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ABSTRACT

A technique based on an iterative scheme and a current-
based method has been developed to determine the scattering
and propagation characteristics of arbitrary structures and
environments. To obtain a high degree of accuracy,
parametric surfaces (NURBS) have been used to model the
body surface. The technique solves the MF. IE (Magnetic Field
Integral Equation) defined over the body surface. The aim of
the method is to make the analysis avoiding the memory and
CPU time restrictions imposed by low frequency methods such
as Method of Moments. Approximate expressions, based on
dipole moment formulations, are applied to speed-up the
calculations. Two initial guesses for the CGM (Conjugate
Gradient Method) have been compared in order 1o see which
one presents the best relationship between convergence and
CPU time. Results are presented showing the behavior of the
developed methods comparing them with measuremenis and
other electromagneric methods.

1. INTRODUCTION

The development of a method able to esumate the
influence of arbitrary shaped structures on electromagnetic
problems has great interest when aspects such as time and
money savings are considered. In the application field of on-
board antenna design, it is essential to determine the influence
of the structure on the radiation pattern of the antenna.

Traditionally, when the electromagnetic influence of a
structure had to be determined, one could follow two kinds of
elecromagnetic procedures: integral rigorous approaches or
asympiotic techniques. fnregral rigorous techniques (Method
of Moments (MM) [1], Finite Element method (FE) [2] and
Conjugate Gradient-Fast Fourier Transform (CG-FET) [3])
provide reliable results but they are strongly limited by
compuler requirements (memory and CPU iime) as the
frequency of analysis increases. This fact is due to the
computation and storage of the mutual impedance matrix. On
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the other hand, with dsymptotic techniques (Geometrical
Optics-Uniform Theory of Diffraction (GO-UTD) [4]. Physical
Theory of Diffraction (PTD) [5], etc.) some propagation
features on arbitrary shaped beodies are still not solved.
Therefore, the necessity of new techniques capable of obtaining
results as exact as the integral rigorous techniques with the
computer requirements (low CPU umes and memory)
associated with the asymptotic ones is obvious. These
techniques tend to combine both kinds of methods under a
hybrid, iterative or hybrid-iterative structure.

Electromagnetic techniques can also be classified in terms
of field-based or current-based methods. The former makes use
of intensive ray tracing that can be very cumbersome when
arbitrary structures have to be studied, representing one of the
main problems of high-frequency methods such as GO-UTD.
Current-based methods avoid this ray tracing; they estimate the
current on the surface of the strucmre. The current is
represented by means of basis functions.

Focusing on current-based methods, two kinds of integral
equations can be solved: the EFIE (Electric Field Integral
Equation) and the MFIE (Magnetic Field Integral Equation).
Each integral equation enforces different boundary conditions
on the structure: in the EFIE, the total tangential electric field
on a perfectly electric conductor (PEC) surface is zero and the
MFIE enforces the boundary condition on the tangential
components of the magnetic field. The EFIE is applicable to
both open and closed bodies. Once the integral equation is
formulated and solved, the current is obtained and the
characterization of the structure (radiation patterns, RCS -
Radar Cross Section, elc.) is made straight away.

Looking at literature, one can find hybrid methods that
combine integral rigorous techniques with asymptotic ones. As
it has been said previously, the main motivation is to reduce the
memory and execution time requirements when electrically
large structures are analyzed. Some hybrid methods based on
the EFIE divide the surface into several regions. The current in
each area ts calculated following different procedures with the
idea of restricting as much as possible the region where the
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MM has to work. Generally, the MM region has to include the
discontinuities and the transition region berween the
illuminated and shadowed parts of the structure. Jacobus and
Landstorfer [6]-[8] combine PO currents for the illuminated
region and MM currents for transition and shadowed areas.
Different terms have been added to improve the PO current to
account for edges effects of flat plates [6],[7] and straight
wedge effects [8] through the introduction of diffraction
coefficients derived from UTD.

