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Discretization Errors in the Graphical Computation of the
Physical Optics Surface Integral

Juan M. Rius, Daniel Burgos, Angel Cardama”

ABSTRACT. This paper studies the sources of dis-
cretization errors in the graphical computation of PO
surface integrals. Three different PO models that as-
sociate to screen pizels patches of different shape and
orientation are presented. The RCS versus frequency
results obtained for o sphere show that when the reso-
lution in the surface discrefization is high enough for
the working frequency, the best results are obtained with
the triangle mesh PO model (Gordon formula) [2], but
the tangent plane approzimation of J.S. Asvestas [13]
achieves the hest trade-off between CPU time and accu-
racy. When the resolution in the surface discretization
is not high enough for the working frequency, the best
results are obtained in most cases with the heuristic ap-
prozimation of J.M. Rius [11] [12], due to the use of
interpolated unit normals in pizels inside the flat trian-
gles of the rendering model.

I. INTRODUCTION

One of the most important applications of the physi-
cal optics {PO) approximation is the prediction of the
radar cross section {RCS) of electrically large surfaces
f1]. The computation of the PO surface integral for
realistic Tadar targets requires adequate modeling of ar-
bitrary surfaces. For that reason, computer-aided de-
sign (CAD) software packages are used for geometric
modeling of the target. Arbitrary surfaces are usually
modelled for RCS computation as:

e A collection of flat polygonal facets:

— The PQ surface integral can be computed for
each facet with a simple formula [2]. This
leads to simple computer code and fast compu-~
tation (3] [4]. Since only facets illuminated by
the ipcident field contribute to the scattered
field, some additional processing is necessary
to remove the contribution from eclipsed or
shadowed facets.
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— However, the approximation of a curved sur-
face with a reasonable number of facets intro-
duces artificial edges, which leads to the so-
called "facet noise” in the RCS computation.

e A collection of curved patches, mathematically
represented as non-uniform rational B-splines
(NURBS) parametric surfaces [5] [6]:

— In contrast to facets, parametric surface
patches can accurately approximate curved
surfaces (all conics can be exactly represented
as NURBS) and thus the modeling noise is
usually negligible.

— However, since NURBS are piecewise ratios
of polynomials, direct computation of the PO
surface integral for NURBS is not as com-
putationally efficient as for flat facets {10]
and asymptotic approximations are commonly
used {7] (8] [9]. This involves the identification
of illuminated stationary phase points [1] and
the computation of radii of curvature, which
leads to complex computer code and slow com-
putation.

Recently a graphical processing procedure has been
presented for simple and fast computation of the PO
surface integral over parametric surfaces [11] [12]. Us-
ing a graphic workstation we can obtain a 3-D image of
the target. If the viewpoint of the observer is located at
the position of the monostatic radar, then the picture
on the workstation screen contains only the illuminated
surfaces and edges: the shadowed ones are not visible
from the observer viewpoint because they have been re-
moved by the 3-D visualization hardware.

Instead of processing the geometry database that
mathematically defines the arbitrary surface, the 3-D
image of the object is processed in order to obtain the
relevant geometry information for illuminated surfaces,
namely the (z,y,z) coordinates and the unit normal
(24 My, 2 ) associated with the image pixels. Compu-
tation of the PO surface integral is now simple, fast and
independent of the geometric model (same code for facet
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or NURBS). Furthermore, since ail the geometric trans-
formations necessary to discretize parametric surfaces
into pixels are performed by the hardwired graphics pro-
cessor of the workstation, the CPU is freed from the
computationally intensive geometric processing tasks.

However, the discretization of 3-D geometric mod-
els into pixels by the graphics processor produces some
“modeling noise” in the RCS prediction. The aim of this
paper is the study of discretization errors arising in the
PO computation by graphical processing techniques, for
both facet and parametric surface models.

