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ABSTRACT: The stability of the explicit version of the
solution of the ime-marching electric-field integral-equation
continues to depend on the specifics of the application. The
design of stability-enhancing schemes seems to be more of
an art than a science. A contribution to this art is made with
a design that is stable where others are not, and the practical
issues of implementation, accuracy, and efficiency in both
time and memory are addressed.

1. INTRODUCTION

Use of the method of moments to solve the time-domain
electric-field integral equation (EFIE) results in a matrix
equation Ax=b, where x is typically a vector of current
densities [1]. The equation is repeatedly solved for x at
progressing intervals of time. In the explicit form of the
solution A is diagonal so its inversion is trivial. In the
implicit form of the solution, A is sparse and, for three-
dimensional problems, unbanded as well, so inversion is no
longer trivial. In both forms, A is time-independent, which
is a major attraction of solving the EFIE in the time domain.
For a more detailed description and comparison of the two
forms consult the introductory sections of [2] and [3], and
Section 2.3 of [4]. Although each of the two forms of the
solution has its merits, the implicit form is increasingly
favored among researchers because of its late-time stability.
We, however, have not yet abandoned the explicit form
because we have found a way to stabilize it.

Most attempts to cotrect the stability problem have inserted
so-called averaging schemes into the process {5,6,7]. None
have been successful over a wide range of applications.
Sadigh and Arvas [8] show that averaging is equivalent to
using a finite impulse-response (FIR) digital filter that has a
constant group delay. We have found that their particular
implementation is also unstable for some applications. In
this paper we present a variation of their instability filter and
show it to be effective in all test cases considered. We have
not yet found an application that causes late-time instability.
Moreover, our stabilization scheme can be coded so that it
adds a negligible amount to the overall execution time. To
explain the issues affecting the design and behaviour of the
new filter we briefly review how the moment method works

and behaves in the time domain.

2. MOMENT-METHOD SCLUTION OF THE EFIE IN
THE TIME DOMAIN

The basic EFIE states that the tangential component of the
scattered field is equal to the negative of the tangential
component of the incident field on the surface of a perfect
conductor. That is,

E_, = -E, (1)

everywhere on the surface. This is an infinitely complex
problem. The moment method reduces the problem to a
manageable size by assuming that the current can be
approximated by a finite number of “basis functions”. The
type of basis function used here is known as a “rooftop”
function. All the algebraic and geometric properties of a

rooftop, except the amplitude J, are known. See Figure 1.

J is the “unknown” in the moment-method matrix equation.
For more detailed information about rooftops see [1, 9, 10,
113.

A@ =p7h’

Figure 1 The “rooftop” type of basis function used in the
time-domain algorithm.
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The vector and scalar potentials A and V are typically used
to find E_ , according to

Escar= —ﬁ -V @
ar
where
N e (¢ ) 3
A 4nf e
and
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and R=|f-7'|. In the time domain, the computation of
E__ at ¥ due to a given rooftop looks like

B finBase - L y[e® (5)
4ﬂfJ(T)Rdet 411:er R dsar

where t =1 - Rfc is called “retarded time”. This involves
integrals over both space and time. Such integrals have to
be computed numerically, are compute-intensive, and present
problems as R~ 0. To avoid this trouble Rao and Wilton
[1] choose to assume that retarded time T is constant over
the entire source rooftop. The computation then becomes

E - - M jmf[las - POyrl 6
B e 41':J(t)f RdS 4ne Vf Rds ©
The integrals now have a purely spatial domain and can be
efficiently computed from accurate analytical formulas [12].
Computing (6) requires a knowledge of both J(t) and p(t)
for all ¢ up to the present. But computing p(tr) would
involve integrating the continuity equation, p = -V, at
each time step and possibly storing the results. Rao and
Wilton avoid these problems by solving (1) after it has been
differentiated with respect to time. Then only p itself is
needed, which for a rooftop is simply

pr = -2 (7

+ht

The time derivative of (6) then becomes

_ia.Es_m = —_"L.j AdS"'
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Using a central-difference formula for numerically com-
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puting J gives
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where Af is the time step.

To solve for N unknown amplitudes (1) must be enforced in
(at least) N independent ways. In the language of the
moment method this is called “testing”. Rao and Wilton do
their testing by computing path integrals of (1). Each

" rooftop has a testing path which begins at the centroid of

face F’, ends at the centroid of face F~, and crosses the
centre of the intervening edge. See Figure 1. Since each
rooftop has a testing path that is different from all the others
there are N independent ways to enforce (1). (This last
statement becomes an interesting half-truth at very low
frequencies. See [11].)