Within the set of cument-based methods, in [9}-[11]
Thiele e al. present different iterative and hybrid methods to
solve the problem of scattering due to plane wave excitation. In
[S] the Hybrid Diffraction Technique HDT is presented. In
HTD, the surface is split into two regions: the ransition region,
or MM region, and asymptotic region where the MFIE is
directly implemented. The PO current is corrected by some
factors. These factors are calculated via MM (MM region) or
by coupling calculation (asymptotic region). In [10] the
Tterative Method IM is introduced. The IM is a purely iterative
method where the induced current is obtained after four
iteration processes. These processes find the optical and the
correction currents for the illuminated and shadowed regions.
Finally in [11) the Hybrid Iterative Method HIM is developed.
This technique complements the IM and it takes into account
initial currents for the shadow region coming from wedge
theory and Fock currents. Recently, Rahmat-Shamii et al. [12]
have presented their hybrid method HEM (Hybnd EFIE-
MFIE). The term hybrid is owed to the resolution of both
integral equations EFIE and MFIE on different regions of the
geometry. The process is also based on an iterative algorithm.
This last method attempts to overcome the difficulties of
analyzing structures with open and closed regions. For a wide
review of hybrid methods see [13].

The method presented in this paper is a current-based
iterative method that formulates the MFIE to find out the
electrical induced current on a perfectly conducting structure
with arbitrary shape. The main goal of the method is the
analysis of closed structures for which the employment of the
MFIE is justified. The excitation can be either plane wave or
due to an on-board antenna. The MFIE operator is evaluated
applying approximated expressions for the mutual impedance
matrix derived from previous works. These expressions
represent each current basis function in terms of dipole
moments. The dipole moments reduce the CPU time in the
coupling factor calculation. This fact makes their storage
unnecessary giving rise therefore to a reduction of memory.

The structure, modeled in 3D, can be completely
arbitrary. This degree of flexibility can be obtained with the
representation of the environment in terms of parametrié
surfaces denominated Non-Uniform Rational B-Spline
(NURBS) frequently used in the Computer Aided Geometric
Design (CAGD) field. The main advantage is that the
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electromagnetic method works on the model directly collected
from the designing process (aeronautical, civil engineering) of
the structure and no conversion programs are required. This
fact impiies that no representation error would be added since
the geometry is analyzed as it is.

The same iterative process with different initial conditions
has been implemented in order to find which one achieves the
best convergence expending the lowest CPU time. The method
is based on an algorithm that follows the Conjugate Gradient
Method (CGM). A functional is defined over the surface of the
structure using the MFIE. The aim of the method is to
minimize that functional so, at each iteration, the current is
modified to achieve this purpose. When a maximum allowed
error is reached, the iteration process stops, and the structure
can be characterized by means of its current. The two versions
differ in the fact that one of them starts from the PO solution
for the initial induced current; in this sense, the method could
be considered as hybrid. The main application field is the study
of structures whose size is within the resonance range or
slightly above. In this area, the MM is limited by computer
requirements such as the memory needed to store the matrix
elements. The method presented in this paper will only be
conditioned by the time needed to calculate the couplings as
the frequency gets higher because the number of rooftops-
dipole moments increases proportionally to (M8)*. This
problem can be overcome using paraliel programming in the
coupling factor calculus.

This paper is organized as follows: Section II gives a brief
description of how the structure, the excitation and the current
are represented. Section III relates to the iterative algorithm
followed to solve the problem. Section IV shows different
results obtained for canonical structures such as cubes and
spheres or arbitrary shaped structures such as airplanes. Results
are compared with other electromagnetic methods such as MM
and measurements. Finally Section V outlines the conclusions
of this work.

