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ABSTRACT

Model Based Parameter Estimation (MBPE) s
presented in conjunction with the hybrid Finite Element
Method (FEMYMethod of Moments (MoM) technigue for
fast computation of the input characteristics of cavity-backed
aperture antennas over a frequency range. The hybrid FEM/
MoM technique is used to form an integro-partial-
differential equation to compute the electric field distribution
of a cavity-backed aperture antenna. in MBPE, the electric
field is expanded as a rational function of wo polynomials.
The coefficients of the rational function are obtained using
the frequency derivatives of the integro-partial-differential
equation formed by the hybrid FEM/MoM technigue. Using
the rational function approximation, the electric field is
calculated and the input characteristics of the antenna are
obtained over the frequency range. Numerical results for an
open coaxial line and a cavity-backed microstrip patch
antenna are presented. Good agreement between MBPE and
the solutions over individual frequencies is observed. CPU
timings for all numerical calculations are presented.

1 INTRODUCTION

Cavity-backed aperture antennas are very popular in
aerospace applications due to their conformal nature. Hybrid
techniques have become attractive for numerical analysis of
these type of problems due to their ability to handle arbitrary
shape of the cavity and complex materials that may be
required for the antenna design. The combined Finite
Element Method (FEM) and Method of Moments (MoM)
technique in particular has been used to analyze various
cavity-backed aperture antennas [1,2]. In the combined
FEM/MoM technique, FEM is used in the cavity volume to
compute the electric field, whereas MoM is used to compute
the magnetic current at the aperture. Using Galerkin's
technique, an integro-partial-differential equation is formed.
The cavity is divided into tetrahedral elements and the
aperture is discretized by triangles. Simultaneous equations
are generated over the subdomains and are added to form a
global matrix equation. This results in a partly sparse and
partly dense symmetric complex matrix, which can be solved
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either by a direct solver or by an iterative solver. The electric
field hence obtained is used to compute the radiation
characteristics and input characteristics of the antenna.

In most practical applications, input characteristics such
as input impedance or input admittance are of interest over a
frequency range. To obtain the frequency response of the
antenna, one has to repeat the above calculations at every
incremental frequency over the frequency band of interest. If
the antenna is highly frequency dependent, one needs to do
the calculations at fine increments of frequency to get an
accurate representation of the frequency response. For
electrically large cavities with large apertures, this can be
computationally  intensive and in  some  cases
computationally prohibitive. Model Based Parameter
Estimation (MBPE) was proposed by Miller and Burke [3] to
alleviate the above problems in frequency domain
electromagnetics. In [3,4), the applicability of MBPE to
computing frequency response for various electromagnetic
problems and particularly to the NEC code [5] for efficient
computation of input characteristics of wire antennas over a
wide frequency range was demonstrated.

In this paper, MBPE is applied for predicting the input
characteristics of cavity-backed aperture antennas over a
frequency range using the combined FEM/MoM technique.
In MBPE technique, the electric field is expanded as a
rational function. The coefficients of the rational function are
obtained using the frequency data and the frequency
derivative data. Once the coefficients of the rational function
are obtained the electric field in the cavity can be obtained at
any frequency within the frequency range. Using the electric
field, the input characteristics such as the input impedance or
admittance can be calculated. If the frequency derivative
information is known for more than one frequency, a rational
function matching the frequency data and frequency
derivative data at all frequencies, can be obtained resulting in
a broad frequency response. '

The rest of the paper is organized as follows. In section
2, MBPE implementation for the combined FEM/MoM
technique is described. Numerical results for an open coaxial
line and a cavity-backed microstrip patch antenna are
presented in section 3. The numerical data are compared
with the exact solution over the frequency range. CPU
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timings are given for each example. Concluding remarks on
the advantages and disadvantages of MBPE are given in
section 4.

