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Abstract-An iterative solution of the combined field integral
equation (CFIE) has been obtained for perfectly conducting
bodies. The proposed technique avoids the imversion of the
moment method (MoM) matrix by using an iterative algorithm
which shows fast convergence properties, mainly for large
bodies. The algorithm is applied to several 3D problems
involving bodies of revolution (BOR). Accurate currents are
computed with important speedups over direct MoM solutions.

I. INTRODUCTION

The scattering by large metailic bodies has been treated
extensively in the literature using high frequency methods [1].
This choice was mainly motivated by the excessive computer
time and storage requirements of more rigorous low
frequency methods based on integral equation formulations.

But this boundary between high and low frequency
problems is changing due to the developments in hardware
technology with faster processors and the ability to handle
large amounts of data. However, these improvements, on their
own, are not able to extend the range of applicability of low
frequency methods enough.

To overcome these problems, several algorithms have been
developed. These considerably reduce the amount of data and
computer time with respect to the usual moment method
solution. It is worth mentioning, among others, the impedance
matrix localization {IML) technique [2], the application of
wavelet expansions [3], the fast multipole method (FMM) [4],
the spatial decomposition technique (SDT) [5] and the
multilevel matrix decomposition algorithm (MLMDA) [6].

Other methods exploit the fact that the magneric field
integral equation (MFIE) is a Fredholm equation of second
type, which can be solved iteratively. In [7], this approach is
used to obtain the scattered fields by two-dimensional perfect
electric conducting (PEC) bodies. In [8], a similar algorithm
was successfully combined with aperture integration [9] to
obtain the radar cross section (RCS) of large open-ended
cavities.
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The outline of this paper is as follows. In section II we
present a modified version of the MFIE which shows better
convergence properties than the original equation. Next, in
section III, another iterative method based on the combined
field integral equation (CFIE) [10] is formulated, showing its
numerical implementation and discussing its relation with
respect to conventional iterative algorithms. In section IV,
several results are presented to show the efficiency and
accuracy of the proposed approach. Finaily, section V
summarizes the main conclusions of the paper.

II. MAGNETIC FIELD ITERATIVE ALGORITHM

A. Original Approach

The MFIE is obtained by imposing the boundary condition
of the magnetic field over a perfectly conducting surface S.
This can be expressed as

I =ix(H'(0+H'®), res o))
where £ is the unit outward vector to S, H® the scattered
magnetic field due to the electric surface currents on S and H'

is the incident magnetic field. For smooth surfaces H' is given
by

H’(r)=J(r)><%+Lﬂ a)) @
with
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where PV stands for the principal value of the integral, and
G(R) =exp(— jkR) /4mR is the free space Green’s function,
where R =|r-r'| is the distance between the test and source
points. Therefore, the expression of the MFIE is

J(r)=%+ﬁx(ﬂi(r)+LH(J)) ()



which can be rewritten in a more usual form as
J(ry = 2ix(H (£)+ L, (1) (s

Even though this equation applies to the actual value of the
current, an iterative solution can be obtained by assuming that
the currents J in the right-hand side (RHS) and left-hand side
(L.LHS) correspond to the solation of the stages £ and (k+1),
respectively. Nevertheless, this algorithm may diverge, and
otherwise the rate of convergence usually is too slow due to
the properties of the corresponding iteration matrix.

B. Relaxed Iteration

To overcome this problem, this equation can be rearranged
by adding the term (1.y)J /7y to both sides of the equation,
where 7 is a positive real number. After some manipuiations,
this leads to the following equation

3. o =2yAx(H )+ L, )+ U-pI, (6)

It is worth noting that this iteration cormresponds to (35)
when y =1, and, as mentioned before, the convergence is not
guaranteed in this case. On the other hand, as the value of 'y
approaches zero, the rate of convergence decreases.
Numerical tests have shown that a value of y=1/2 usually
gives the best results. In this case, the algorithm given by (6)
is equivalent to the iteration of the original expression of the
MFIE given by (4).