Consider testing (1) at the &® rooftop at time ¢. In the
basic time-domain algorithm the path integral is computed
numerically in a very simple manner: its integrand is
sampled only once, at the centre of the rooftop’s interior
edge, and t is computed as if R was measured between
edge centres. (Inside the integrals, R is still measured
between T and T'.) The result is

_ B[ HerAD - 2J@) + J@-Ab) f§ 4s
k"‘R

4n (an? (1)
P MO grlgs. [ Tz o o - Fine
th*dne [uR it E dt

J(t+A¢) is the only unknown in this equation if all earlier
rooftop amplitudes are known. Hence, the history of the
response can be revealed by building on earlier solutions.
(At the beginning of a response all earlier solutions are
assumed to be zero.) The repeated solution of (1Q) ever
further into the future is called “marching-on-in-time”.

Note that, in our frequency-domain solutions of the EFIE,
the path integrals are also computed numericaily, but their
integrands are sampled at the endpoints [9,10].

3. INSTABILITY FILTERS

The basic marching method is notorious for propagating
errors into the future and amplifying them. The errors
swamp the correct answer very early in the response. To
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improve the stability, Rac and Wilton compute the path
integrals differently according to the type of potential
involved. When integrating the vector potential, A/R, they
sample the integrand at the point where the path crosses the
rooftop’s interior edge, and retarded time is held constant
over the entire rooftop (as in the basic algorithm). When
integrating the scalar potential, 1/R, they sample the in-
tegrand at the endpoints of the path, and the retarded time is
held constant over only faces. (The penalty for adding the
Rao-Wilton approach to the basic algorithm is to increase
the required memory. See Section 7 below.)

No one has claimed to know why the Rao-Wilton stability-
enhancing scheme works. Also, it is by no means totally
effective. There remains a wide range of problems that
gives unstable results. To widen the set of stable problems
we have added what can be called an “instability filter” to
the Rao-Wilton algorithm. We provide details of our filter
and demonstrate its effectiveness for a wide range of
structures. We do not know why ours, or anyone else’s
stability-enhancing scheme, works. We can only say that
ours has given stable results for all applications that we have
tried. One of the reviewers notes that we give the
impression that instability filters are not well understood and
that an improvement has been achieved more or less by
chance. We share this impression. In our opinion, the
design of instability filters remains an art, not a science.

Figure 2 shows a comparison of two filtering schemes: one
designed by Sadigh and Asvas [8], labeled 55A; and one
designed by us [13], labeled SSK. We grafted each scheme
to a marching-on-in-time code, whose design originates with
Rao and Wilton [1]. The latter has no stability filter and is
labeled ORW. The two diagrams, 5SA and SSK, show the
sequence of computations on the way to getting a single
filtered step into the future for the current crossing a given
edge. The letters represent the signed magnitude of that
current. Time increases from left to right and the sequence
of computations progresses from top to bottom.

The two filtering schemes, 5SA and 5SK, are alike: a march
of three steps into the future is needed to compute a single
filtered step. The two extra steps supply the necessary data
for the S-term filters to produce a ‘“comected” delay-
compensated output for the first step. The difference
between the two schemes is simple: the SSA scheme does
a filtering operation only after the third step; the 35K
scheme does a filtering operation after each of the three
steps, and adds an extra filtering operation afterwards. Both
schemes use the same filter coefficients: 0.0804, 0.25,
0.3392, 0.25, 0.0804. In the results that follow, output from
each of the three different codes is labeled ORW, SSA, and
SSK, as appropriate.
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s generic 5-term filtering with delay-
F compensated output.
F output from a filtering operation
f output from a previous filtering operation
M output from a marching-on-in-time operation
m output from a previous marching-on-in-time operation|
o final output from a previous time-step

Figure 2 Diagrams of the Instability Filters.

4. RESULTS

Figures 3-5 show the results of our computation for three
structures. Figure 3 shows the time-domain response to a
Gaussian excitation for a “tray”. The tray is divided into 76
triangular faces. It shows that for this structure the Sadigh
and Arvas scheme is in fact worse than no filtering at all,
and that our filter gives a stable result. Similarly Figures 4
and 5 demonstrate the improved stability for a solid cube
and for a trihedral corner reflector, respectively. The cube
has 260 triangular faces; the wihedral corner reflector has
768 faces.