II. PIXEL DISCRETIZATION OF A GEOMETRY MODEL

For computation of the PO surface integral, an arbitrary
surface is discretized into a collection of small patches
associated to screen pixels. In this procedure, five dif-
ferent geometry models are sequentially processed:

1. Original surface (cylinder, sphere, etc. )

2. Geometric model created by the CAD software
package and stored In a geometry database. As
mentioned before, two kinds of geometric models
are widely used:

e Facets model: collection of flat polygonal
facets.

e Parametric surface model (NURBS): Each
surface patch is represented as a piecewise
function corresponding to a ratio of polyno-
mials [3] 6].

3. Rendering model. The graphics processor is
able to render only flat triangular facets, defined
by the (z,y,z} coordinates and the unit normal
# = (nz, Ny, n:) at triangle vertices. The CAD geo-
metric model is thus discretized into a triangle mesh
by the geometry engine of the graphics processor.

o Facets model: Polygonal facets of more than
three sides are subdivided into adjacent copla-
nar triangles. Unit normals (nz,ny,n:) at the
vertices of triangles are set equal to the unit
normal to the facet.

e Parametric surface model: NURBS are dis-
cretized into a triangular facets mesh by sam-
pling the piecewise polynomials. This process
is called tessellation. Unit normals at trian-
gle vertices are set equal to the unit normals
to parametric surface at the vertices location.
The resclution in this triangular mesh tessel-
lation is set as & user parameter.
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a} Faceted shading

o {x.y.z) coordinates of pixels

----- Rendering model surface
<— Unit normals
-—— PO model surface patches

b) Interpolated shading

Figure 1 - Computation of the unit normal to pixels by
different rendering techniques: a) flat or faceted shading
sets all the normals equal to the normal to the facet, b)
interpolated or smooth shading interpolates the normals
at the triangle vertices. This figure has been obtained
from the (2, y, 2z, nz, 1y, N.) information available at the
frame-buffer and z-buffer of a Hewlett-Packard CRX-
487 graphics processor.

4. Pixel model is defined by the (z,y, 2, 1z, 7y, Nz )
information at each image pixel. The graphics pro-
cessor provides the z,y coordinates from the pixel
row and column, the z coordinate from the z-buffer
[11] (6], and the (nz, 7y, n;) components of the unit
normal from the color information available at the
frame-buffer [11] [12]. The unit normal at each
pixel depends on the shading technique used to ren-
der the image [6]:

e Flat or faceted shading: The unit normal is set
constant for all pixels inside a triangle (figure
la).

o Interpolated or smooth shading: The unit nor-
mal at pixels interior to triangles is obtained
from bilinear interpolation of the unit normals
at the vertices of triangles (figure 1b).
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— For facets models, the image resulting
from interpoclated shading is the same as
with flat shading,

— For parametric surface models, the trian-
gle mesh with interpolated shading has a
smooth, not faceted, appearance.

5. Physical optics model: From the pixel model in-
formation, (z,y, z,Ng, Ty, Nz ), a surface patch must
be associated to each pixel so that the PO surface
integral is computed as the addition of contribu-
tions of all surface patches. There exist different
PO models that associate to pixels surface patches
of different shape and/or orientation.

11I. PuysicalL OpTics MODELS

Three PO models have been programmed in the
GRECQ code and are compared in this paper. For sim-
plicity, we will consider only the monostatic RCS case.
We define the 3-D coordinate axis as follows: z,y are
the 2-D coordinates of the workstation screen while z is
perpendicular to the screen and points to the direction
of observation. We assume that pixels are square in the
zy plane, with side h and area h?. The monostatic PO
surface integral over the surface patch .5 associated to a
pixel is

I=fej2k’='r" cost ds:/ej?k” cosfds (1)
s 5

where k is the wavenumber, 7 = % the direction of ob-
servation, 7 the position vector to a point of § and @
the angle between the direction of observation and the
unit normal, cos# = - A = n,. As mentioned before,
different PO models associate to pixels surface patches
S of different shape and/or orientation:

A.  Circuler pizel approximation

This model was developed in the first version of GRECO
code [11] through an heuristic trial and error proce-
dure, in order to reduce the modeling errors due to low-
resolution triangular mesh tessellation of NURBS. This
allowed a reduction of the number of triangular facets
in the rendering model and, therefore, an improvement
in the rendering time.

