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Abstract— In this paper a family of field-based error
estimators for Finite Element analysis of electrostatic and
magnetostatic problems in plane and axisymmetric
geometries is presented. For the error estimation in
magnetostatics, each element is divided in three sub-
elements using an edge element approach, whereas for
electrostatic problems a subdivision using facet elements is
used. The methods and the numerical techmiques are
described, comparisons with known solutions are
performed, some examples of application in cases of
practical interest are reported and the obtained results are
briefly discussed.

[ INTRODUCYTION

Techniques for error estimation in Finite Element
solutions of field problems and for automatic mesh
modification to guarantee a user-defined emor level
have been proposed for many years, in all areas of
engineering analysis [1]. Today they are becoming more
and more interesting, particularly in Elecwomagnetic
Analysis, because of their strategic importance in
allowing reliable Finite Element solutions without
specific user skills, in turn essential for automation of
design environment, device optimization and inverse
problem applications, increasingly required in designing
advanced electromagnetic devices {2]. Many techniques
for the estimation of errors have been proposed, but it
has also been shown that the efficiency of each
technique is significantly dependent on the specific
problem to be solved [3-6].

In this paper a family of error est]mators, resulting
among the most efficient for electrostatic and
magnetostatic problems in the range developed and
tested by the authors, is presented. All error estimators
are developed for first order, triangular meshes, operate
on a single element at a time, and are available both for
plane and axisymmetric geometries. The estimators
present some analogies with the “Local Error Problem”
approach, developed by the authors, that has been found
very efficient with respect to other approaches [5]. The
error estimators have been developed casting the errors
directly in terms of fields, the quantity of more direct
physical interest, defining a “Local Field Error
Problem™ [7].

The distinctive feature of the family of error
estimators presented in the paper is the representation of
the field over the element, that is related to the type of
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potential, scalar or vector, used to derive the field. This
ensures the ability to capture effectively the biggest
error contribution, connected to the normal derivative of
the potential from which the field is derived. The
representation of the error variables is then in terms of
“edge” or “facet” elements for solutions derived from
vector or scalar potentials, respectively [8]. To ensure a
practical representation of these variables, a “Whitney
forms” description has been used [9].

The error estimaiors defined in this way have then
been used to build up an adaptive meshing sirategy,
based on the subdivision of elements with high errors,
usually termed “h refinement” [10,11]. All algorithms
have been implemented in the two-dimensional Finite
Element development environment CEDEF, also used
for other error estimation and adaption procedures
developed in the authors' group [12].

In the paper the structure of error estimators is
described, the adaptive meshing strategy used is
outlined, the validation of their performance in cases
with known solutions is performed, and results of usage
in cases of practical industrial interest are reported and
briefly discussed.

II THE LOCAL FIELD ERROR AFPROACH

The “Local Field Error Problem™ for the electrostatic
and magnetostatic cases is derived from the proper
subset of Maxwell equations, defining a governing set in
terms of curl and divergence of the numerical error
[6,7,13]. The estimation is based on the solution of 2
differential problem over each element using as “error
sources” the jump in normal derivatives of potential
along element edges. In a similar way, it is possible to
derive a formulation defining again a local problem over
each element; this will assume as unknowns the errors in
the evaluation of field quantities, with “error sources”
derived from the jumps in the normal derivatives of
potential applying Ampere’s and Gauss’ laws.

The development of an “a posteriori” efror estimate
based on a “Local Field Emor” approach requires the
definition of the error estimate unknown in term of
fieids, the use of Maxwell equations in differential form
and the definition of a closed domain where Dirichlet-
like boundary conditions are applied. This implies that
the unknown vector entity is uniquely defined by
Helmbholtz’'s theorem.



A. Electrostatic Problems

The evaluation of the estimate of numerical errors in
FEM solutions of electrostatic problems can be carried
out by defining an adjoint problem, in terms of errors in
electric field evaluation, where the unknowns are the
components of the error vector € , defined as difference

between the “true” electric field E, and the computed

one E, , that is:
é=E -E 1

The error equations are derived from the electrostatic
subset of Maxwell equations applied to the “true”

electric field E . This leads to the set of vector
equations in terms of the error € :

V-D=5=V(e8)=5-V-(E,) @)
VXE=0=VxZ=-VxE, 3

where £ is the permittivity of materials and J is the free
charge density. The RHS term of (2) can be expressed
in terms of a fictitious charge density d¢ by applying
Gauss' law as:

V-D,-8=V-(e£,)-5=3, ()

The fictitious charge density 8¢ is the volume source
of the problem in terms of error and must be derived
from the numerical solution in terms of the electric
potential V.

