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Abstract

In this paper we present an approach based on the method
of moments for the solution of an electromagnetic compati-
bility problem. We determine the results of the impact of an
electromagnetic wave on metallic housings with small holes.
By separating the interior and the exterior of the housing
we are able to use the Green’s functions of the cavity. The
number of unknowns is therefore reduced compared to solu-
tions using the free space Green’s functions. Different sets
of functions (either local or global) are used for the method
of moments (MoM). Furthermore, we present a method to
generate broad band data from only a few computations by
using an “intelligent” interpolation procedure. Finally, we
present an experimental setup and compare our computa-
tions with measurements.

1 Introduction

Coupling of electromagnetic energy into cavities through
one or more holes in its walls is one major problem in the do-
main of electromagnetic compatibility. This configuration is
subject of several papers which concentrate on numerics or
experiments. Taflove and others used the Finite-Difference
Time-Domain approach, also coupled te the Method of Mo-
ments [1]. Others take a more overall look of the prob-
lem [2], while comparison between the Finite-Difference
Time-Domain approach, the Method of Moments and ex-
periments can be found in [3]. In the present paper, we will
use the MoM to compute the currents in the cavity when
excited by a plane wave. In doing so, we aim to under-
stand more closely the phenomena of coupling and the phys-
ical aspects related to them. Our method is also applicable
to other generic cavities as ¢cylindrical ones with additional
walls changing their shape so that the use of closed form
Green's functions would not be possible.

A typical cavity is shown in fig. 1. Electrically, itis a non
cuboidal cavity with an aperture in one wall. A non cuboidal
cavity in this sense is a cavity not necessarily having rectan-
gular walls. Conducting wires or plates are placed inside the

aperure
(0: ya ) zu,)

measuring
antenna

Figure 1: Typical cavity with monopole antenna and large
plate

cavity. A plane wave comes on the structure from the front,
interacting with the objects in the interior of the cavity. In
the case we will consider here, the object is a monopole an-
tenna. In the experimental setup, this antenna is connected
to a network analyser for measuring the recetved power and
hence the current at the base.

The structure of this paper is as follows: first, we will
describe the method used. We will focus especially on the
reduction of the computational effort and the choice of ap-
propriate basis and testing functions. In a second part, we
present a method to create broad band data from only a few
computations by means of an interpolation scheme. In a
third part, we will compare results of computation and ex-
perimental measurements for some representative cases. A
short conclusion is at the end.

2 Method

An incident field is created by a plane electromagnetic wave
entering the cavity through the aperture. The equivalent di-
pole method [4] enables us to separate the interior from the
exterior by metallizing the aperture and replacing it by two
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dipoles, an electric and a magnetic one. The dipoles repre-
sent the two major characteristics of the hole, that is its size
and shape, as well as the field strength: size and shape are
translated by the dipole polarizabilities which are multiplied
by the difference of the short circuit fields across the metal-
lized aperture. Collin [4] and later de Meuienaere [5] found
polarizabilities for various shapes based on considerations
by Bethe. For various apertures the polarizabilities have the
property of being independent of the actual aperture shape
when normalised by a power of the aperture surface A%/2.

In the following, we will consider an aperture with a nor-
mal along €. Generally, the two major directions of the
aperture (¢.g., the major and minor axis for an elliptical aper-
ture, or the two sides of a rectangular one) are directed in the
f, and the £, direction normal to &;. The dipole moments are
given by [5]:

P = ca.Eneeii and Prp = —28,H. (1)

with E,.. the electric field normal to, and ﬂ'sc the magnetic
field across the metallized aperture. @., @, are the scalar
electric and the dyadic magnetic polarizabilities. For circu-
lar apertures with radius r they are given by:

3
0= amd Gn=T GE+BE) @
3 3

The dipole approximation is valid for the fields at some dis-
tance of the aperture. The limit of validity is directly related
to the aperture size [6]. Furthermore, the aperture should not
be closer than its typical dimension (the aperture’s diameter
or Jargest dimension) to the cavity walls.