Nevertheless, even for y=1/2 the convergence is still
slow, so the application of this method is impractical in most
cases. This fact motivated the search for a new iterative
method, that gave rise to the algorithm described in the
following section.

I1I. CoMBINED FIEELD ITERATIVE ALGORITHM
A. Formulation

The CFIE is obtained as a linear combination of the MFIE
and the electric field integral equation (EFIE) [10]. This
second equation is obtained by imposing the boundary
condition of the electric field given by

E (N=-E_(r), reSs N
where E|_ and E _ are the tangential components on S of the
incident and scattered electric fields, respectively. For smooth
surfaces, E; can be expressed by

tan

El(r)= LE(J)=[-ij—BLV(v.A)J ®)
il
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where [} and 1) are the propagation constant and characteristic
impedance of free space, respectively, and A is the vector
potential, given by

A = w1 G(RYas" ©
!

Therefore the expression of the CFIE is

J(r) = 2ax(H' (r)+ L, (J))

o
+;1-—(Em(r)+ L(D) (10)

where the factor o is an arbitrary constant. It can be shown
that the solution of (10) is unique whenever o is a positive
real number [10].

Applying the relaxation parameter described in the
previcus section for the MFIE, one can find a relaxed version
of the CFIE which shows much better behavior for our
purposes

I o =2vix(H @)+ L, J ) +U-17,

i
+H(Em(r)+LE(J,‘)) (1)

B. Matrix Solution

To obtain a numerical solution of eq. (11}, the current
distribution must be approximated by using an interpolation
method in order to evaluate the RHS of (11). This step
corresponds to the basis functions selection process of the
conventionai MoM [11]. Finally, the matrix equation is
obtained applying the dot product with a set of testing
functions. In our approach delita functions are used, which
leads to the conventional point matching [11]. Therefore, the
equation is imposed at a discrete set of points, which in this
case are selected to be the midpoints of each basis domain.
This matrix equation can be written as

o =(2Y[Ho | 0/ [E |+ -1 (1)) 4,

+(2yH"’"+aln E™) (12)

It can be seen that the part of (12) which is related to the
MFIE corresponds to the simultaneous overrelaxation
method (JOR method) [12], and the other, which comes from
the EFIE corresponds to the stationary Richardson (RF)
method [12], so the whole iteration is a linear combination of
both of them.

As in any other iterative method, the behavior of the
algorithm 1s mainly given by the spectral radius p of the
iteration matrix [12], which depends on the value of the
weighting parameter & and the relaxation parameter 7. It has



to be pointed that the election of the optimum values of & and
v implies an eigenvalue problem which is as expensive as the
direct MoM solution. Therefore, approximate empirical rules
have to be used to find them.

The relaxation parameter ¥ can be chosen following the
reasoning used for the magnetic field iteration. In relation to
the weighting parameter, it has to be noticed that o = O turns
(11) into (6), so it does not make any sense. On the other
hand, numerical tests have shown that when & approaches
one, the method becomes unstable, thus an intermediate value
of ae=1/2 was selected for the numerical examples shown in
this paper.

D. Computational Cost

The computational cost can be divided into two parts: 1)
the time spent for filling-in the impedance matrix, and 2) the
time required to obtain the current distribution for a given
excitation. The first task involves the same number of
operations for both direct MoM and the iterative method. The
numerical advantage is achieved in the second step, because,
while the inversion of the impedance matrix is an O(N?)
problem, where N is the number of unknowns, the iterative
approach is just O(NjeN2). As a consequence, this algorithm
is computationally efficient if the number of required
jterations is lower than the number of unknowns. In practice,
convergence is achieved in much less iterations, as will be
shown in the foliowing section.