B. Magnetostatic Problems

For magnetostatic problems, the evaluation of the
estimate of numerical errors in Finite Element solutions
can be carried out defining an adjoint problem where
the unknowns are the components of the error vector ¢,
defined as the difference between the “true” magnetic

induction B, and the computed one B, thatis:

=B -8B, (5)

The governing equations of the error problem are
derived from the magnetostatic subset of Maxwell
equations applied to the “rue” magnetic induction E‘:.
This leads to the set of vector equations for the
numerical vector erTor € :

V.-B=0=V-(&)=-V:(B) (6)
fo{':j:st(vE):f—Vx(vﬁc) D

where v is the reluctivity of materials and J is the
applied current density. The RHS term of (7) can be
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expressed in terms of a fictitious current density J¢ by
applying Ampere's law as:

VxH, ~]=Vx(vB)-T=17, (®)

Those fictitious current densities are the volume
sources of the problem in terms of error and must be
derived from the numerical solution in terms of
magnetic vector potential.

C. Solution Strategy

Equations (2) plus (3) and (6) plus (7) define the sets
of vector equations for the error problems over a generic
open domain, in the electrostatic and magnetostatic
cases, respectively. This general form could be applied,
in principle, to the whole domain of a problem
discretized and solved with FEM, defining an adjoint
problem where the unknowns are the error vectors: this
problem would be of the same size, in term of
unknowns, as the original FEM solution. However, this
solution is in general considered too expensive, since it
requires at each iteration the solution of two problems
roughly of the same size. The solution strategy generally
used to overcome this problem is based on the definition
of the error problem on “patches” of a limited number
of elements, considering the FEM discretized domain as
a set of subdomains in each of which, if appropriate
boundary conditions are applied, equations (2) and (3)
or (6) and (7) can be defined [1,3,4].

In order to cope better with complex geometries with
many interfaces, very likely to be of interest in industrial
electromagnetic design, the authors have always chosen
to restrict the “patch” to a single element [5-7].

III. ERROR SOURCES

As previously pointed out, the problem is restricted
to the solution of a “local problem”, over each element,
consisting of a set of two equations: one in terms of
“divergence” (eq. 2 or 6) and one in terms of “curl” (eq.
3 or 7). In order to obtain a unique solution, the
definition of appropriate boundary conditions on each
element is required. As it is well known, the derivatives
computed by a FEM solution in terms of scalar
potential, or of vector potential with a single
component, are continuous in the tangential component
at each inter element boundary, and are discontinuous
on the normal component at the same boundaries. This
leads to the assumption that the information relevant to
the numerical error associated with the discrete solution
are contained in those discontinuities [3-7].

In the standard approach proposed in [3,4], the
continuity of the tangential component of the derivatives
of the potential leads to the assumption that the error in
the node is by definition set to zero, implying that it can



be considered negligible with respect to the error along
the sides of the element. Similarly, in the “Field Based”
approach proposed by the authors it is assumed that the
error related to one of the components of the field (the
tangential component of electric field or the normal
component of magnetic induction) is negligible with
respect to the error refated to the other component. The
consequence is that one of the two equations (the “curl”
equation (3) for the electric field and the “divergence”
equation (6) for the magnetic field) can be assumed as
identically satisfied and can then be neglected in the
error problem. With this assumption, the sources for the
error problem can be identified omnly for the
“meaningful” component of the error (the normal
component for the electric field and the tangential
component for the magnetic field) and the governing set
of equations is restricted to one equation only.

On each element of the discretized domain the
boundary conditions are given on the surface of the
element in term of the jump of the normal derivatives of
the potential at inter-element boundaries. The computed
jump, expressed in terms of field, is split between the
two neighbouring elements, i and j, for the electric and
magnetic field, respectively, as: '
iy = mirj)(E; - Ecj) n

1

)

€iis =C|)HJ-)(B:_.—B:)XE (10)
The weight factors wi(j) take into account the ratio
between the absolute values of the field in the two
adjoining elements. At exterior boundaries and
interfaces, the conditions on the error are derived by the
residual in the evaluation of the relevant condition with
respect to the normal (electric field) or tangential
(magnetic field) component of the field.

