz‘_-\/k‘l?—kg

nz

TABLE I
CORRESPONDING NOTATION: CHEW [8] AND NEC-4 [3].

treated in NEC-4, there are numerous problems associ-
ated with this integral. The square root function in the
terms 7y and 72 is double-valued, and it is necessary
to use Riemann sheets to produce a continuous func-
tion [8, §2.2.3]. A Riemann sheet is demarcated by a
branch cut, and in the present case tEekre are two. Fur-
. _ .
thermore, there is a pole at A, = ———‘-—-3—\/—- which may

k24k32’
lie on the real axis (the integration I;ath) for lossless
media. Finally, for large distances, the kernel exhibits
rapid oscillations, requiring asymptotic evaluation us-
ing techniques such as the methods of stationary phase
or steepest descent.

Although elegant and computationally efficient ap-
proaches are possible in particular regions, a general
purpose program such as NEC-4 has to make certain
approximations in the evaluation of these integrals.
NEC-4 uses two different strategies to evaluate these
integrals, valid in the near- and far-fields respectively.

A. Near-field numerical integration

For the near fields, NEC-4 builds up a table of Som-
merfeld integrals for the particular frequency and ma-
terial properties specified, using numerical integration.
Interpolation is then used to compute fields as required
when the impedance matrix is constructed. The inte-
gration path (along the real axis) is deformed into the
upper half plane for Ag > 0, to avoid the branch cuts;
see Fig. 2. {Special care is required when the ratio of
height to radial separation becomes small, and a Han-
kel function form of the integrals is then used.) This
approach is used for separations up to of the order of
a wavelength — the precise limits may be found in
13, p.41]. NEC-4 also includes a treatment for larger
separations, using a model based parameter fit to a
form suggested by the asymptotic one, to reduce the
number of interpolation points required. Again, the
precise limits are given in (3, p.44]. The range of va-
lidity of the numerical integration scheme in NEC-4 is
105 < koR < 200 [3, p.39], but these limits are not
exploited by the code, which switches to an asymptotic
approximation long before the upper limit is reached.

ol
|
|
|

Fig. 2. Contour for evaluation of the Bessel function form of the
Sommefeld integrals. The breakpoint and two branch cuts
are shown; details of the selection of the breakpoint may be
found in [3, §5.1.2].{ After [3, Fig. 5-2]}.

B. Far-field asymptotic approrimation

For far-fields, a uniform asymptotic approximation
is used. Although the simulations to be shown exercise
primarily the near-field abilities of NEC-4, it is useful
to also be aware of some limitations as regards the
far-field implementation. The asymptotic approxima-
tion used incorporates second-order terms for the sad-
dle point [8, p.82], [3, eqn. (5-18),p.48] near k2 = ko;
note the use of the NEC-4 media numbering in this
section. As the depth or height approach zero, so this
saddle point approaches k2. Similar second-order term

as also used for the nearby pole at A, = —5ka— This
k2+k2

saddle point and pole have the following respective in-
terpretations [9]:

Source & feld points above ground Represents the re-
flected ray; and the Norton surface wave. (The latter
decays as 1/p).

Source buried, field below ground Represents the ray
going up to the interface, through the air and back
into the ground; and the Norton surface wave.

Source buried, field above ground Represents the ray
going up to the interface and mostly through air; and
the Norton surface wave.

The other saddle point near ki (again, for zero

height/depth, it is at k1) has the following interpre-
tation:
Source & field above ground Represents the lateral or
head wave going into the ground, traveling through
the ground, emerging again into the air near the field
point. (See Fig.3; note the use of Chew’s notation
here). Note that this wave decays asymptotically as
1/p°.