2 MBPE IMPLEMENTATION FOR THE
COMBINED FEM/MeM TECHNIQUE

The geometry of the problem to be analyzed is shown in
figure 1. For linear, isotropic, and source free region, the
electric field satisfies the vector wave equation:

VX(leE) ~k%E =0 1

r

where p_, g, are the relative permeability and relative
permittivity of the medium in the cavity and k is the free
space wavenumber at any frequency f. The time variation
exp(jor) is assumed and suppressed throughout this report.
Applying the Galerkin's technique, equation (1) can be
written in “weak form”™ as [1]

”{{[(VXT) . (uirVXE) ke Te E:Idv

-jcouoj' I (Txf,)e Hapds

S0
= jmuoj J Te (ﬁ,-mep)ds (2)

Sl'.np

where T is the vector testing function, S, is the aperture
surface, and S, is the input surface (see figure 1). H,, is
the magnetic field at the aperture and H,,, is the magnetic
field at the input surface. @i, and A, are the unit normals to

the surfaces Sap and Sinp , respectively.

In accordance with the equivalence principle [9], the
fields inside the cavity can be decoupled to the fields outside
the cavity by closing the aperture with a Perfect Electric
Conductor (PEC) and introducing the equivalent magnetic
current.

M= Ex#, 3)

over the extent of the aperture. Making use of the image
theory, the integrals over Sap in equation (2) can be writien
as
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Figure 1 Geometry of cavity-backed aperture in an infinte ground plane.

where T, = Tx#h, and R is the distance between source
point and the observation point. V* indicates del operation
over the source coordinates and ds” indicates the surface
integration over the source region.

Though the analysis presented in this report is not
limited to any specific input feed structure, we restrict the
presentation of the formulation to the coaxial line as the
input feed structure. The cross section of the coaxial line is
shown in figure 2. Assuming that the incident electric field is
the transverse electromagnetic (TEM) mode and the
reflected field also consists of TEM mode only, the electric
field at the input plane S;,, is given by

Einp = eincexp(_jk's/s::z) + erefexp(jk»\/a'z) (5)
where

6

and
eref = Roeinc (7)

R_ is the reflection coefficient at z=z, and is given by
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Figure 2 Cross section of the coaxial line.
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ry is the outer radius and r, is the inner radius of the coaxial

line. €,, is the relative permittivity of the coaxial line.

Using equation (5) to calculate H, ., the surface

integral over S, in equation (2) can be written as

jmpa‘[ j Te(fi;x H.‘np)d5

Bl 2]

inp
2n ln( jl.lrc :np

| ke JkJ_Zl)J‘JT [E) 9)

2
M, ann(r])

u, is the relatve permeability of the coaxial line.
Substituting equation (4) and (9) in equation (2), the system
equation for the combined FEM/MoM technique can be

written as
1
fijlem (v
L], ] [P
Sep

ap

Sinp
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The volume of the cavity is subdivided into small
volume terahedral elements. The electric field is expressed
in terms of the edge vector basis functions [7], which enforce
the divergenceless condition of the electric field as

E= Y W, (11)

The vector testing function is also expressed in terms of the
edge vector basis functions following the Galerkin’s method.
The discretization of the cavity volume into tetrahedral
elements automatically results in discretization of the
surfaces §,, and §;, into triangular elements. The
magnetic current at the radiating aperture S, can be
expressed in terms of unknown coefficients associated with

the tetrahedral elements as

M= eW, (12)

where W . = W, x i, . The volume and surface integrals in
equation (10) are carried out over each element to form
element matrices and the element matrices are assembled to
form global matrices. Equation (10) can be written in matrix
form as

A(k)e(k) = B(k} (13)

A(k) is a partly sparse, partly dense complex symmetric
matrix, B(k) is the excitation vector, and efk) is the unknown
electric field coefficient vector. A(k) can be written as a sum
of four matrices

A(k) = A(K)+ A(k) + Az (k) + Ay k) (14}

where

6
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N, is the total number of tetrahedral elements in the volume
of the cavity, N, is the total number of triangies in the
radiating aperture surface and N is the total number of
triangles in the input surface.