2. STRUCTURE, EXCITATION AND

CURRENT REPRESENTATION

Apart from the iterative method followed to obtain the
current, other important features are:

- geometrical representation of the structure
- excitation characterization

- approximated expressions to represent the current on
the surface of the structure
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2.1. Geometrical representation

The 3D structures to be analyzed can be completely
arbitrary. They are modeled with a set of parametric surfaces
called NURBS (Non-Uniform Rational B-Spline) [14]. These
modeling were first used in the automotive and aeronautical
designing field. Later, and due to their suitable characteristics,
they were introduced in the electromagnetic analysis field [15]-
[17} because they represent, in a highly accurate way, the real
shape of the objects. The main motivation to choose this
representation is the fact that the electromagnetic method
works directly with the real model and a small set of data is
required. Another point to highlight is that flat and canonical
surfaces are special issues of NURBS so it can be said that this
representation is a high compact model to describe an arbitrary
body.

Brefly, a NURBS is a surface which depends on two
parametric variables (%, v). The relationship with them is by
means of polynomial functions called B-Spline bases. As the
B-Spline bases are numericatly non-stable, NURBS surfaces
are translated into a Bézier format. Bézier surfaces are also
parametric patches depending on the variables { %, v). In this
case, the polynomial functions are Berstein basis. The rest of
parameters used to define a Bézier surface are:

— parameters (u, v) : for each surface they take values on
the interval [0.1]. So, for each dimension, the value is 0 at
one of the surface extremes, and 1 at the opposite one.
Each dimension has a polynomial order denoted by m for
w and » for v, i.e. for planar surfaces, the order in both
dimensions is 2

~ control points ﬁfj . in a surface (two dimensions), they

form what is denominated as control mesh or control
network; this mesh provides an idea of how the surface is.
According to the geometric interpretation, the control
mesh is the convex hull of the surface. The vertices of the
control mesh Lie directly on the real surface. These points
are given by means of their rectangular coordinates

- weights W : there is a weight for each control point, they

are also called shape parameters because they give an
idea of how the real surface approaches control point.

A point on a Bezier surface, of order m and » at
parametric coordinates (u, v) s calculated following (1):
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F(u,v) = (1)

where B (1) and B;-’ (v} are the Bernstein polynomials for

each dimension defined as (2):

B (u)= u (1=u)™"

2

) . .
B (u) = ————u' (L —u)™

i (m=i)!

As an example of a NURBS geometry we have Fig. 1.
This drawing represents an airplane comstructed with 58
NURBS surfaces. The analysis of this structure will be shown
later, in Results Section. For a wide review of NURBS
characteristics and properties see [14].

VHF (1.6 GHz.}

k"

Figure 1.- Example of an airplane modeled with 58 NURBS.
VHEF antenna is under the airplane.

2.2. Excitation characterization

The excitation of the structure can be by a plane wave as
well as by an on-board antenna. The antennas can be modeled
with a combination of infinitesimal electric dipoles JED and
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infinitesimal magnetic dipoles /MD [18]. After an empirical
process, the number and kind of dipoles, their locations and

their dipole moments ({7 ) can be determined in such a manner

that the selected dipoles set is able to generate a radiation
pattern equivalent to any commercial antenna. Another option
could be the direct introduction of the antenna radiation pattern
as it is defined by the manufacturer. On the other hand, plane
wave excitation is introduced for RCS calculations. For all the

excitations, monochromatic time variation e’“ is assumed.

2.3, Current representation

As in low frequency methods (MM, CGM), the current is
described as a combination of basis functions over the surface
of the structure. The basis functions are those developed in
[19]. These functions are a generalization of the planar rooftop

functions introduced by Glisson [20] but with the peculiarity of

being directly defined over the parametric subpatches resulting
from the automatic subdivision of surfaces. Each roofiop is
defined between two subpatches, as shown in Fig. 2, keeping in
mind that the size of each one does not exceed the typical limit
of A/8-A/10 to realize the variations in current phase. The goal
of the iterative method, as in the MM, is to determine the
coefficient [; of each basis function. These coefficients

represent the electric current in amperes carried by each
rooftop.