The aperture now being metallized, we use the closed
form Green's functions of the rectangular cavity to express
the total electric field inside the cavity as a function of the
fields radiated by the dipoles and the induced current on the
scatterers like the plates forming a corner in fig. 1. The
Green's functions are triple trigonomerric series. They can
be found, e.g.,in [7] or (8], and are not given here for the
sake of brevity,

As the Green's functions of the cavity already include the
boundary cenditions, we do not need to discretize the walls.
Therefore the number of unknowns stays small, a typical
number would be 500 for a 2 x A x X cavity witha A x A x
A/2 object inside and a discretization rate of A/10.

Finally, we include the boundary conditions for the elec-
tric field on the metallic objects inside the cavity which force
the tangential electric field to zero:

-

ix B(r) =1 x (Ei(r) + Es(r)) =0

for all 7 on a perfect conductor 3

with 72 normal vector on surface, E} incident field and Es
scattered field due to the currents induced on the metallic
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objects. This equation becomes by using the Green’s func-
tions

X = (V2+k2 fGAJdJ_o (4)

G4, G. and 7. are the Green’s functions of the vector poten-
tial, of electric dipoles and of magnetic dipoles respectively.
The reaction of the scatterers as well as of the cavity can be
included in the formulation. In this case, three additional
unknowns which are the difference of the normal electric
field (one unknown) and the tangential magnetic field {two
unknowns) between the field inside and outside of the cavity
across the aperture appear. If the cavity would be mounted
behind an infinite screen, these unknowns are easily evalu-
ated as the incident fields. In the general case of a cavity
in free-space or some other environment, the short circuit
fields can be determined numerically and the included into
the solution. We do not include this here for the sake of
clarity. In fact, the infiuence of the reaction was evaluated
as neglectable in comparison with measurements in [9]. Ne-
glecting the reaction of scatterers and cavity sets Eqn . and
ﬁsc in egn. (1) to the values of the incident field of the on-
coming wave. We solve the integral equation egn. (4) by
a method of moments [10]: first, we expand the unknown
surface currents J in an appropriate set of basis functions
f:.» then project the equation on a set of testing functions w;.
This finally leads to a linear system of equations

ZI=V )

The so-called impedance matrix Z is composed of the in-
tegrals in (4), the vector I contains the unknown projection
of the surface currents .J on each basis functions f;, and
contains the incident field.

The choice of the functions f; and w; involved must take
into account the following considerations:

¢ the sum of the continuous differentiability of the ba-
sis and testing functions should be greater than 1 [11].
Therefore, using the piecewise continuous function (or
pulse function) as both basis and testing functions is
not valid.

o case of implementation. Several functions offer the
possibility to carry out analytically the integration of
the Green’s function with the expansion functions and
the integration due to the Method of Moments. We
therefore will focus on this kind of functions.
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e nature of functions. In the following, we will point out
that the use of domain functions is preferabie to strictly
locat functions.

« number of functions involved and therefore size of ma-
trix.

In the following, we will touch upon further reducing the
computational effort and choosing of basts and testing func-
tions.

2.1 Efficient summation of the Green's functions

Several papers are available for the acceleration of the com-
putation of Green’s functions. They yield reasonable results
for periodic free space functions [12]. In our case, the appli-
cation of these purely mathematic algorithms appear to be
less efficient than an ‘intelligent’ summation of the series.
We will explain this approach which is based on the works
of Seidel [7].

The Green’s functions are given as a triple series of
rigonometric functions. We can always sum up one series
for one coordinate direction analytically (see [4] for a list of
known expressions), so that the triple series is reduced to a
double one in the two remaining directions. The analytical
expression includes an exponential function which renders
the convergence very fast. The series (supposing that we re-
duce the series in z) depends now on the other two indexes
~ combined by a function as

ey
[ )
s
[ ]

T

Flplems | —m /% + % -] =

flly,la) exp (=7 ke |z — 2']) (6)

where I and [, are the indexes in z and y direction and, in
fact, the indexes for the eigenmodes of the empty cavity. A
and B are the dimension of the cavity in z and y. The new
sum will now rapidly converge when ordered such that k.,
(depending now on a new summation index ¢) k.(g) grows
steadily. One has now effectively reduced the double in-
dexed series 0 a normal one with the new summation index
g. The choice of the ordering scheme is outlined in fig. 2
for the first ten terms and for a cavity with different size in