When the resolution in the triangular mesh is poor,
a better approximation of the unit normals to the orig-
inal surface by the unit normals of the pixel model can
be achieved by rendering with the interpolated shading
technique. The surface patch associated with each pixel
is assumed as an ellipse centered at (x,y, 2) with unit
normal 2 = (ng,n,,n:), that projects into the zy plane
as a circle of area h? (figure 2). The PO integral for this
surface patch is

Figure 2 — Circular pixel model: the surface patch
associated with a pixel is an ellipse of semiaxis a =
h/(y/mcosf) and b = h/+/m, that projects into the zy
plane as a circle of area h?. The ellipse is centered at
(z,y,2) and oriented with the normal A = (g, Ny, nz) -

Jl(vz;khta.n )

Bj2kz' 9
72;kh tan 6 @)

I =2n°

In order to speed up the computation, the J; (v} /v
function in equation (2) can be tabulated against cos 6 =
n. [11]. However, the whole table must be recalculated
for each radar operating frequency, and for that reason

the first order Bessel function 2.J; (72;15) / (Vz;u) is ap-
proximated by 7, (u) = sin (u) /u. These two functions
have the main lobe almost equal, but the second one

can be computed much faster using the floating point
unit of the workstation. This results in the formula

I = h¥n, (khtand) ei%* (3)

which is used in reference {11] to obtain equation (6).

In order to remove the spurious PO contribution from
the shadow boundary {1] and to decrease the error from
the region of fast phase variation, an optional correction
factor cos™ § is included [11], where n is a parameter set
by the user,

I = h?n, (khtan @) cos™ ¢ g2k’ (4)
which leads to equation (7) in [11].
B.  Tangent plane approzirnation

In this approach, recently developed by J.S. Asvestas
[13], the surface patch associated to each pixel is a flat
plate with # = (ng, ny,n,), limited by the square pixel
boundaries in the (z,y) screen (figure 3). The PO con-
tribution from each surface patch is:

I="hy, (kh%) T (kh%) 2%’ (5)

Defining # = & sin 8 cos ¢+ sin @ sin ¢+ 2 cos 8, (5) sim-
plifies to

I = h2p, (khtanfcos @) m, (khtan 6 sin @) L ()
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b) PO model: Tangent plane

a) Pixel modet

Figure 3 — Tangent plane approximation: the surface
patch associated with a pixel is a quadrilateral with unit
normal #i = (ng,ny,n.) limited by the square bound-
aries of the pixel centered at (z,¥).

. Triangle mesh model

The PO surface integral can be computed exactly over
the rendering model triangle mesh. From the (z,v,2)
coordinates associated with a group of four adjacent pix-
els arranged in a 2x2 pattern, the vertex coordinates
of two 3-D triangles are obtained (figure 4). The PO
contribution from each triangle is calculated by using
Gordon’s formula [2] [1]. In the implementation of this
PO model, two questions arise:

1. When a surface is eclipsing part of another one, ad-
jacent pixels that belong to different surfaces gen-
erate spurious triangles that are grazing to the in-
cidence direction. The PO contribution from those
triangles is small compared to that of triangles with
broadside incidence, and thus no special care is re-
quired.

2. For each 2x2 pixel pattern, there are two possible
triangle pairs. The choice between those two possi-
bilities is arbitrary and of small significance in the
final results.