Figure 2.- Current density representation by means of rooftop
basis functions.

To compute the field created by this current, dipole
moments approximation [21} is applied. Under this
approximation, a vector with a specific value and orientation
substitutes each current rooftop. These vectors, called dipole
moments, are calculated from the current rooftops described
previously. Two kinds of moments can be used: electric dipole
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moments p and magnetic dipole moments 7% . Vectors P
are the most significant when we are dealing with current that
presents non-null divergence, as occurs with non guasi-static
approaches. In such cases, vector m is negligible.

As [21] demonstrates, the dipole moments formulation
appears under the simplification of the Green function in free
space when far field conditions are assumed. From a
computational viewpoint, this approximation is very important
because, as Section I shows, simple cross products can
substitute the integrals involved in the electromagnetic
Operators.

3. ITERATIVE METHODS

The method assumes that the surfaces to be analyzed are
perfectly electric conductors. From our experience, the on-
board antenna problem is related to the analysis of closed
bodies of electrically large dimensions. Under this supposition,
it is well known [22] that the magnetic field within a perfectly
electric conductive structure is zero. In such cases, the MFIE
(Magnetic Field Integral Equation) is a good choice to find the
induced current on the surface of the body. Besides the initial
goal of closed structures analysis, we have also observed some
reliable radiation pattern results when the MFIE has been
applied to non-closed structures with large electrical
dimensions; this article presents a significant case of this last
fact.

So, the MFIE yields to the expression (3.

ax H(7y=0
@)
ax (B (7) + B (7))=0

where ¥ is located under the surface. The position above or
under the surface is discriminated by means of the outgoing

normal vector 7. In expression (3), H™ relates to the
magnetic field impressed by the external sources (plane waves

or infinitesimal dipoles) and H*" is the magnetic field
radiated by the induced electric current on the body’s surface

J . The expression for H*® il be an operator directly

applied to the current J ; this operator is denoted as L (J].

If we return to the expression (3), we can see that it
represents a minimization problem where the solution is more
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valid, the closer the expression is to zero. This fact makes us

choose an algorithm capable of finding the current J that
accomplishes with that expression. We have followed a CGM
(Conjugate Gradient Method) [23]. The CGM algorithm is
based on the minimization of a functional defined over a

varjable, in our case ./ . The functional is related to the error in
expression (3) and it is defined as:

Functional (J) =(E, 5) =”E||2
4)
é.:ﬁx("scau +ﬁimP)

where ( . > indicates mner product, || . ” stands for vector

norm and € denotes the residual in CGM nomenclature.

We have to be very careful in the selection of the £
sign. As it is evaluated within the structure, it has the opposite
sign than the one evaluated in the exterior. The evaluation of

H is done by the application of the appropriate operator,
Ly [j ], over the current:

___j)l (H:mp +H5mt:)
5)
x(ﬁim” +LH[j’])

where J' is the approximate solution for J .

The iterative method starts with an initial guess for J,
namely J o that is made null, and afterwards it progresses

following the algorithm [23] till the required relanve error is
achieved in (5). The relative emor after % Y jteration is
evaluated following:

(@ +L, 17%)
ﬁxﬁ’"’”“
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where J X is the induced electric current density after & ™-
iteration. The stop condition is also included in expression (6},

that is, the error should be less than a specified value £, .

typical values for the error are 0.01 or 0.001.

The next step in the method description is the definition of

the operator L ; [J]. This operator obtains the magnetic field

ﬁ due to the current j as expression (7) shows:

[J]_— JEYWV'GFFY ds" D

4n

where G(7,7") is the Green’s function in vacuum defined as:

- jk| 7-7"]

G(F, 7= ] (8)

!F—r

where k=27/A is the vacuum wavenumber with 4 the

— -t . .
wavelength; 7 and 7 are the observation and source points,
respectively.