The matrix equation (13) is solved at any specific
frequency, f, (with free space wavenumber k, = 2nf,) for
the unknown electric field coefficients, which are used to
obtain the electric field distribution. Once the electric field
distribution is known, the input reflection coefficient can be
calculated using equation (8) at the input plane S, , with
z; =0 as

r=—2L [(Ee{Plas-1 (20)
wwali

Ty

The normalized input admittance at §,,, is given by

i

L @1)

Vi = +T

14

—

The input admittance given in equation (21) is
calculated at one frequency. If one needs the input
admittance over a frequency range, this caiculation is to be
repeated at different frequency values. Instead MBPE [3,4]
can be applied for rapid calculation of input admittance/
impedance over a frequency range. MBPE technique
involves expanding the unknown coefficient vector as a
rational function. The coefficients of the rational function are
obtained by matching the function and its frequency
derivatives of the function at one or more frequency points.

The solution of equation (13) at any frequency f, gives
the unknown electric field coefficient column vector e(k,).
Instead e(k) can be written as a rational function,

Py (k)
e(k) = = 22
® = 5 @2)
where
PL(k) = a,+ak+amk® +a3K + oo +a k"
0, (k) = b+ bk +byk” + bk’ + o + by kM

b, is set to 1 as the rational function can be divided by an
arbitrary constant. The coefficients of the rational function
are obtained by matching the frequency derivatives of e(k). If
equation (22) is differentiated ¢ times with respect o k, the
system of (t+]) equations provides the information from
which the rational function coefficients can be found if
r= L+ M. If the frequency derivatives are available at only
one frequency f,, the variable in the rational function can be
replaced with (k-k)) ie,

P lk—k,)

Qulk—k,) @3

e(k) =
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and the derivatives can be evaluated at & = k,. The
coefficients of the rational function can be obtained from the
following equations:

a, = e(k,) 24)

[100..0 - o . o0 |[e] [e]
010.0 -¢ -€, - 0 a, e,
001 .. 0 _32 —el N Q0 03 83
000..1 - _, -€r_3 - a | =1 ¢

A

0000 -€p —€r.1 - —e; a1 b, €1
00000 -ery;  —ex - —Cjuaf|ba]  |ers2

(00000, py—€repm-2 ~er [|Pu] |o1+s]

(25)

(m)
where ¢, = :1—1 and i=min(L,M).

This approach is same as the Pade approximation given
in [8]. This method has been successfully applied to
electromagnetic scattering from cavity-backed apertures
using a hybrid FEM/MoM technique {9].

If the frequency derivatives are known at more than one
frequency, then the expansion about k=k, should not be used
and the system matrix to solve the rational function
coefficients takes a general form [3]. For the sake oi
simplicity, only a two frequency model is presented here.
Assume that at two frequencies, f; (with free space
wavenumber k;) and f; (with free space wavenumber &5},
four derivatives are evaluated at each frequency. Hence ten
samples of data are available (two frequency samples and a
total of eight frequency derivative samples) to form a
rational function with L=35 and M=4

2 3 4
a, +ajk+ayk +ask” +azk +as!c5

e(k) = A 26)
1+Bk+byk* 4 byk’ + b,k
Equation (26) can be written as
(1 4Bk + bk + by + b ke (k)
1 2 3 4
= a0+alk+a2k2+a3k3+a4k4+a5k5 27

Differentiating equation (27) four times at each frequency
and writing a matrix equation, the coefficients of the rational
function in equation (26) are obtained. In this procedure,
¢, the A derivative is obtained by taking derivatives of
equation (13), which results in a recursive relationship
{6.10],
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t
D s A'l(k)[B“’— ¥ -—Sqo)CLqA(Q)(k)e“_q}(k)} (28)
=0

AY9%) is the g™ derivative of Ark) with respect to k and
BV s the #* derivative of B(k) with respect to k.

= — . The Kronecker delia 6 is defined as

Coo ™ -0

1 q=20
50 = 1o 0s0 29)
The frequency derivatives of A(k) and B(k) are evaluated [11]
and are given in the appendix.