Figures 6 to 9 demonstrate the stability of our scheme for a
square plate, an open cube, a sphere, and a torus. The
square plate has 180 faces, the open cube has 220 faces, the
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Figure 4 Current density at top centre of a cube.
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Figure 8 Current density at the front of a sphere.
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Figure 9 Current density on the wall of a torus.

sphere has 90 faces, and the torus has 630 faces. Figure 7
also shows a comparison with the results obtained by inverse
Fourier transformation of the frequency domain EFIE results.

5. REDUCTION OF FILTERING TIME

Both the filtering schemes, 5SA and 5SK, require three time-
marching iterations to obtain a single, new, vector of filtered
currents. When either is coded simply, this will lead to a
tripling of the CPU time compared to the unfiltered, ORW,
scheme. Taking the 5SK scheme as an example, this simple
encoding can be represented by the “index space” diagram
in Figure 10. The time index varies horizontally; the 3SK

Computation of "Far" Influences Leading up to the il Time Step
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Figure 10 Repetitive computation of far influences in a 58K
stabilization scheme.

index varies vertically. At any given time index there are
three concurrent 5SK loops travelling diagonally through
index space.
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Almost all of the CPU-time overhead can be recovered with
careful coding to take advantage of the following subtle
detail: the 5SK filtering scheme alters only recent entries in
the history book. Through retarded time, this effectively
alters the scattered field from nearby rooftops — the
scattered field from far rooftops is not changed. So only the
near influences need to be refreshed within each of the three
concurrent loops in index space. The far influence needs to
be computed only once, since it can be reused in the other
two loops. Figure 11 shows how this looks in 5SK index

Reuse of "Far” Influences i.eading up to the i','n Time Step
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Figure 11 Re-use of previously computed far influences in
a 5SK stabilization.

space. The far influence computed at a given time index is
used at the same time index in the other two 55K loops.
Note that each iteration of the instability filter uses two
different sets of remembered far-influences. This scheme
results in a recovery of almost all of the CPU-time overhead
attributed to filtering.

6. EXECUTION TIME

A common application of computational electromagnetics is
to find the response due to narrow-pulse {wide-spectrum)
illumination from a fixed source. Under these conditions we
can make a meaningful comparison between the execution
times of time-domain and frequency-domain EFIE codes
since, for real signals, the number of data points on the time-
domain side of a fast Fourier transform is twice the number
on the frequency-domain side. At each time step, a
marching-on-in-time algorithm needs of the order of Nf
computations to solve for all N, unknown current functions
on the body. (N, is the number of interior edges in the
tessellation of the surface.) At each frequency step, a
frequency-domain code needs of the order of Nf com-
putations to sclve for all N, unknown currents at each
frequency step. So, as the size of the problem increases, it
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should be faster to use a time-domain code, by a factor of
the order of N,. For these reasons we asked for, and
received free of charge, a copy of the code that had been
written to prove the Rao-Wilton algorithm [1].

The code used by Rao and Wilton used almost no memory
-— it recomputed everything it needed at every step in the
march. This was an extravagant use of CPU time for all but
the smallest of problems. We extensively modified the code
to reduce the execution time, but the core-memory re-
quirements became excessive — about four times what was
needed by the frequency-domain code [10] that we use.
Also, the promise of quickly obtaining narrow-pulse respon-
ses failed — the CPU time was about the same as that
needed to do an equivalent spectral sweep with our frequen-
¢y domain code. It turned out that this disappointing
performance was due not to the algorithm but to fundamen-
tal inefficiencies built into the original code, which was
written solely to prove the Rao-Wilton algorithm on small
problems. The code was not designed for efficient use of
computer resources when solving large practical problems,
and our modifications could not hide its academic heritage.
This was our motivation t0 write a completely new time-
domain EFIE code. It uses none of the code from Rao and
Wilton but faithfully implements every feature of their
algorithm. The result is labeled ORW in this report. (As
noted in Section 5 above, the execution times of the our
ORW and 5SK codes are practically the same.)