The bistatic Gordon’s formula for a polygonal facet
with M sides of center points /-, and vector from origin
to end vertices Alp,, with Ry polarization of the incident
magnetic field and é. polarization of the electric field
receiver is [2] [1:

—f- érxfli M _ o -
- —%T_—) n;ﬁ Bl Ty ('lﬁ%_w
(M

where in the monostatic case, with observation direc-
tion # = %, we have &, x by = =2, W =i —T = -2z,

)
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2 x 2 pixel pattern
on screen

3-D triangle
vertex

Figure 4 — Triangular mesh model. The surface associ-
ated with four adjacent pixels arranged in a 2x2 pattern
in the screen is a set of two triangles with a common
side.

T = |ax @] = 2,/n2+n2, p = (A x W) /T = 2(nz§ —
ny%)/T. The monostatic version of (7) is, therefore:

Nz

M
1=-k—z

m=1

9 (n2 +n2) m (KAZm)

(&)

where 2., = % - ¢, and Afm = Az + Aymi + Azmi.
For broadside incidence, n, = ny = 0, there is a re-
movable singularity in (8), that can be replaced by the
lirnit
lim [ =h® e¥*
nZ4ni-—0

9)

A very good technique for avoiding computational in-
stabilities when computing the value of the integral 1
near the singularity is described in [14].

It must be noted that the unit normal informa-
tion (7mg,my,n.) available in the pixel model is not
used. The unit normal in (8) is computed for
each triangle from the vertices’ coordinates as 7

(A?i x A@z) /|/_\.E1 x Ae"2|.

D. Theoretical comparison of PO models

A theoretical comparison of these three PO models leads
to the following conclusions, which will be confirmed
by numerical results: the tangent plane approximation
and triangular mesh models are obviously more accu-
rate than the circular pixel approximation. In fact, the
later, equation (3), is equal to the tangent plane ap-
proximation (6) only if the observation direction is in
the zz or the yz plane, ¢ = 0,7/2, 7,37 /2. Large errors
from & single pixel contribution are obtained for obser-
vation directions away from the zz and yz planes and
khtanf > 0.5.

However, the main contribution to the PO surface
integral over the whole object is obtained from the pixels
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near the stationary phase point [1], which approximately
has # < 1/(2ka)}, where a is the radius of curvature of
the surface at the stationary phase point and in the
direction of evaluation of the integral; assuming that
these pixels have the derivative of the phase with respect
to the distance to the stationary phase point smaller
than 1, d(2k2') /dy < 1. For these ‘stationary phase
pixels’, the argument of the 7, function in {6) is, thus,
very small, khtan® < h/(2a) < 1, if the pixel size h
is much smaller than the radius of curvature a. The
value of the PO integral for stationary phase pixels is
therefore I = A2 e72%% for both the circular pixel (3) and
the tangent plane approximations (5) (6), independently
of the electrical size of the pixel.

On the other hand, for electrically large objects the
circular pixel approximation obtains a large error for
pixels in the region of fast phase variation near the
shadow boundary, where khtané > 0.5. However, the
contribution of these pixels is small, and can be further
reduced with the cos™ @ correction factor {4). This ex-
plains why results of the circular pixel approximation
(3) (4) are acceptable for electrically large objects mn
references [11] [12].

The triangular mesh model gives the most accurate
evaluation of the PO surface integral over the rendering
model triangular mesh. Results should be slightly better
than with the tangent plane approximation because the
later uses the unit normal information at pixels. This
leads to a PO model with a discontinuous surface at
triangle edges if the faceted shading technique is used
{figure 1a), or at pixel edges if the interpolated shad-
ing technique is used (figure 1b}. On the other hand,
the triangular mesh model does not use the unit normal
information at pixels and therefore has a continuous sur-
face corresponding exactly to the rendering model, with
both faceted or interpolated shading techniques.

IV. SOURCES OF DISCRETIZATION ERRORS

Discretization errors arise from the transition between
the five geometry models presented in section IL:

1. From the original surface to the CAD geometric

model.
e Significant discretization errors for facets
models.
¢ Negligible errors for parametric surface mod-
els.