= 0.3 m and y = 0.5 m. Each solid lines relates to one
value of g and several pairs of (I,,l,). For a given g there
are several I, and [, with a k. of almost the same value.
Proceeding to a next g will give a larger k., and therefore-a
much smaller term in the seriecs. One easily sees that for a
given value of ¢ there are approximately ¢° terms to evalu-
ate.

In eqn. (6) we do not have exponential convergence,
when the observation point has the same z—coordinate as the
source point (z = 2'). In this case, a quite important num-
ber of terms is necessary to insure convergence (see further
down).
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Iy index for sum in y

l ]
8 10

l.: index for sumin z

Figure 2: Ordering scheme for efficient computation. The
numbers in the graph are index g for final sum

2.2 Possible basis and testing functions

A fast convergence of the method to the right value is only
possible if the basis function set is closely approximating
the physical reality. The choice of the basis and the testing
functions is therefore a crucial step during the application of
the Method of Moments. Two schemes for the discretization
are possible: a strictly focal one where the support of the
functions is a sub-domain of the support of the unknown
physical soluticn. Possible are rectangular and triangular
supports. Another possibility are global domain functions
whose support coincides at least in one coordinate direction
with the support.

A wide range of functions was used for scattering com-
putations in thin wire and 3D geometries. In this paper,
we will concentrate on the following generic functions (let
&= Eﬁl be the normalised and centred z-coordinate):

» point matching (Dirac pulse) D(z) = §(z — zo)

e piecewise constant or pulse CT(z) = 1 for |£| < 0.5,
0 elsewhere

o piecewise linear or triangle LI(z) = 1—|&| for %] < 1,
0 elsewhere

: : . . __ sink& {1-|% -
e piecewise sinusoidal SI(z} = =135 for |£] <
1, 0 elsewhere

¢ global-domain functions with sine or cosine behaviour
in direction of the current and constant normal to it with
corresponding edge-conditions
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For fine discretizations the piecewise linear and the piece-
wise sinusoidal functions are equivalent, as also a Taylor se-
ries of the sine-function would prove. Fig. 3 shows the graph
of some functions applied for surface currents on three-
dimensional plane conductors. Here, the one—dimensional
functions for one coordinate are multiplied by the same
(or another) one—dimensional function so that the resulting
function is still separable. In this way, the integrations can
be carried out for the two coordinate directions indepen-
dently. When applied to our case of plane conductors in
cavities, they offer the advantage of an analytic integration
of Green’s function over the basis/testing functions. Further-
more, the piecewise linear and sinusoidal functions lead to
expressions that decrease rapidly with the summation index
s0 that even for observation and source points in the same
plane, the series in eqn. (4) converge.

A special treatment is necessary for functions at the edges
of conductors. In the case of triangular functions parallel to
an edge one has to use half-triangles at the edges to account
for the right place of the match point. The incorporation of
special edge elements as normally used in spectral domain
methods is possible [13], but is of only minor importance in
our case. We therefore did not include them in the present
paper.

In the case of a current normal to an edge, two cases must
be distinguished. The first is an isolated plate, where the
current normal to the edge goes to zero. The correspond-
ing function is therefore constant zero to produce the right
boundary condition. The second possibility is when two
plates are connected to each other. In this case, the cur-
rent has to be continucus over the edge which is included
by two half-width functions with the same amplitude. A
plate connected to a cavity wall falls also under this cate-
gory, no special treatment, however, is needed. The conti-
nuity of the current with the image of the plate is provided
by the Green’s functions. provided

Based on the reflections of Aksun [11], we will consider
the following combinations of basis and testing functions
(first is basis, second is testing function, abbreviations in
parenthesis): pulse — triangle (CT-LI), pulse — sinusoidal
(CT- 51, triangle — triangle (LI-L1I), sinusoidal — sinusoidal
(SI-SI). The latter two combinations are Galerkin solutions
and offer therefore the possibility to compute only half of
the now symmetric impedance matrix.