The asymptotic approximation of this second saddle
point is only first-order, with the result that it con-
verges more slowly and goes to zero as the ray path
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Evanescent wave
Source \Fjeld point: (p, z)
e vV kg_k?(z'}'dl)

e—v"%—-’ﬁd? Medium 1

Lateral wave: g—7%2¢ Medium 2

Fig. 3. Physical interpretation of the lateral wave, (After (8,
Fig. 2.6.3]).

approaches grazing incidence on the interface. Thus
the lateral wave is lost. For source and field points be-
low ground, the field reflected from below the interface
will be exactly cancelled by the direct field as the inter-
face is approached — the “missing” lateral wave being
required in this situation for a complete solution. For
ground with any significant loss, the wave propagat-
ing through the ground is rapidly attenuated and the
errors should not be significant. For source and field
points located deeper below the interface, the below-
ground wave becomes more accurate. Although a uni-
form two-saddle-point-and-pole approximation would
address these issues, the existing single-saddle-point-
and-pole approximation is already rather complex {9
Note that these issues are only germane to the asymp-
totic approximation — for near-field data, the numer-
ical solution is complete.

Chew discusses the various field species and their
connection with the branch- and saddle points further
in {8, §2.6.4]).

There has been some controversy regarding the con-
tribution of the pole; it is known as the Sommer-
feld or Zenneck surface wave pole [8, p.99], {8]. For
two-layered media problems, it appears that the pole
does not represent a true surface wave. (Of course,
for multi-layered media, or two layered media with a
ground, such as a microstrip structure, proper surface
waves can be excited).

IV. NUMERICAL TESTS

In order to validate the ground handling capabilities
of the new NEC-4 code it was decided to compare re-
sults from the literature with independent NEC-4 sim-
ulations. Results for antennas in matter are rather
sparse; the best sources are the monographs of King et
al’s [2] and Maclean and Wu [10].

The problem to be considered is that of an infinites-
imal vertical or horizontal electric dipole near a planar
interface. For a dipole buried in a particular medium

ACES JOURNAL, VOL. 13, NO. 3, NOVEMEER 1298

one has to be careful in choosing its length. In a con-
ducting medium, the wavelength-related parameter Al
that should be used in determining segment sizes is [4,
p.12]

Ao = 299.8/(inlfMHz)» (14)
with

2 (15)

9| = |e& + 3.23(10%)(
fMHz

Note that the second part of eqn. (15} can easily over-
whelm the first part in €z with highly conductive ma-
terials or at low frequencies. Throughout this paper an
electrically very short dipole with three segments was
used as an approximation of the Hertzian (infinitesi-
mal) dipole. It was driven with a 1V voltage source and
field magnitudes were scaled to fit the results from the
literature. All the results shown have been computed
with the near-field NE card, except where explicitly in-
dicated otherwise.

The simulations were carried out on a Silicon Graph-
ics Power Indigo? and NEC-4 was compiled using the
MIPSpro FORTRAN 77 compiler with double preci-
sion arithmetic.

Based on the result on page 107 and 109 of Maclean
and Wu ([10]), the first set of tests were conducted
for a short vertical electric dipole above the surface of
the earth. The NEC-4 simulations were done for a
3 c¢m long electric dipole at a height of 3 cm above
the surface of the earth. The simulations were carried
out at frequencies of 1 MHz, 10 MHz and 100 MHz.
Computations of the electric field strengths were made
for heights of 3 cm and 234.8 m (800 feet) above the
surface. Two sets of simulations, one for a ground
conductivity, o, of 0.01 and the other for o = 0 were
carried out. A relative permeability e, of 4 was used
in both cases.

Figures 4 and 5 present a comparison of the NEC-
4 results and those of Maclean and Wu. (The rather
cluttered appearance of the graphs is to permit the
same information to be conveyed on each graph as in
the original [10].) The general agreement is quite sat-
isfactory, except for the electric field at f = 100 MHz,
measured near the surface of the earth (the lowermost
curve in both figures). From a distance of 200 km the
NEC-4 results computed with the NE card (near-field
formulation) show a rise in the field strength, which
is in contradiction with the radiation condition. The
reason is the subtraction of a quasi-static term from
the field due to the ground, which is then included in
analytic form. Although this term should cancel with
a numerically integrated 1/ R? term, for very large dis-
tances the cancellation fails [9]. Results are also shown
in Figs. 4 and 5 for the fields computed using the RP
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Medium o (S/m) | ¢r

Sea water 4 80

Lake water | 4 x 103 | 80

Dry earth | 4 x 107% | 4
TABLE II

VALUES OF ¢ AND €g USED IN THE SIMULATIONS.

card (far-field formulation); in this case, the NEC-4 re-
sults are in excellent agreement with those of Maclean
and Wu.