If the Green’s function is differentiated with respect to the
primed coordinates, we have the expression (9):

Lugir =2 Hj|k|rl R T7 Jas
S

)]

it d

R=r-r

Expression (9) involves several integrals because of the
cross product within the integral. It is obvious that if each
coupling factor is evaluated with (9), when the electric size of
the structure is high, we are in front of a tedious computational
problem. Usually, as coupling calculation is highly time
consuming, the coupling factors are calculated once and then
they are stored for a later manipulation. When dipole moments
approximation is taken into account, a simple cross product
substitutes the complicated integral. With this operation, the
coupling evaluation is very fast and there is no need for
storage.
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The magnetic field induced on rooftop / due to a current
located at rooftop j applying the electric dipole moment p i is

shown in {10):

L Al
LilJ1=——
4zr|R‘

where £ and £ are free space permeability and permittivity,
respectively. The vector D ; relates to the eleciric dipole

moment of the current density in the rooftop j. The expression
for ﬁj is (31

b, =j J,(F)ds’ (11)
5

4

where S ; is the surface area subtended under rooftop /. i.€. the

area of two subpatches.
The magnitude applied to each dipole moment, I ;o s

calculated at each iteration as the Conjugate Gradient algorithim
i the magnetic field is

states. After the caleulation of L ;|J ;

averaged over rooftop i applying as a testing function, the one
shown in Fig. 3. The testing function of a subdomain is defined
along the boundary line between the two subpatches over
which the subdomain extends, The testing functions we
introduce look like curved ‘razor-blades’. However, it must be
noticed that the testing functions we are considering are
‘approximately’ perpendicuiar to the ones typically used in the
EFIE formulations. In our approach for the MFIE we are
considering a ‘razor-blade’ transversal to the subdomain
current, while in the EFIE formulation, the ‘razor-blade’ is
defined parallel to the subdomain current. In Fig. 3 the current
flows from subpatch 1 to subpatch 2. Considering the current
paraliel to the u coordinate, we have the following expression
for the testing function:

if v, SvEv
f min max (12)
elsewhere

W ,.(u,v)z{:)
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where V., , Vg, are the minimum and maximum limits for

the parametric coordinate v of subpatches 1 and 2.

weighting furction &

Figure 3.- Testing function defined along the subpatches
boundaries.

Expression (10) becomes singular for 7, =7,. This

situation appears when the field induced by the own current of
a subdomain has to be evaluated. At this point, the operator

Ly [J] when 7 =F is formulated as:

Li[jz]=—%ja><ﬁi (13

where J, is the current density on rooftop i and 71; is the

unitary outgoing normal vector at 7, .

An important step in the Conjugate Gradient algorithm is
the definition of the adjoint operator of Lg[J], denoted by

L‘;?j[j ]. The adjoint operator over rooftop i due to the

current at 7; is computed as:

(14)
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where ( ) stands for complex conjugate. When 7 =7, the
adjoint operator is:

L?aj[ji]z_%(j'Xﬁi)*

(15)

For our application, the Conjugate Gradient algorithm
(23] begins to iterate with a null current, that is, all coefficients

I, are set to zero. Later, and as a function of the impressed

fields, the current is modified at each iteration, changing the
coefficients /;. The method stops when condition (6) is

satisfied.

Once the induced current has been calculated, the radiated

elecuic field Esmn, under far field conditions, can be
evaluated. For this task, the electric dipole moments P are

also utilized [21]:

N° raaftops

E-scart(g):_if:ﬂ. Z_[i[ﬁj —(§-f}, )gkjk(ﬁ'g)(lﬁ)
=1

where § is the observation direction.

The iteration procedure is completely defined, next step
will be the characterization of the two versions derived from
the Conjugate Gradient algorithm. They differ in what is

considered as impressed field, Ef imp , in the definition of the
functional (5).

3.1.CGM#1

In this case, the impressed magnetic field H™ is the
field directly due to the external sources. From now on, this

external field will be denoted as H . The induced current,
given as solution, is the one obtained when the Conjugate
Gradient algorithm achieves the required error.