The fictitious charge density 8 and current densitiy
J¢ defined by (4) and (8), assumed to be constant over
each element, can be evaluated applying Gauss' law, or
Ampere’s law, respectively, to the exterior boundary A
of each element A:

iﬁc-ﬁds-£m={8fdﬂ (11)

(12)

IV. NUMERICAL SOLUTION

The adjoint problem in terms of error, defined by (2)
for the electrostatic problem or by (7) for the
magnetostatic problem over each element of the
discretized mesh, with boundary conditions like (9) or
(10) and internal sources like (11) or (12}, can be
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numerically solved by discretizing the domain (that is,
each generic element) into three sub-elements, by
adding a node at the centroid of the element.

On each sub-element the unknown error (the normai
component of the error in the evaluation of the electric
field, or the tangential component of the error in the
evaluation of magnetic field) is represented using a
vector interpolation representation expressed using a
“Whitney forms” description [8,9] in terms of the nodal
basic interpolation functions of first order (N1, N2, N3}

A. Electrostatic problem

In electrostatic Finite Element solutions, the vector
interpolation form for the definition of the error problem
that has been found more suitable to represent the error
in terms of electric field is the “Facet Element”
interpolation  technique. This technique is particularly
useful for this case since it represents very well
quantities related to a flux [8], that is the normal
component of fields, which is the one more directly
linked to the error in this case, as previously outlined.
The boundary conditions and the unknowns for the error
problem over each element are shown in Fig. 1.

The three normal components applied to the outer
sides are the kmown jumps, given by (9), that are
derived from the numerical solution, while the three
normal component applied to the inner sides are the
unknown values.

Fig. 1: Discretized “local domain” for the error problem and error
unknowns in the electrostatic case.

The error vector on a single sub-element can be
defined as:

E=Zkﬁfkek where W,‘=NiV><K’j—N‘,-VXﬁs 13

Using a weighted residual approach, the discretized
equation is then derived by the integral relation:

Jo(V-W.ev-e-38,jaa=0

In this way, on each element a set of three equations
is defined, having as three unknowns the normal
components of the error vector in the three inner sides
of the discretized “local domain”, as described in Fig. 1.

(14)



B. Magnetostatic problem

In the magnetic case, the vector interpolation form
for the definition of the error problem that appears more
suitable to represent the vector error in terms of
magnetic induction is the “Edge Element” interpolation
technique.

This technique is particularly useful for this case
since it represents very well quantities related to a
circulation [8].

The boundary conditions and the unknowns for the
numerical problem are shown in Fig. 2, where the three
tangential components applied to the outer sides are the
known jumps, given by (10), derived from the numerical
solution, while the three tangential components applied
to the inner sides are the unknown values.

Fig. 2: Discretized “local domain” for the esror problem and error
unknowns in the magnetostatic case.

The error vector on a single sub-element can be
derived as:

§=Y, We, where W,=NVN,-NVN, (15)

Using a weighted residual approach, the discretized
equation is then described by the integral relation:

L(7%W)-(swxz-7,}ea=0

defining on each element a system of three equations in
three unknowns, the tangential components of the error
vector, defined on the three inner sides of the discretized
“local domain”, as detailed in Fig. 2.

(16)

V. MESH REFINEMENT

The use of the error estimates previously presented in
an automatic procedure for mesh refinement requires the
identification of an adaption strategy. After a series of
initial tests, the authors have identified a procedure that
has proven reliable and robust for electromagnetic
analysis applications, also in the case of complex
geometries of practical industrial interest [10,11].

As defined in a previous paper [11], the procedure is
based on the definition of a refinement indicator 1o
guide the subdivision of elements, of a convergence
parameter to stop the iterative process of mesh
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refinement and also provides a final estimate of the
local relative error on each element of the final refined
mesh. All quantities are computed on the basis of
evaluation of quadratic norms over each element of
local values. The quadratic norm of a scalar or vector
quantity is defined as:

= fluf* a2 %)
Q
The refinement indicator is defined as :
(18)

where the vector F is the electric field in electrostatic
cases or the magnetic induction in magnetostatic
problems. The refinement indicator is used to identify
the elements to be subdivided. The convergence
parameter and the final error estimator are defined by:

vy el
cEJ XN G E=yS
...

(19}

" The convergence indicator is used to terminate the
iterative procedure, that is stopped when its value falis
below a user defined value of “average desired error”, in
relative or percentual terms. The final error estimate is
then evaluated with respect to the maximum field value
F (electric or magnetic) computed over the domain.
Mesh refinement is realized using the h-refinement
procedure detailed in [11].