Another possible choice for basis/testing functions are
global domain functions. To use these functions we ‘cut’
the plane conductor into several strips. The functions used
are now the products of sine or cosine functions in the direc-
tion of the current and a local function (usually the piecewise
constant function) in the direction normal to it. We use the
name global functions despite the fact that the functions are
not global, i.e. defined on the whole support, in the direc-
tion normal to the direction of the current. The condition for
the choice for sine or cosine function is the condition for the
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Figure 5: Discretization of test case
current at the ends of the strips:
® Sin (% ‘“—"""‘m——) for isolated conductors (the cur-
Imaz—Zmin

rent goes to zeros at both ends)

- cos(z"‘zil‘rr T—F

Imaz —Zmin

) for conductors attached to
others at £ = I,,;, (the current goes to zero at r =

Trmaz)

2mtly —Zmeg T ) for conductors attached to

Tmazr —Tmi

L] COS(

others at X = T (thecurrenthasazeroats = Tin-
Form =0, 1,2 shown in fig. 4).

maz —Fmin

* COS m‘:rz—‘"'i'm'n—) for conductors attached to others
at both ends (no zeros at Tipin T % = Tmex)-

These global functions lead to smaller matrix systems com-
pared to the local basis functions. Also interesting is the fact
that an impedance matrix for a discretization order z + 1 is
simply constructed by the matrix of order n with one addi-
tional row n + 1 and one additional column n + 1 for the
new functions fn4q and wWn41:

Zl..n,l..n

Zn+1 = (Zn+l‘l..n

l.a,n+l
z ) ™

Zn-i-l,n—l-l

One can calculate a matrix Z, for a given discretization,
caiculate the currents on the metallic objects, then increase
the order of the discretization and caiculate just one more
matrix row Z"+1.1-"+1 gnd column Z1-™7*! while still
preserving the other elements. We then can recalculate the
currents and stop this iterative process when convergence is
achieved.

As a test case for the different functions we calculate
the current on a rectangular plate of width 0.0077 m in &,
and length 0.225 m in &; as shown in fig. 5. It is con-
nected to the cavity floor at the point with the coordinates
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(a) Pulse (b) Triangle (c) Piecewise sinus.

Figure 3: Possible local functions: 3(a) pulse, 3(b) piecewise linear (triangle), 3(c) piecewise sinusoidal.

(c) third

(a) first (b} second

Figure 4: First three global domain functions

(0.15,0,0.15) m. The cavity has the dimensions 0.297 m,
0.297 m, 0.498 m. Frequency is 800 MHz with incidence in
&, direction, the circular aperture with radius r = 0.02 m is
centred on the wall £ = 0. The current I at the base of this -62.0 I I I
plate (i.e. the integral of the current densities over the two
cells at the base which are located at y = 0.14465 m and
y = 0.15235 m, grey in fig. 5) is shown in fig. 6 as a func- -62.2
tion of discretization order n. We see that all three curves
converge to nearly the same value (relative error less than 2
%), but that the matrix size needed for stable values 1s much
smaller for global domain functions than for local ones (9
vs. 12). We get quite good results with only 4 functions 626 i
with an error of 0.1% in the evaluation of the current. As ;
all integrations are carried out analytically, the computation
time for one matrix element at a given discretization order is 628
the same for all functions, which is not the case if one uses /
the free space Green’s functions. .
In fig. 7 we plot the maximum value of Iy and !, (as the -63.0 —L— ' L L
series is reduced in z, the indexes are in this case Iy and ;) 3 6 9 12 15
needed for obtaining a convergence to £0.15% (shown as
dashed lines) for the current on the same plate. Discretiza-
tion on the plate was 2 cells in €, and 20 in €. For the global
functions only 8 functions were used. All combinations of
functions yield the same current at the base. The maximum
for I, and I, is also the same: 150 to 200 (this corresponds

-62.4

I/dB(A)

'
! '
1o
[ global =
I
:
'

discretization order

Figure 6: Convergence by discretization
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Figure 7: Convergence by number of modes

to about 71000 single terms to evaluate).