2. From geometric model to rendering model (triangle
mesh tessellation).

e No error on facets models.

e There is a discretization error for parametric
surface models. However, since usually the
resolution of the triangular mesh is much bet-
ter than the resolution of a facets model, this
error is often negligible compared to the dis-
cretization error in the facet models and needs
to be accounted for only in low-resolution tri-
angular meshes.

The facetization error from the original surface to
the rendering model, arising either from the facets
models or from the triangle mesh tessellation, sets
an upper bound on the electrical size of the object.
For example, a sphere of radius a discretized into
M triangles has approximately M/2 non-planar

quadrilaterals and N = oM — /M straight seg-
5 g

ments along its circumference (figure 5). The face-
tization error is therefore:

Figure 5 ~ A sphere discretized into M = 16 triangles,

corresponding to M/2 = 8 non-planar quadrilaterals,
has its circumference approximated by N = /24 =4

straight segments.
A ( . T ) _a e
TN T e

The usual maximum allowed phase error of A <
2/20 leads to a maximum frequency

L3 M M
max = 00 #2¢ ~ 1000a

ﬁ% <<1 (10)

CHz  (11)

3. From rendering model to pixel model. Errors at
this step depend on the shading technique used for
rendering the model:

s Flat or faceted shading: no error.

e Interpolated shading: due to bilinear interpo-
lation, the unmit normal at pixels interior to
triangles is not perpendicular to the triangle
mesh surface. The amount of noise introduced
by this step depends on the PO model: The
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Z-coordinate: % of maximum depth

triangular mesk PO meodel (8) does not use
the unit normal information at pixels, and is,
therefore, free from that source of error. On
the other hand, some noise is introduced in
the tangent plane () and circular pixel (2)
approximations. In the later, this noise can
cancel, in part, the facetization error due to
parametric surface tessellation.

Additional errors at this step are introduced
by the hardwired graphics processor. The
computation of z coordinate and unit normal
A = (Niy, gy, M) for all pixels and their quanti-
zation in, respectively, the z-buffer and frame-
buffer may not be correct, specially near inter-
section curves of parametric surfaces. Figure
6 shows the errors i the z coordinate for the
image of a right circular cylinder.

40[

39 r

38 r

T

6

Horizontal cut

35
150

200 250 300 350
X-coerdinate (pixel number)

Figure 6 — Errors in z coordinate for the end cap of a
right circular cylinder. The z coordinate in a horizontal
screen row has been plotied versus the discrete x coor-
dinate. z should be constant and equal to 37.5 % of the
maximum depth, but an error of 0.25 % of maximum
depth can be observed. The image has been obtained
from the z-buffer of a Hewlett-Packard CRX-48Z graph-
ics processor.

4. From pixel model to PO model:

Circular pixel approximation: PO surface in-
tegral is approximated by the summation of
contributions from elliptical surface patches,
which is not equal to the integral over the sur-
face of the rendering model (triangular facets
mesh}. This introduces an error, which de-
pends on the shading technique used and is
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small for pixels near the stationary phase
point.

e Tangent plane approximation:

— Facets models with any shading and para-
metric surface models with faceted shad-
ing: Since unit normals at all pixels are
perpendicular to the rendering model sur-
face, the PO surface integral over the sur-
face patches is almost equal to the inte-
gral over the rendering model. Small er-
rors come from the surface discontinuity
at triangle or facet edges (figure la).

— Parametric surface models with interpo-
lated shading: Since unit normals at pix-
els interior to triangular facets are not
perpendicular to the triangle mesh sur-
face, the surface patches associated to pix-
els are disconnected and not parallel to
the rendering model (figure 1b). The PO
surface integral obtained is thus not equal
to the integral over the rendering model,
but the error is in general smaller than the
error due to the circular pixel approxima-
tion.

e Triangular mesh model: Since the triangles
defined by the (z,y,z) coordinates of pixels
are tangent to the rendering model surface
and the unit normal to the surface is obtained
from the triangle vertices coordinates, this PO
model obtains an exact computation of the PO
integral over the rendering model.