The above procedure can be generalized for multiple
frequencies with frequency derivatives evaluated at each
frequency to increase the accuracy of the rational function.
Alternatively, the two-frequency-four-derivative model can
be used with multiple frequency windows. The complexity
of the matrix equation to solve for multiple-frequency-
multiple derivative model increase with the number of
frequency points and the number of derivatives taken at each
frequency. The two-frequency-four-derivative model is
followed in this paper.

3 NUMERICAL RESULTS

To validate the analysis presented in the previous
sections, calculation of input characteristics over a frequency
range are done for an open coaxial line and a cavity-backed
square microstrip patch antenna. The numerical data
obtained using MBPE are compared with the results
calculated at each frequency using the computer code
CBS3DR [12], which implements the combined FEM/MoM
technique [2). We will refer to the latter method as “exact
solution”. A percentage error is calculated as compared to
the exact solution as

(MBPE Value - Exact Value)" % 100
Exact Value

(30

% error—l

Due to the hybrid FEM/MoM technique, matrix A(k,) is
partly sparse and partly dense. The Complex Vector Sparse
Solver (CVSS) [13] is used to LU factor the matrix
A(k,) once and the moments are obtained by backsolving
equation (28) with multiple right-hand sides. All the
computations reported below are done on SGI Indigo2 (with
IP22 processor) computer.

(a) Open Coaxial line:

An open coaxial line radiating into an infinite ground
plane (figure 3a) is considered. A finite length of the line is
used for FEM discretization. The input plane §,,, is placed
at z = 0 plane and the radiating aperture at z = lem . The
discretization of the coaxial line resulted in 1119 total
unknowns, and the order of the dense matrix due to MoM is
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Figure 3 (a) Open coaxial line in an infinite ground plane.
Inner radius r;=1cm, Outer radius r>=1.57cm and £, =1.0

(b} Normalized input admittance as a function of frequency.

144. One-frequency MBPE with L=5 and M=4 a
F,=7.5GHz is used to calculate the frequency response of the
input admittance. Two-frequency MBPE at f;=6GHz and
f>=9GHz with L=5 and M=4 is also used to calculate the
frequency response. The frequency response over the
frequency range 1GHz-13GHz is plotied in figure 3(b) along
with the exact solution calculated at 23 discrete frequency
points over this frequency range. Both one-frequency and
two-frequency MBPE frequency responses are calculated at
0.1GHz increments. The one-frequency MBPE resulted in an
error of 0.037% for conductance and 0.45% for susceptance
at 6GHz and at 9GHz, it resulted in an error of 0.08% for
conductance and 0.027% for susceptance. The two-
frequency MBPE resulted in an error of 0.5% for
conductance and 0.2% for susceptance at 7.5GHz. The exact
solution took 990 secs to calculate input admittance at 23
frequency values from 1GHz to 13GHz. It can be seen that
one-frequency MBPE agrees well with the exact solution
over the frequency range 4.5GHz to 13GHz, whereas two-
frequency MBPE agrees well with the exact solution over the
frequency range 1GHz to 13GHz. Both one-frequency
MBPFE and two-frequency are faster than the exact solution
over the frequency range. Two-frequency MBPE has
advantage over the one-frequency MBPE as it requires less
computer memory’.

1. Please see the comment on storage at the end of this
section for detailed explanation.
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(b) Cavity-Backed Square Microstrip Patch Antenna:

A cavity-backed square microstrip antenna radiating
into an infinite ground plane (figure 4a) is considered. The
input plane 5, is placed at z = 0 plane and the radiating
aperture at z = 0.16cm. The discretization of the cavity
volume resulted in 2,160 total unknowns and the order of the
dense matrix due to MoM is 544. The frequency response of
the input impedance (1/Y,,) is calculated using one-
frequency MBPE with L=5 and =4 at f,=4GHz and also
using two-frequency MBPE with L=5 and M=4 at f;=3GHz
and f>=5GHz. The numerical data is plotted in figure 4b
along with the exact solution calculated at 23 frequency
points over the frequency range 1GHz to 7GHz. The one-
frequency MBPE calculations resulted in an error of 5.4%
for resistance and 0.28% for reactance at 3GHz and an error
of 1.79% for resistance and 0.93% for reactance at 5GHz.