7= JCOM

H™ =H" = (17)
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32.CGM#2

In CGM#2, the impressed magnetic field H™ is both
the one due to the external sources, H e and the one that

770 induces. 7O is the Physical Optics approximation
curent, i.e. current is catculated only on the illuminated region
of the geometry as Fig. 4 illustrates.

~ 7 ext r= - illuminated
7707 ={2an (Fy ¥eSs (18)

0 Fe S shadowed

illuminated region

e
(=

antenna

X shadowed region

Figure 4.- Physical Optics approximation for the current.

The cumrent obtained with the iterative method,

J CGM, will be now a residual current. J CGM  orrects the
PO current on the illuminated region of the structure, and it is

directly the induced current on the shadowed region because

there, J PO s null.

A =A% + Ly [P0 = J=J70 + T o)

4. RESULTS

This section will show some results concemning both
canonical structures and realistic targets. Results of the iterative
methods are compared with measurements as well as with MM
computation [19]. Perfectly conducting surfaces are considered
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in all cases. The iterative methods have been implemented in a
Fortran code called SIMCOR. Table I illustrates the efficiency
achieved with respect to an MM code and to a PO code. In
order to have a proper reading of Table I, the MM and
SIMCOR results have been obtained considering a maximum

allowed error £,,,, of 0.01, expression (6). The computer used

is a Silicon Graphics PowerChallenge (size L) with 1Gbyte of
RAM and 1 processor R10000 has been used, this processor
can reach a peak performance of 380 MFlops.

Number MEMORY (Mbytes)
Rooftops MM SIMCOR
CUBE 1452 492 1.2
CYLINDER-PLATE 4643 448 .5 1.6
CPU TIME

MM PO CGM#1 | CGM#2

CUBE . | 00:05:59 | 00:06:53

CYLINDER-PLATE e . 00:44:54 | 00:59:19

02:35:22 | 00:00:16 | "1 | (1310

Table I .- Performance of the developed methods. Computer
resources; memory and CPU time.

4.1. Cube

Fig. 5 shows a cube with side of A. A cube side of A, total
surface of 6 A%, needs 1452 basis functions if we consider 10
rooftops per wavelength. The excitation is an infinitesimal
electric dipole located above the top face of the cube at a

height of A/2. The dipole moment for the antenna Iy -/ is 1.0
and its orientation respect to the absolute coordinate system is
64 =90°, @4y, =45°. The dipole is shifted from the
center of the top face towards the vertex and it is separated 0.1
A from the vertex. The radiation pattern for the far field, Eg
component at the cut ¢ =0°, is shown in Fig. 6. The main
comments to be made are that both versions of the CG
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algorithm converge on the same value and they are really close
to the MM solution. A great improvement is obtained with
respect to the PO solution (dashed line). The dipole has been
located so near the vertex to consider its effect, as Fig. 6 shows,
the behavior of the new method is satisfactory in the analysis of
such kind of discontinuities.

Figure 5.- Cube geometry, the side of the cube is 1 A. The
arrow indicates the position of an infinitesimal electric dipole
considered as the external excitation.

i Eg | (dB}

a

INERRRRRN!: NERENS

20,

30

=40 A
: —— MM == POTA CGMzl vem CGM#2

5O : £ :
0 30 . 80 90 120 180 180

Theta {degrees)

Figure 6.- Far field radiation pattern for the cube, K,

component, cut ¢ = 0°.

4.2. Cylinder-Plate

In this case, an open structure is studied, Fig. 7. This
geometry is composed of a quarter of a cylinder (radius=3A,
length=31) and an attached plate of dimensions 3A x 4.5A. The
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infinitesimal electric dipole is located at 1.5 from one side of
the plate at a height of A/2. The area to analyze is bigger, 27.6
A? which requires 4643 unknowns (8/) in the curved surface
and 10/A in the plate). Fig. 8 presents the radiation pattern for

the £, component in the cut &6 =90°. Unexpected reliable

results are obtained except for the deep shadow regions, but
here the field magnitude is 30 dB below the maximum value.
An overall improvement with respect the PO solution is again
cbtained.

