An Investigation of the Scattering of Surface
Waves at Dielectric Slab Waveguide with Axial
Discontinuity

CRESO S. DA ROCHA !

Abstract— This paper introduces a technique for studying
the radiation due toe an abrupt axial discontinuity in the
geometry of a planar dielectric waveguide (slab waveguide)
when an even TM surface wave strikes the discontinuity.
The mode matching technique is applied at the discontinu-
ity giving rise to formally exact integral equations which
are solved by the Method of Moments.

I. INTRODUCTION

LECTROMAGNETIC scattering due to a discontinu-

ity in the geometry of a surface waveguide has oc-
cupied attention of several investigators in the past few
decades [1]-[7]. These authors, in one way or another,
make approximations that turn solution of the problem
unavailable for large range of discontinuity. On the other
hand, in all cases, the back radiation is considered very
small and neglected. In our work there is no restriction
values for the discontinuity, but we can observe that the
solution becomees unstable as the structure in the right
side approaches the air, Fig. 1, (by making by = 0).

In this paper a method for investigating the scattering
of an incident surface wave at the axial discontinuity of a
dielectric slab with a step in the geometry is introduced.
In our approach we formulate the field equations in an
exact way by using the mode matching technique of the
tangential fields, represented by a complete set of eigen-
functions that are solved by the Method of Moments. In
the integral equations, both back and forward scattered
radiation spectral densities are considered, initially with-
out approximations.

II. MopE MATCHING AT THE INTERFACE

With reference to Fig. 1, consider a TM surface wave
with even symmetry [Hy(z) = Hy(—z)] striking the dis-
continuity at z = 0 from the left and giving rise to a
transmitted and a reflected surface wave as well as scat-
tered radiation. The single mode is gnaranteed by taking
the slab of thickness not larger than 2b. in the region I,
where b, is given by 2b, = Ao/, — 1 {dominant mode).
At the discontinuity the boundary conditions cannot be
satisfied by the surface waves alone; an additional field
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with radiation characteristics must be introduced, that is,
the total field must be given as

'wl = '(l’incident + '#’)reﬂected + Pradiated, [z < 0]

¢2 = lbtranamitted + Yradiated, [z 2 0]
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(a) The slab waveguide with abrupt step in the geometry
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Figure 1: The Dielectric Slab with Axial Discontinuity.

The radiation is accounted for by the continuous spec-
trum of pseudo-surface waves. Because h(s), the wave
number in the z—direction for the continuous spectrum,
is a double-valued function of s, the wave number in the
z—direction, it is necessary to define its branches to unique-
ly define the pseudo-mode solutions, that is

h(s) =+ /kE =52, [0<s< ko) (1)

h(s) = —jy/s? — k2, [ko < s < oq] (2)



Equation (1) corresponds to the spectrum of radiation
modes (visible range) while equation (2) is for the evanes-
cent modes (invisible range).

Let the incident surface wave have amplitude I and the
reflected and transmitted surface waves have amplitude
R and T, respectively. Taking ¢ = Hy(z, z) for the TMg
mode. Matching the total fields at z = 0 gives [§]

(1 + Ry + [ (B} o)y (s =

Thya + j " Ba(e)/(hya(sdds  (3)

(ha/er)(T = Rty = [ (1/ee)Ba(o s (s =

(hafesThya+ [ " (1) Br()hya(s)ds  (4)

where hy and hy(s) are the transverse function for the
discrete and continuous TM field, respectively. B; and By
are the unknown spectral densities for the left and right
region, respectively. In the expressions above, including
the dielectric constant, the z—dependence is understood.

III. TRANSFORMATION TO THE SPECTRAL DOMAIN

In order to apply the Moment Method one must first
eliminate the z—dependence, so that (3) and (4) will be
in a form suitable for computation. To do so and to take
advantage of the orthogonality properties, (3) is multi-
plied by hy1(5)/€1(x) and by hy;/€1(x) separately and in-
tegrated over z from 0 to oo [8]. Similarly (4) is multiplied
by hyi1(s) and hy, separately and integrated over z from
0 to oo.

Noting the orthogonality properties, the following set
of equations is obtained:

B1 (S)
k(8)

— B1(85)NE(5) = hoTG12(3) + fu By(s)12(s,8)ds (6)

— N §) =Tk s)+] B,(s)H3(s, 5)ds/h(s) ()

(I+R)N? = THyz + ] " Ba(s)Ga(s)ds/h(s)  (7)

(I - R)thlz = hT o+ [Jm Bg(S)Fgl(s)ds (8)

where the integrals Fio(8), G12(8), Hia(s,5), I1a(s,§),
F21(s), Ga1(s), Hyz and I;2 and the normalization factors
N; and Ni(s) are defined as follows, for ¢ and j mutu-
ally exclusive and equal to 1 or 2 according to the region
considered {left or right region):

Fii(3) = '[u ” ;(lx—)hy.-(g)hw-dz )