5. Frame-buffer resolution: The frame-buffer is a por-

tion of RAM memory at the graphics processor that
contains the color information for all pixels at the
workstation screen. This color information is asso-
ciated with the (n,, ny,n;) components of the unit
normal [11], [12]. For obvious memory size restric-
tions, the frame-buffer size is usually equal to or
less than 1280 x 1024 pixels. This produces a neg-
ligible quantization error for maxamum size image
windows (usually 1024 x 1024 pixels). However,
since the CPU time for computing graphically the
PO integral is proportional to the number of illu-
minated pixels in the object image, faster compu-
tation can be achieved by rendering in a smaller
window, at the cost of increasing the discretization
error.

Even for small image windows, the error in the RCS
computation is negligible for broadside incidence.
However, surfaces with grazing incidence have a
smaller projection on the workstation screen in the
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Figure 7 — Monostatic RCS of a 5\ x 5 square plate
versus aspect angle at a frequency of 9.227 GHz. An-
alytical PO {dash line} is compared with the results of
graphical computation (solid line) for a Hewlett-Packard
CRX-24Z graphics processor. Plots a) and b) respec-
tively correspond to 362 x 362 pixel and 72 x 72 pixel
plates.

direction of fast phase variation, which produces
a significant quantization error in the RCS results.
For example, a square plate that with broadside in-
cidence occupies 72 x 72 pixels at the workstation
screen, with 6 = 69 deg incidence occupies 72 x 25.8
pixels. Since the plate size in the direction of graz-
ing incidence must be approximated by either 25 or
26 pixels, an error up to 3.2 % is made in the plate
size, which produces a 15 dB error in the compu-
tation of the PO integral. The result of the frame-
buffer quantization error is a spurious oscillation
in the monostatic RCS plot for large aspect angles.
These oscillations are larger for poorer surface dis-
cretization in pixels. Figure 7 shows the RCS in
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dBsm versus aspect angle for a 5 square plate at a
frequency of 9.227 GHz, computed graphically with
a Hewlett-Packard CRX-24Z graphics accelerator.
PO integral has been computed with the circular
pixel model (3). Figure 7 a) and b) correspond re-
spectively to 362 x 362 and 72 x 72 pixel size of the
flat plate.

In conclusion, the frame-buffer discretization er-
rors are significant only for grazing incidence, when
the PO contribution of the surface analyzed is usu-
ally masked by edge diffraction, the reflection from
some specular point or the broadside PO contribu-
tion of another surface. We are encouraged by this
fact to process small size images of the object in
order to reduce computation time.

6. Z-buffer quantization: The z-buffer is a portion of
RAM memory at the graphics processor that con-
tains the z coordinates of all pixels at the worksta-
tion screen. If the z coordinate is discretized with
b bits, there are 2° depth levels between the point
of the object closest and furthest to the observer.
With a usual sampling of A/16, the maximum size
of the object is 2°/16 = 2°~* wavelengths. This
is equal to 4000X for a 16-bit z-buffer. For curved
surfaces, the z-buffer quantization error is in gen-
eral less restrictive than the facetization error from
the original surface to the rendering model triangle
mesh, equation (11). For flat surfaces, the z-buffer
quantization error is less restrictive than the frame-
buffer resolution error.

V. REesuLts

In order to test numerically the accuracy and CPU times
for the different PO models, a NURBS model of a sphere
of radius equal to 1 meter has been analyzed. Figures
8, 9 and 10 show the monostatic RCS versus frequency
normalized with the geometrical optics approximation
a2 for a discretization into, respectively, M = 6400,
40000 and 160000 triangles. The maximum allowed fre-
quency according to equation (11) is, respectively, 19
GHz, 120 GHz and 480 GHz. Results for the three dif-
ferent PO models and for the faceted and interpolated
shading techniques are compared.