Figure 7.- Cylinder-Plate geometry and position of the
infinitesimal electric dipole considered as the external
excitation.

[un)

e
o

DRERERRRRNT ER RN RN

-20
-30 = 4 an,
o A & :
Z » 1
v, &
40 4 1 4 W ;
z . VA
33 l—-—MM-——— PO A SGM=7 wea cwﬂ
-50 P SO Uy e
0 30 B0 90 120 150 180 210 240 270 300 330 360

Phi {(degrees)

Figure 8.- Far field radiation pattern for the cylinder-plate,
E g component, cut 6 = 90°.

This good behavior could be explained because the
structure is large enough to suppose that the magnetic field
under the surface is very small. In this case, the application of
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the MFIE is not so erroneous. The committed error is
negligible, and apparently, it does not affect the results.

4.3. Airplane

Fig. 1 shows a realistic airplanc. The airplane analyzed is
a scaled model 1:12 represented by 58 NURBS. SIMCOR
results are compared directly with measurements. The on-board
antenna is denominated VHF and it is placed under the airplane
as Fig. 1 shows. This antenna is a typical blade antenna with
hemispherical coverage. The antenna is oriented parallel to Z-
axis and positioned at the front part of the fuselage really close
to its surface as indicated in the figure. The absolute coordinate
system is centered inside the structure. For the operation
frequency of the VHF antenna, the airplane dimensions are
9.5 x 11.4A x 3.2A. The number of subdomain basis required
for this analysis has been 17770. This problem only requires
5.8 Mbytes of memory RAM. The iterative version CGM#2
has completed 91 iterations to achieve an error of 0.1.

Fig. 9 represents the far field radiation patern, £,

component, for the cut ¢ =90°, The results for CGM#2

version are shown with a dotted line, the PO solution with a
dashed line and the measurements with a continnous line.
Really good approximation to the measurements can be
observed and an appreciable improvement with respect PO
solution is also obtained.

|Eg | (B

LIS [TITIO

-20¢

-30
t i
: !

-40% :
. $ H
I i ~~ ’
; |7—mecsuremen1s-—-- PG ame ZhMc? N

_50 B et e i et e it D LA ik At a e = m————— e —— .__;
0 30 60 90 120 150 180 210 240 270 300 330 360

Theta (degrees)

Figure 9.- Far field radiation pattern for the airplane, E,

component, cut ¢ =90°.
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5. CONCLUSIONS

An iterative method has been developed in order to find
the induced electric current on the surface of complex 3D
structures with arbitrary shape. The structures are modeled
using parametric surfaces cailed NURBS. An important feature
of the developed method is the application of the dipole
Under this approximation, the
implementation of the MFIE is done very fast and the coupling
matrix is not stored. The efficiency in computer resources,
compared with MM requirements, can be observed in the

moments  formulation.

figures shown in Table L

The iterative scheme is based on the Conjugate Gradient
Algorithm. The CG algorithm ensures the convergence for all
the tests considered. Two different versions of CG algorithm
have been implemented changing the impressed field in the
functional definition (5). One of the versions changes this
impressed field taking into account the Physical Optics
currents, in this sense, the method could be considered as

hybrid.

Both iterative versions reach the same solution for the
current although one takes a larger number of iterations than
the other. This is because the maximum allowed error does not
have the same meaning for the two versions. Version CGM#2

is more accurate for the same value of &,,, because the

impressed field H ™ is lower since the field due to the PO
currents tries to cancel out the external field due to the

excitation.

Finally, the CG algerithm implies the computation of four
operators Ly for each iteration so, these methods are
appropriate for the analysis of structures with electrical

dimensions on the resonance range or slightly above.
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