King [2] investigated an #-directed short horizontal
electric dipole below the surface of earth, lake water
and sea water. Some of the examples given by King
have been replicated by using NEC-4. The problem
considered is that of a short (1 cm long) electric dipole
at a depth of 15 cm below the surface of the medium.
Frequencies of 100 kHz and 10 MHz were used. Com-
putations of the components of the electric field were
carried out at a depth of 15 ¢cm below the surface. The
p, ¢ and z components of the electric field were calcu-
lated and are shown separately in the figures.

Table II gives the values of the conductivity, o, and
the relative permeability ¢, that were used in the sim-
ulations.

Figures 6, 7 and 8 shows the results at 100 kHz, while
figures 9, 10 and 11 shows the results at 10 MHz. In
general the agreement between the NEC-4 results and
those of King are quite satisfactory. The maximum
difference between the two sets of resuits is approx-
imately 20 dB, while agreement between the NEC-
4 and King’s results are better in the far-field than
close to the source. A sharp peak at 700m in figure
6 is not visible in King’s results. The ripple in figure
11 is also not present in King’s results; it is proba-
bly caused by the interference between waves travel-
ling through air and ground. {The sampling may not
be sufficiently fine to resolve the interference pattern
smoothly}. It should be accurate when NEC-4 is us-
ing the Sommerfeld/table-lookup method, but will ei-
ther vanish or become inaccurate at around two wave-
lengths when NEC-4 starts using the approximation
involving the quasi-static term discussed above [9].

V. CONCLUSIONS

Short vertical and horizontal electric dipoles near a
planar interface have been modelled using NEC-4 for
various representative grounds, and at frequencies of
interest in the MF to VHF communication bands. The
results have been compared with results from the lit-
erature for dipoles of infinitesimal length. The general
comparison between the NEC-4 results and those from
the monographs of Maclean and Wu [10] and King (2]
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was satisfactory.

Some appreciation is required by the user of the lim-
itations of NEC-4 for problems of this type. This is es-
pecially true for source and field points located close to
interfaces. Furthermore, it is important not to exceed
the limitations of validity of the near-field implemen-
tation {the NE card in NEC-4); we have shown results
where this is clearly apparent. Although this paper has
not attempted an extensive validation of the far-field
approximations (i.e. using the RP option), limitations
in this regard have been elucidated — primarily the
lateral wave discussed in Section ITI-B.
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o 1 2 a 4 3 & 7 a 9 10

4. The electric field strength at heights of Om and 243.8m
(800 feet) above the earth. The conductivity ¢ is 0.01.
Legend: uppermost curves: both f = 1MHz; above z = 0;
below z = 800"

middle upper curves: both z = 800'; above f = 10MHz,
below f = 100MHz

middle lower curve: z = 0, f = 10MHz2

lowermost curve: z = @, f = 100MHz (dotted line com-
puted using XE, solid line RP)

On all the curves, the solid lines are NEC-4 data; the sym-
bols data from Maclean and Wu [10]. All data computed
using NE except where indicated otherwise.

o 1 2 3 4 5 6 7 ] 1] 10
Distance in m 0

Fig. 5. The electric field strength at heights of Om and 243.8m

(800 feet) above the earth. The conductivity ¢ is 0.
Legend: three uppermost curves lie on top of one another;
z = 800’ at § = IMHz, 10MHz and 100M Hz.

middle upper curve: z = §', f = 1MHz

middle lower curve: z = 0’, f = 10MHz

lowermost curve: z = 0, f = 100MHz (dotted line com-
puted using EE, solid line RP})

Lines, symbols and computations as Fig. 4.
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Fig. 7. The E field in lake water at 100 kHz. Fig- 10. The E field in lake water at 10 MHz.
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Fig. 8. The E field in dry earth at 100 kHz. Fig. 11. The E field in dry earth at 10 MHz.