The plots in figures 8, 9 and 10 lead to the following
conclusions:

o The triangle mesh PO model gives exactly the same
results for faceted and interpolated shading tech-
nigues, as expected.

o For f < fmax (11):

— the best results are obtained with the triangle
mesh PO model,
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Figure 8 - Monostatic RCS versus frequency for a sphere
with radius equal to 1 meter, normalized with the ge-
ometrical optics approximation ma?. The parametric
surface has been discretized into M = 6400 triangles;
and, therefore, the maximum allowed frequency (11) is
19 GHz. Results for the three different PO models are
compared.
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Figure 9 — Monostatic RCS versus frequency for a sphere
with radius equal to 1 meter, normalized with the ge-
ometrical optics approximation ma?. The parametric
surface has been discretized into M = 40000 triangles;
and, therefore, the maximum allowed frequency (11) is
120 GHz. Results for the three different PO models are
compared.

— the tangent plane approximation is slightly
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Figure 10 — Monostatic RCS versus frequency for a
sphere with radius equal to 1 meter, normalized with the
geometrical optics approximation 7a”. The parametric
surface has been discretized into M = 160000 triangles; .
and, therefore, the maximum allowed frequency (11) is
480 GHz. Results for the three different PO models are
compared.

worse than the triangle mesh model, proba-
bly due to the discontinuities at triangle edges
(faceted shading) or pixel edges (interpolated
shading),

— The circular pixel approximation is out {errors
up to =10 dB) for f > fmax/2 in figure 9 and
f > fmax/3 in figure 10.

o For f > fuax (11):

— all three PO models are out,

— in the circular pixel and tangent plane approx-
imations, the results obtained with faceted
and interpolated shading techniques are com-
pletely different,

— in most cases, the best results (average error
about +5 dB) are obtained with the circu-
lar pixel approximation and the interpolated
shading technique.

CPU run times corresponding to the three PO models
for a Hewlett Packard 735 CRX 48-Z workstation are

shown in table 1.
VI. CONCLUSIONS

The sources of discretization errors in graphical com-
putation of the PO surface integral have been stud-



PO model Indexed tables | PO integral
Circular pixel 16 ms 40 ms
Tangent plane 91 ms 138 ms
Triangular mesh | 163 ms 577 ms

Table 1. CPU run times in a Hewlett Packard 735 CRX
48-7 workkstation for the sphere model described in fig-
ures 9, 10 and 11. The second column shows the in-
dexed tables computation time. Those indexed tables,
that contain the values of the complex exponential and
7, functions to speed up computation, must be recom-
puted for each frequency. The third column shows the
PO surface integral computation time, for a single fre-
quency and view angle.

ied. Three different PO models have been presented.
The RCS versus frequency plots for a sphere show that
when the resolution in the surface discretization is high
enough for the working frequency, f < fmax (11), the
best results are obtained with the triangle mesh PO
model {Gordon formula) [2]. Tangent plane approxima-
tion of J.S. Asvestas {13] gives slightly worse results, but
the computation is 4 times faster. The circular pixel ap-
proximation of J.M. Rius [11] [12] is the fastest, but er-
rors up to 210 dB for the highest frequency ranges make
the results unacceptable for most applications. Accord-
ingly, for high resolution surface discretization the best
trade-off between CPU time and accuracy is achieved
with the tangent plane approximation.

When the resolution in the surface discretization is
not high enough for the working frequency, f > fmax
(11), all three PO models are inaccurate. In most cases,
the best results (average error about +5 dB) are ob-
tained with the circular pixel approximation and the
interpolated shading technique. This is due to the use
of interpolated unit normals in pixels inside the flat tri-
angles of the rendering model.
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