Y

0.13cm o, 1€

Substrate
|~ (3cmX3cm)
(e, = 2.55)

- X

. ™. Square Patch
; (z=0.16cm)
(2emX2em)

w=__Ground plane

% 0.16cm

50€) coaxial feed
(a)

—— Two freq. MBPE
(L=5, M=4)

+ - <+ One freq. MBPE
(L=5, M=4)
\m@® CBS3DR[12]

F
LI L B N L B BN L B
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2 o ,

Jp  fredoHr, SACHD o poscr
:..g,i.”.*...|+ i SPETETER R
i 2 3 4 5 [} 7
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Figure 4 (a) Cavity-backed square microstrip patch antenna
in an infinite ground plane fed by a 50} coaxial
line.

{b) Normalized input impedance versus frequency
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The two-frequency MBPE has an error of (.3% for
resistance and 0.36% for reactance at 4GHz. Both one-
frequency and two-frequency MBPE frequency responses
are calculated with 0.01GHz increments. One-frequency
MBPE took 1107secs of CPU time to generate the moments,
whereas the two-frequency MBPE took a total of 1120 secs
of CPU time to generate moments at both frequencies. The
exact solution took a total of 11,891 secs of CPU time for
computations at 23 frequency points over the frequency
range 1GHz to 7GHz. One-frequency MBPE and two-
frequency MBPE are faster than the exact solution for the
frequency response calculations. '

Comments on CPU time, storage: Though a one-frequency
MBPE and a two-frequency MBPE are used in this paper,
the rational function can also be evaluated at a number of
frequency samples. For example for a rational function of the
order (5/4), we need ten frequency samples. This method
requires computing the matrix A(k) at ten frequency points.
The matrix equation in (13) has to be solved ten times to get
the solution vector efk). At each frequency, only A(k) has to
be stored and storage can be reused for all frequencies.

In one-frequency MBPE, to obtain the same order
rational function, we need one frequency sample and nine
derivatives. This requires computing the matrix A(k) and its
nine derivatives at one frequency. In hybrid FEM/MoM
technique, the expense of calculating derivative matrices of
A(k) is reduced as the derivatives use the terms from the
previous derivatives. Also using the direct matrix soiver, the
matrix A(k) is factored only once and the derivatives of efk)
in equation (28) are obtained by simply backsolving, In this
method one needs to store the derivative matrices ( A(‘”(ko) .
g=123, . (L+M)), along with the matrix A(k,). For
electrically large problems, this could impose a burden on
computer resources. This problem can be overcome by
storing the derivative maitrices, A(q)(ko) out-of-core, as the
derivative matrices are required only for matrix-vector
multiplication.

Similarly for a two-frequency MBPE we will need two
frequency samples and eight derivatives (four at each
frequency). In this method, we need to compute A(k) at two
frequencies and also four derivatives of Afk) at each
frequency. The matrix Ak} is factored once at each
frequency and the derivatives of efk) are obtained by
backsolving. In two-frequency MBPE, cne needs to store
only ([L+M-1]/2) derivative matrices along with the
matrix A(k) at each frequency. Once the moments are
calculated at one frequency, the memory used for the
matrices can be reutilized to generate moments at the second
frequency, hence reducing the burden on computer memory
requirements.

From the above discussion and also from the numerical
examples considered in this paper, one-frequency MBPE is
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superior in terms of CPU time, whereas it requires the
maximum storage. Storage requirements are minimum, if
more frequency samples are calculated, than using
frequency-derivatives, but CPU time is far more than the
one-frequency MBPE or the two-frequency MBPE. In the
numerical examples presented with L=3 and M=4, one-
frequency MBPE had to store 10 matrices, whereas two
frequency-MBPE had to store 5 matrices at each frequency.
The memory to store the matrices at one freguency is
reutilized to store the matrices at the second frequency.
Hence, even though the CPU timings for two-frequency
MBPE 1s more than the one-frequency MBPE, if computer
mernory is a constraint, however, it is advisable to use two-
frequency MBPE as an alternative to one-frequency MBPE
for savings in CPU time and storage requirements.