Figure 12 compares the execution times of our frequency-
domain and (5SK) time-domain codes. The frequency
domain code is always slower by at least an order of
magnitude. For N,>2000, it is slower by a factor of about
N,/100. The speed advantage of the time-domain solution
is obvious for the case of narrow-pulse (wide-band) il-
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Figure 12 Comparison of execution times of time-domain
and frequency-domain EFIE codes for the case of narrow-
pulse illumination from a fixed source.

lumination. However, the speed advantage would not be so
obvious for the opposite case of continuous-wave (narrow-
band) illumination. Then, the time-domain solution must run
until all transients have vanished. This may actually take
longer than the frequency-domain sclution, especially if the
illumination is near resonance. It can be argued that this is
an unfair comparison since the frequency-domain solution
gives only the late-time result; it does not tell what happened
on the way.

Note that, for both time-domain and frequency-domain
solutions of the EFIE, the tessellation restricts the highest
frequency in the spectrum of the illumination. For frequen-
cy-domain solutions, the commonly accepted restriction is
Soax<€/10AR , . where c is the speed of light and AR, is
the smallest distance between the centroids of any two faces
of the tessellation. For the explicit form of time-domain
solutons there is the Courant condition cAr>AR . .
Another restriction is f, <1/10Az, so that the central-
difference formula for time derivatives will be accurate
enough for the given illumination. Combining this with the
Courant condition gives the same restriction as for frequen-
cy-domain solutions of the EFIE.

7. MEMORY REQUIREMENTS

The memory that we discuss here is core memory, not the
archival memory that stores, for later off-line analysis, the
computed rooftop amplitudes at each time step or at each
frequency step. The size of core memory stays fixed as the
program runs; archival memory grows. For large problems,
the frequency-domain code’s core memory is almost entirely
taken up by the impedance matrix; which is full, square, and
complex. The number of unknown rooftop amplitudes is
nearly equal to the number of interior edges N, in the
tessellated surface of the body. The number of single-
precision real words of memory in the impedance matrix is
2N¢2 . (Two real words are needed to represent a complex
number.) Also, for a triangular tessellation, the number of
faces Nf and the number of edges are related by
N, = 1.5Nf. So, for the frequency-domain (FD) code:

FD memory = 4.5Nf

For large problems the basic time-domain code’s memory
requirement is exactly the same. Nf words are needed for
the mutual influences between N, rooftops and anotherN:
for the time delays at which these influences occur. But
when the Rao-Wilton stability enhancing scheme is added,
the mutual influences due to A/R and 1/R must be kept in
separate arrays because their different delays demand that
they be multiplied by different rooftop amplitudes from the
history book. As with the frequency-domain code, about
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4.5Nf2 words are needed for describing the mutual A/R
influences {and their delays); but an extra ZNJ;a words are
needed for describing the 1/R influences (and their delays).
S0, for the time-domain (TD) codes ORW and 55K

TD memory = 6.5N;‘

None of this extra memory would be needed if the marching
algorithm were stable. Note that the ORW and 5SK codes
use nearly the same amount of memory even though the
5SK code has an instability filter added.

8. ACCURACY

Comparison of the two curves in Figure 7 shows that the
results of the time-domain code differ from the results of
the frequency-domain code. Our experience shows that the
time-domain codes (both our ORW and 58K codes, and
Rao’s and Wilton's original code too) are not as accurate as
our frequency domain EFIE code and that the error increases
with frequency. The accuracy improves with finer trian-
gulation of the surface, but this requires more computation
time. Thus our statement that the time-domain code is
N,/100 times faster than the frequency domain code will be
too optimistic if the same accuracy is desired.

The probable explanation for the poor high frequency
accuracy is that mutual influences are computed by assuming
a constant retarded time over faces and rooftops. The
corresponding process in the frequency domain would be to
assume a constant retarded phase —jkR. But this is not done
— the frequency-domain code actually performs a numerical
integration to account for the effect of the variation of the
retarded phase over each face. This difference between the
two codes would be most pronounced when the retarded
time, or the retarded phase, was most variable, that is, at
high frequencies. Another contribution to the high frequency
errors is the low-pass filtering effect of the instability filter.

9. DISCUSSION

An exponentially growing oscillation at the input of a digital
filter will produce an exponentially growing output even if
the oscillation is out of band. In other words, putting off the
filtering until the march is over will not remove the unstable
signal. The marching algorithm must operate on filtered
data as it proceeds, to keep the unstable part from feeding on
itself. Both filtering schemes do this, but the 55K scheme
is better at controlling the unstable signal. We think this is
because the SSK scheme operates on more filtered data.