VI, IMPLEMENTATION AND TEST CASES

The proposed method has been implemented in the
two-dimensional ~ Finite  Element  development
environment CEDEF, in the interactive module
developed for the comparison of adaptive meshing and
error estimation technigues [12]. Each solution is
obtained with first order triangular elements.

In order to validate the approach and to evaluate the

performance of the proposed method, a set of
analytically known problems has been analysed. The
comparisons between estimated errors and real ones
have been realized using in both cases the formula given
in (20), but substituting, for the real errors, the exact
solution.
All tests performed have indicated a good performance
of the method, that has generally provided consistent
meshes and a final error estimate close to the real error.
To allow a direct evaluation of results, some of the
comparisons performed are reported in the following
subsections.



A . Dielectric cylinder in uniform field

This model problem is particularly useful to test the
performance of the method in the presence of an
interface between two materials with different
permittivity. An analytical solution for this problem is
given in [14].

In Fig. 3 the initial and the refined meshes, with a
convergence level set to 1%, are reported. The results
obtained, in terms of error estimate and real error on the
refined mesh, are plotted in Fig. 4 with reference to the
behaviour of errors along a line at y=0 across the
interface.

As can be observed from Fig. 4, the procedure shows
a good agreement with real errors, as also found in other
test cases of similar type, not reported here for the sake
of brevity.

£
-
m.nv? e,

Farat

Fig. 3: Inidal and refined meshes for the dielecmic cylinder problem,
showing only a detaii of the mesh.

Error [%]
N

Fig. 4: Plot of the comparisons berween true and estimated errors. for
the Diclectrie cylinder problems along a line at y=0 across the
interface.

B. Conductor Bar

Another reference problem that has been used as a
test is the evaluation of magnetic induction distribution
generated by a conductor bar of infinite length in an
ironless domain. The analytic solution is obtained by the
integration of Biot-Savart's law {14]. The model for the
numerical solution has been obtained using a Dirichlet
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boundary condition at a sufficient distance from the
conductor, computed by means of analytical formulae.
In Fig. 5 the inital and the refined mesh, with a
convergence level set to 1% are shown. In Fig. 6 the
behaviour of the real and estimated errors along a line
on the symmetry axis (y=0) crossing the conductor is
reported.

LA
T Tar LY,
va T,

Fig. 5: Initial and refined meshes for the "Conductor Bar" problem,
showing only a detail of the mesh.

Error [%])

Fig. 6: Behaviour of the real and estimated errors along a line on the
symmetry axis of the conductor bar problem.

VHO. ROTATIONAL SYMMETRY PROBLEMS

Since the error problems are cast in terms of fields,
the error estimates with the “Local Field Error Problem”™
approach can be also extended to rotational symmetry
problems with a limited amount of conceptual changes
with respect to the formulation presented above.

This extension has been performed and validated in
the CEDEF development environment previously
mentioned, and has provided also for this type of
geometries very good results. Some examples of this
kind are given in the next section.

VIIL INDUSTRIAL DESIGN EXAMPLES

The adaptive procedures realized on the basis of the
“Local Field Error” formulation have been also used in
real, industrial level test problems, to evaluate the
robustness of the procedure for practical applications.



Fig. 7: Initial and final mesh for the evaluation of electrostatic fields
in an 5Fs switchgear.

Fig. &: Initial and final mesh for the evaluation of magnetic mnduction
in a permanent magnet loudspeaker.

In Fig. 7 the initial and final meshes for the
evaluation of electrostatic fields in the axial section of
an axisymmetric SFs switchgear, comprising high
voltage electrodes and an insulating cone are given,
while in Fig. 8 the initial and final meshes for the
evaluation of magnetic fields in a permanent magnet
loudspeaker are dispiayed .

In both cases the initial and final meshes have been
produced in complete automation by the procedure, with
the user required to define the average accuracy level
only, set to one percent for each solution, and the results
have proven consistent with those obtained with other
codes, run with fine meshes without using an adaptive
technique.

IX. CONCLUSIONS

The family of eror estimators and adaptive
algorithms presented in this paper has proven very
effective and reliable in the cases tested. They also
covered geometries of interest in industrial design, and
helped to obtain FEM solutions of practical electrostatic
and magnetostatic problems without any effort in the
definition of the mesh. The solution quality is under the
control of users but independent of their skills.
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The algorithms devised appear rather robust and
flexible and the authors are carrying on further activity
to extend the coverage to other subclasses of
electromagnetic analysis.
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