With these results in mind, we can choose our basis
and testing functions with the ease of implementation in
mind. This is especially necessary if one considers currents
on plates connected to each other. We use the piecewise
continuous—piecewise sinusoidal combination. This set has
the advantage that the mentioned reduction of the three—
dimensional series to the two—dimensional one yields ex-
pressions which enhance convergence. For smaller matrices
and therefore faster computations we recommend neverthe-
less the use of global functions. As a matter of fact, for the
same structure and a difference of the currents of smaller
than 0.1 % to the final solution we needed 14 functions for
the CT-S8I case, 12 functions for the LI-LI case and only 9
functions for the global case.

This procedure is also valid for objects behind metallic
screens. Simulations for this case not shown here resulted in
currents on metallic objects and the resulting fields behind
metallic screens in the order of numeric noise.

A short comment on the computaticn times. Typical sim-
ulations were run on SUN Sparc 20 or Ultra 1/2 computers,
with RAM ranging from 64 to 256 MB. Due to our method,
only small memories are needed, in fact 64 MB are sufficient
to run any geometry we considered. Typical execution times
per frequency are several seconds for simple cases (10 s for
the case in fig. 5) to several minutes for more complicated
cases.

3 Broad band data

Though the computational cost is lower when using the
Green'’s functions of the cavity than by using the free space

functions, a computation for several frequencies can become
quite time consumning. In this section we describe a method
to generate broad band data from just a few computations.
This method is based on a similar one proposed in {14] for
free space.

For computations at several frequencies the impedance
matrix would have to be built for several frequency points.
On the other hand the terms in the impedance matrix show
only a slow evolution with frequency except at the reso-
nances of the empty cavity. As a matter of fact the Green’s
functions have singularities at the resonance frequencies.
A classic interpolation using polynomials would not accu-
rately model the behaviour of the individual matrix terms.
However, an interpolation with a rationai function of order
g+ v +1=p+1inthe form

_PotpmzT+---+p, T
Got+tq@ r+---+g, "

RP

(8)

with go arbitrary and g < v would well approximate these
singularities. p + 1 will be the number of knots or matching
points of the scheme. An interpolation scheme for rational
functions with these characteristics is known [15, 16].

As the poles of the Green’s functions are the resonances
of the empty cavity, their location on the frequency—axis
1s known and can easily be computed. It is now possible
to subdivide the whole wanted frequency band into smaller
sub-bands, limited by two resonance frequencies [ f;, fir1).
For the location of the knots of the interpolation scheme in
the corresponding frequency sub-band we use two different
schemes: the first one s a uniform distribution of the knots.
In this case the knots are given by

f’°=fi+ff’-+%ﬁk for k=0...p (9)

A widely used interpolation scheme [17], is the Tchebycheff
scheme, leading to
2k +1
cos ( + w) (10)

2n+2

This choice yields better results for the interpolated values
at the ends of the sub-bands and is therefore better suited.

The number of knots necessary to get an appropriate inter-
polation depends on the density of resonances in the vicin-
ity of the sub-band. If the influence of one resonance is still
strong in the sub-band, we need 5 knots in one band. For
largely spaced resonances there are only 4 knots needed.
This can be seen in fig. 9 where we traced for a cavity de-
scribed further down the measurement data, the simulation
and the interpolated simulation. For the sub-bands between
700 MHz and 790 MHz with 3 closely spaced resonances
at 704.750 MHz, 765.554 MHz and 778.422 MHz, we need
5 knots for a reasonable interpolation. For the other sub-
bands (e.g. for the two first bands between 0 and 300 MHz

r_fitfinn | fi—fin
=+
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Figure 8: Experimental setup with monoconic antenna,
monopole and network analyser

and 300 MHz and 600 MHz) below and above, the interpo-
lation scheme is almost perfect with this number of knots.
For the present calculation we cut the whole band into 10
sub-bands and interpolated the matrices in a frequency step
of 5 MHz. The time to build the 50 matrices was about 38
hours, the interpolation time to create the other 164 matrices
was 18 minutes. If all 214 matrices were calculated a total
time of 160 hours would have been necessary.