4 CONCLUDING REMARKS

The MBPE technique is applied to the hybrid FEM/
MoM technique to obtain the frequency response of the input
characteristics of cavity-backed aperture antennas. The
frequency response of input characteristics of an open
coaxial line, coaxial cavity, square microstrip patch antenna,
and a circular patch antenna are computed and compared
with the exact solution. From the numerical examples
presented in this work, MBPE technique is found to be
superior in terms of CPU time to obtain a frequency
response. It may be noted that although calculations are done
in frequency increments of 0.1 GHz or 0.01 GHz for the
examples presented, the frequency response at even finer
frequency increments can also be calculated with a very
nominal cost. In one-frequency MBPE the frequency
response is valid over a certain frequency range. In two-
frequency MBPE, the two frequency values have to be
chosen so as to get an accurate frequency response between
the two frequency values. To get a wide frequency response
for any problem, either one- or two-frequency MBPE models
have to be used with different frequency values to cover the
complete frequency range. To be accurate over all frequency
ranges methods such as adaptive sampling {14] should be
applied, which makes MBPE a very effective tool for
computational electromagnetics.

APPENDIX
Derivatives of A(k) and b(k} w.r.t. k

The matrix A(k) can be written as (equation 14)

A(k) = A (k) + Ag(k) + Ay(k) + A (k) (A.D

and the g derivative of A(k) w.r.t. k is given by

dTA(k) _
aK’

A(q)(k) = (Q)(k)+A(q)(k)+A(4)(k)+A(q)(k)

q=0,1,2,3,...... (A2)

Derivatives of A,(k):

AP = ij”[(wa‘"’") [ wa‘"“’)
S e, Wi e Wi 12y
mt=1,2,3,..N,; it=1,2,3,4,56 (A3)
Ay = <2ke, Z ”j(w""" wirydy

Jr=1 mt

me=123,...N,, it=1,2,3456 (Ad)

6
2
AP = -2, 3 [ [ VT e Wi hay
jr=1 mt

me=1,23,..N,; it=1,2,3456 (AS5)

AP% =0 g23 (A.6)
Derivatives of A,(k):

N

a 3 2
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pt=1Lli=1
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1
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N
5[5 {1jwee
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U;[Wi?l?)( )[2k+k (— R)]——ex‘()( g;mds’)d H

nt=12.3,..N,; k=123 (A8)

(g} = (ne) (pf)
Ay (k) |: { j J Wetkn ® U _[ ws{tr)(zn)
pr=1kit=1
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gl .pg-3 _apyd=2 2 ipydnl
(5 iR" + 2ak-R) P 4 iR
exp(—jkR)ds }ds}] forg>l1
n=1,23..Ny; k=123 (A9)
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Derivatives of A,(k):

N
WOE [ { =] j (TeWED )
pi=1Lr=1

. —jkR) , .
[ (v e Wiz RCIR) dH
pt

nr=1,23,... N,
. N
- 3[4 s
pr=1kir=1

jjcV'-Wiﬁiﬁ)( Llem! exp(—ij)ds'dsH

kt=1,2,3

kt=1,2,3 (A.10)

nr=1,2,3,...Ng; {A.11)

Derivatives of A,(k):
N, 3
N [ {
21tln( z)um Tt

40w =

= {3 [fwer- ()
g+ G}

qt=1,2,3,...Ny xt=1,2,3 (A.12)

(0)( k)

AP = (A.13)

A9 =0 g2 (A.14)

Derivatives of B(k) :

2jk fErecxp(—jk fe,c21) ”ch:) (Bl

o)

xt=123

B(k) =
gt=1,23,...N;;
(A.15)

(A.16)

B{Q)k = (=} q B(O)(k
(&) uje_,cz,)[ JJ—zJ )

Equation (A.16) is written in a compact form, however, it
must be simplified before evaluating at z; = 0.
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