A comparison of the early-time results of the three marching
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methods shows how little (or how much} the true signal is
corrupted by the filtering schemes. Some of the smaller
local extrema can change by as much as thirty percent. The
5SA and 55K schemes agree more with each other than with
the ORW scheme.

We do not believe that we have eliminated the stability
problem, but that we have extended the applicability of the
time-domain EFIE solution to a larger class of problems.
There are probably combinations of illumination, tessellation,
geometry, and Az that will lead to unstable solutions.

10. CONCLUSIONS

We have presented a new filtering scheme for improving the
stability of explicit, time-marching, solutions of the EFIE.
The limited number of cases presented here demonstrate that
the scheme is stable for a wider range of problems than
previous schemes. We have shown a way to practicaily
eliminate the CPU-time overhead caused by such filtering
schemes. We have also shown that the ime domain code is
iess accurate than the frequency-domain code, and takes 50%
more memory. However, for large number of unknowns N,,
itis N_f100 times faster than the frequency-domain code for
the case of narrow-pulse illumination from a fixed source.

11. REFERENCES

[11  §.M. Rac and D. R. Wilton, “Transient scattering by
conducting surfaces of arbitrary shape,” IEEE Trans.
Antennas and Propagation, vol.39, no.1, pp. 56-61,
Jan. 1991.

2] SM. Rao and T.K. Sarkar, “Transient analysis of
electromagnetic scattering from wire structures
utilizing an implicit time-domain integral-equation
technique,” Microwave And Optical Technology
Letters, vol. 17, no. 1, Jan. 1998, pp. 66-69.

[3] S.M. Rao and T.K. Sarkar, “Time-domain modeling
of two-dimensional conducting cylinders utilizing an
implicit scheme — TM incidence,” Microwave And
Optical Technology Letters, vol. 15, no. 6, Aug. 20,
1997, pp. 342-347.

[4] S.P.Walker, “Developments in time-domain integral-
equation modeling at Imperial College,” IEEE
Antennas and Propagation Magazine, vol. 39, no. 1,
Feb. 1997, pp.7-19.

[51  A. G. Tijhuis, “Toward a stable marching-on-in-time
method for two-dimensional electromagnetic scat-



KASHYAP etat STABILIZING SCHEME FOR THE EXPLICIT T. D. .E. ALGORITHM

{63

(73

(8]

(9]

tering problems,” Radie Sci., vol. 19, no. 5, pp.1311-
1317, Sep.-Oct. 1984,

B. P. Rynne, “Instabilities in time marching methods
for scattering problems,” Elecfromagnetics, vol. 6,
pp.129-144, 1986,

P. D. Smith, “Instabilities in time marching methods
for scattering: cause and rectification,” Electromag-
netics, vol. 10, pp-439-451, 1990.

A. Sadigh and E. Arvas, “Treating the instabilities in
marching-on-in-time method from a different perspec-
tive,” IEEE Trans. Antennas and Propagation,
vol.4l, no.12, pp. 1695-1702, Dec. 1993,

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electr-
omagnetic scattering by surfaces of arbitrary shape,”
IEEE Trans. Antennas Propagation. vol. AP-30, no.
3, May 1982, pp. 409-418.

[10]

(1]

(12]

[13]

233

S. U. Hwu and D. R. Wilton, JUNCTION CODE
USER’S MANUAL, Electromagnetic Scattering and
Radiation by Arbitrary Configurations of Conduc-
ting Bodies and Wires, Technical Report Number 87-
18, Applied Electromagnetics Laboratory, Department
of Electrical Engineering, University of Houston,
1989,

M. Burton and S. Kashyap, “A study of a new
moment-method algorithm that is accurate to very
low frequencies,” Applied Computational Electro-
magnetics Society Journal, Vol. 10, No. 3, 1995, pp.
58-68.

D. R. Wiiton, S. M. Rao, A. W. Glisson, D. H.
Schaubert, O. M. Al-Bundak, and C. M. Butler,
“Potential integrals for uniform and linear source
distributions on polygonal and polyhedral domains,”
IEEE Trans. Antennas Propagation., vol. AP-32,
no. 3, March 1984, pp. 276-281.

5. Kashyap, M. Burton, and A. Louie, “Stabilizing
the time-marching EFIE algorithm,” IEEE Antennas
and Propagation Society International Symposium
1995, vol. 2, pp. 1033-1036.