4 Simulations and experiments

For comparison purposes the above mentioned cavity was
placed in an semi-anechoic chamber without absorbers on
the floor. The incident plane wave was created by a mono-
conic antenna, the response of the system measured by a
monopole—antenna based on the metallic floor of the cham-
ber. The monoconic antenna {with its image) is able to pro-
vide a plane wave over a wide frequency band. The low-
SWR monoconic antenna was driven by a HP 8510 network
analyser which also measured the response of the monopole.
First, we determined the field present in the chamber with-
out any object. Thus we get the incident field. For the sub-
sequent measurements we read the transfer coefficient Sa1
of the system monoconic-antenna—cavity—monopole and re-
lated it to the previously measured incident field. We there-
fore trace the received power for a normalised incident plane
wave of E = 1%. The experimental setup is sketched In
fig. 8.

The monopole for measurements was modelled by a thin
strip using the expression for equivalent radii given by
Einarsson {18]. The equivalent radius r of a wire for a plate
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of width d is

T = 1 (Y

Several configurations were measured to test our compu-
tations. In a previous paper [19] we presented data for single
monopoles in the cavity, the results presented here concern
the case where several metallic objects are placed inside a
cavity. The objects can be in a conducting or isolated con-
tact with one or several cavity walls. The shape of the cavity
can be changed by including large objects in contact with
the walls. When using the appropriate plates like shown in
fig. 1 one can easily model the cavity with reentrant corner
of fig. 9. This was acheived by placing plates into the cavity
and connecting them using conducting tape.

The geometrical data are as follows: cavity size 300 mm,
300 mm, 500 mm, aperture diameter 20 mm centred on the
z = 0 mm wall of the cavity. The monopole antenna has
a radius of 1 mm and a length of 300 mm. It stands on the
base of the cavity at 110 mm from the aperture, also centred
in y. The reentrant corner is the upper back corner of the
cavity. It covers the hole section in y, and from z = 100
mm to the top of the cavity. The depth is 110 mm. A com-
parison between the simulated and measured data is shown
in fig. 9. The agreement is good. At very low frequencies
the expected high—pass behaviour is observed with a +40
dB/decade rise with frequency {9]. The /4 resonance of
the monopole at 600 MHz is mixed with a first rescnance
of the cavity with reentrant corner geometry. For higher fre-
quencies we can not yet identify the different resonances.
Some comments should be made upon some details of the
curve. The simulations suppose perfectly conducting cavity
walls, the resonnances would have a very high quality fac-
tor. The experimental cavity has not this high quality factor, .
the differences at the resonnances are due to this fact. Fur-
thermore, the experimental data include some artefacts due
to the fact that the corner was made by conducting tape and
not by soldering.

5 (Conclusion

We have presented a Method of Moment solution for the
coupling of electromagnetic energy into cavities. The
method is based on the electric field integral equation. It
separates interior from the exterior by the equivalent dipole
method. By placing metallic plates into the cavity, it is pos-
sible to easily change the shape of the latter without chang-
ing the scheme. The Green’s functions of the rectangular
cavity are used, so that only the scatterers are discretized,
the number of unknowns is thus kept small. In the Method
of Moments we have studied several sets of basis and test-
ing functions with support either over the whole scatterer or
only parts of it. They all yield the same result for fine dis-
cretizations. All functions have, however, particularities so
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Figure 9: Comparison measurement/simulation

that we tend to use specific sets in one case or another.

Comparisons of computations and simulations attest the
efficiency of the method proposed, simulations leading to
current values close to the measured ones,

Acknowledgements

The authors would like to express their thanks to J.-L.
Lassere and J.-L. Lavergne as well as to the Centre d’Etudes
de Gramat for making the measurements possible.

References

[1j A.Taflove and K. Umashankar, “The Finite-Difference
Time-Domain (FDTD) Method for electromagnetic
scattering and interaction problems,” J. Electromag.
Waves Appl., vol. 1, no. 3, pp. 243-267, 1987.