IV. NUMERICAL RESULTS

A computer program has been written which implements
the algorithm described below for a body with rotational
symmetry illuminated by an incident plane wave (Fig. 1).
Several results for a test geometry are shown to verify the
efficiency and accuracy of the proposed approach.

For numerical purposes, a coordinate system is defined (»,
¢ t) depicted in Fig. 1. In order to apply the integral equation,
the surface currents J and the electric and magnetic fields (E,
H) on surface S are expressed as a superposition of two
orthogonal components, ¢ and ¢. To take advantage of the
rotational symmetry of the problem, the currents, the fields
and scalar Green's functions are expanded in Fourier series
in coordinate ¢. For example, the current distribution J can be
expressed as a sum of azimuthal modes as

= cos - sin .
I=2 0@ | (mo) i+ 1IN0 RO (13)
m=0 -

= sin
where the upper and lower symbols apply for even and odd
modes, respectively, While the mode expansion is an infinite
series, the series can be truncaied in practice [13]. Each term
J(¢) and J’;’ (#), only show variations with ccordinate 7,

thus the original 3D problem is reduced to a series of 2D
problems [10,13~15].

Incidence 1

Incidence 2

Fig. 1 Cone with spherical caps used as test geometry, showing the
coordinate system. Ry=0.5m,R2=02m, L=15m.

For the numerical examples shown in this paper, axial
incidence is assumed, thus only the mode m = [ has to be
considered.

To check the accuracy of the results, the mean relative
error in the current distribution with respect to a reference
solution obtained by direct inversion of the MoM matrix
(CFIE) is defined as

mcan|J—J,ef
E=——"7—"T—x100 (%)

. (14)
max|2 B’

Fig. 2.a and 2.b show the normalized current densities
J{t)/H and Jy(tV/H for direction of incidence 1 (Fig. 1). Fig.
3.a and 3.b show the same result, but for direction of
incidence 2. The convergence in terms of the number of
iterations is shown, demostrating that 7 iterations give an
excellent accuracy, in both cases. A discretization of 20
triangular basis functions along the generating arc was
employed, which average 10 basis per linear wavelength. This
grid spacing is used for the following results.

Fig. 4 shows the mean relative error defined in (14) versus

the number of iterations, compating the combined field with
the magnetic field iterative algorithms. It can be seen that the
convergence is much faster for the combined field algorithm
than for the previous magnetic field approach.
Fig. 5.a and 5.b show the error defined in (14) for the two
components of the current distribution in terms of the number
of iterations. Two different frequencies have been considered:
0.3 GHz and 1.8 GHz, maintaining the same grid spacing of
10 basis per linear wavelength. It can be seen that the
convergence is faster for the higher frequency, which makes
the algorithm suitable for analyzing electrically large bodies.
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Fig. 2. Cament distribution induced on cone-sphere for direction of
incidence 1 in Fig. 1. The frequency is 0.3 GHz.

Table I shows the relative computational cost with respect
to the direct MoM solution to obtain a normalized mean error
in the current of 2 %. These data were obtained for direction
of incidence 1. Similar results were obtained for the other
incidence.

TABLE1
RELATIVE COMPUTATIONAL COST WITH RESPECT TO MOM SOLUTICN

Frequency (GHz) CPU time (%)
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Fig. 3. Current distribution induced on cone-sphere for direction of
incidence 2 in Fig. 1. The frequency is 0.3 GHz.

V. CONCLUSIONS

This study of new iterative algorithms has so far led to

several conclusions:

1) The unrelaxed magnetic field iterative algorithm does not
always give a correct result for the induced currents.

2) The application of a relaxation parameter improves the
stability, but convergence is too slow.

3) The relaxed combined field iterative algorithm produces
accurate results in a small number of iterations.

4) Furthermore, the convergence rate increases with body
size, making this algorithm suitable for high frequency
scattering problems.
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Fig. 4. Comparison between combined field and magnetic field iterative
algorithms for direction of incidence 1. The frequency is 0.3 GHz.
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