2] D. A. Hill, M. T. Ma, A. R. Ondrejka, B. E Riddle,
M. L. Crawfors, and R. T. Johnk, “Aperture excita-
tion of electrically large, lossy cavities,” IEEE T-EMC,
vol. 36, no. 3, pp. 169177, Aug. 1994,

[3] B. Chevalier, B. Pecqueux, J. Lasserre, and
D. Lecointe, “Détermination du couplage sur un
fil piacé a I'interieur d’une cavité métallique,” CEM
1994, Toulouse, 1994.

{4] R. E. Collin, Field Theory of Guided Waves. New

York, Toronto, London: McGraw-Hill, 1960.

[5] F. de Meulenaere and J. van Bladel, “Polarizability of
some small apertures,” IEEE Trans. Ant. Prop., vol. 25,
no. 2, pp. 198-205, March 1977.

[6] Y. Rahmat-Samii and R. Mittra, “Electromagnetic cou-
pling through small apertures in a conducting screen,”
IEEE Trans. Ant. Prop., vol. 25, no. 2, pp. 180-187,
March 1977.

[7] D.B. Seidel, “Aperture excitation of a wire in a cavity,”
PhD-thesis, University of Arizona, Arizona, 1977,

[8] C.-T. Tai, Dyadic Green Functions in Electromagnetic
Theory. Piscatawy, NY: IEEE Press, 1994,

[9] D. Lecointe, Détermination du couplage d’une onde
électromagnétique avec un cdble situé dans une cavité
métalligue. PhD thesis, University of Paris VL, France,
1995.

[10] R. Harrington, “The method of moments in electro-
magnetics,” J. Electromag. Waves Appl., vol. 1, no. 3,
pp. 181-200, March 1987.

[11] M. Aksun and R. Mittra, “Choices of expansion and
testing functions for the Method of Moments applied
to a class of electromagnetic problems,” [EEE Trans.
Micro. Theo. Tech., vol. 41, no. 3, pp. 503-509, March
1993.

[12] S. Singh and R. Singh, “On the use of Levin's T-
transform in accelerating the summation of series rep-
resenting the free-space periodic Green’s functions,”



242

(13]

[14]

[15]

(16]

[17]

(18]

(19]

IEEE Trans. Micro. Theo. Tech., vol. 41, no. 35,
pp. 884-886, May 1993,

D. Wilton and S. Govind, “Incorporation of edge con-
ditions in moment method solutions,” IEEE Trans. Ant.
Prop., vol. 25, no. 6, pp. 845-850, Nov. 1977.

E. H. Newman, “Generation of wide-band data from
the method of moments by interpolating the impedance
matrix,” [EEE Trans. Ant. Prop., vol. 36, no. 12,
pp. 1820-1824, Dec. 1988,

I. Stoer, “Uber zwei Algorithmen zur Interpolation
mit rationalen Funktionen,” Numerische Mathematik,
vol. 3, pp. 285-304, 1961.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery, Numerical Recipes in C. Cambridge,
New York and Melbourne: Cambridge University
Press, 1992,

R. Bulirsch and H. Rutishauser, “Interpolation und
genaherte Quadratur,” in Mathematische Hilfsmittel
des Ingenieurs (R. Sauer and 1. Szabd, eds.), no. H in
Teil 111, Berlin, Heidelberg: Springer—Verlag, 1963.

O. Einarsson, “The Wire,” in Electromagnetic and
Acoustic Scattering by Simple Shapes (J. Bowman,
T. Senior, and P. Uslenghi, eds.), Amsterdam: North-
Holland Publishing Company, 1969.

D. Lecointe, W. Tabbara, and J. Lasserre, “Aperture
coupling of electromagnetic energy to a wire inside a
rectangular metallic cavity,” IEEE Ant. Prop. Soc. Int.
Symp., vol. 3, pp. 1571-1574, July 1992.

ACES JOURNAL, VOL. 13, NO. 3, NOVEMBER 1998