H,-,-(s, §) = ./Dm %hy;(i)hw(s)dx (10)
Hy= fn (1 )hy.hwdz (1)
. 2¢ .k
e ]
and x
Ni(s) = 5 [v3(s) + wi(s)] (13)

where v;(5) and w;(s) are defined as follows ([8], Cap. 2):
vi(s) = cos[gi(s)b;] (14)

wi(s) = %:s-)-sin[g.-(s)b.-] (15)

gi is the discrete wavenumber inside the guide and a; is an
attenuating factor outside the guide in z—direciion. Note
the g; and o; are solutions of the characteristic equation
system

gi tan(gibi) = ayen

g +of = ki(en — 1)
gi(s) and s are related by ([8], Cap. 2)

gi(s) ~ s* = ki(ers = 1)
hz(s) = kg - 82
The integrals Gi;(5), Iij (s, §) and I; follow from Fj;(3),
H;;(s, §) and Hi;, respectively by replacing e;(z) by ¢;(z).
The system of four equations (5-8) is a set of integral

equations in R, T, By (s) and Bj(s) that can be solved by
a suitable numerical method.

IV. MOMENT METHOD SOLUTION

To put the system to be solved in an appropriate form
for the Method of Moments, let the unknown spectral den-
sity B;(s) be represented by the following series,

N

Bi(s) =D _ b fu(s), i=1,2

n=l

(16)

where f(s) are pulse functions, chosen as testing func-
tions, and defined as follows:

P(s—s,) = {é

where As is the width of the pulse functions and s, is the
b pulse function’s midpoint:

for |s — sn| < As/2

for |s — 55| > As/f2 (17)

fals} =

sp = (n—1/2)As

As= kg/Nu
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and
K =sy+ As/2

where N is a suitable number of points, usually larger
than Np, the last value of n in which A{s,_1) is still real.
K is a large number that replaces infinity in the integrals
of (5-8). The optimal values of N and Ny are dictated
by the convergence of the solution. For n > Ny, h(ss) is
pure imaginary, giving rise to the evanescent modes.

By using the expansion (18) the equations (5-8) become,

N
S UDP(E — sn)/h(E) =

N K
TFua() + 342 / P(s — 5,)Hya(s, 5)ds/h(s) (18)
0

n=1

N
=S HIP(E - sa)NE(E) =

n=1

N K
ThaGus(3) + 382 _/ P(s— so)ha(s,6)ds  (19)
0

n=1

N K
(I+R)N? = THy+ 3 b2 / P(s — 5)Ga1(s)ds/h(s)
n= 0
1 (20)
N K
(I-R)N? = Thylip+ S 42 f P(s—sn)Far(s)ds (21)
¢

n=1
If one uses the point-maiching method, a suitable inner
product is defined as follows,

K
< W, L(fa) >= fu 8(3 = 8a) L(fa)d5

where w,,, the weighting function, is given by wm =
§(8 — sm), L(fs) is a linear operator, and f, is the un-
known response to be determined.

Thus, multiplying (21) by 6(5 — s) and integrating over
§ from 0 to K gives

N
BN (5m) = TFia(m)h(8m) + hl(sm) 3 6Pl (22)

n=1

N
— BN (5m) = TGra(sm)ha + Y bPmme  (23)
n=1
N
(I+R)NZhy =THizhy + > 5P lon (24)
n=1
N
(I~ R)NZhy = Tlzhy + 3 8mg, (25)

n=1
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where I, Mamn, lon, Mon are defined as

b = [ Hislo,om)ds/h(s) (26)
I j; | Tuae ) @7
mon = [ Grale)ds/hs) (28)

Mon = fA | Fu(s)ds (29)

where As, = (8n — $As, 55 + $As).

Because of the properties of the pulse functions the
range of these integrals were changed to ‘local’ range where
each integral is performed over each pulse alone, Fig. 2.
The above integrals cannot be solved in closed form. An
approximate procedure is to expand part of the integrand
that does not contain a function of the type 1/(s®— f?) in
a Taylor series about 5 = sy, the midpoint of the range of
integration. It is sufficient to consider only two terms of
the expansion because the range of integration is or can be
made small. This approximation is valid only for points
where h(s) does not vanish. Points very close to s = ko
would give poor approximations.

P(s-s,)
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1.04--- -- l— _E
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Figure 2: Pulse Function for N Points.

V. PowgR CONSIDERATIONS

Power in the Surface Wave

The power carried by the dominant mode surface wave
(per unit length in the y—direction) for the upper half of
the slab waveguide is

1 o0
P,=3Re fu B H}dz (30)

where ‘Re’ means ‘Real part of . For TM modes the
surface wave H field is given by

Hy(z,z) = Ahy(z)e™7%? (31)



where A is the mode amplitude. The ‘%’ suffix for the
wave number h has the following meaning
hy =h (forward wave)

h_ =h (reflected wave)

Moreover from Maxwell Equations,

1 @ hs
z = ma wfof(z) Hy(z, z) (32)
Putting (31) and (32) into (30) gives
=P e [T Lk o)z
Pom gl [ i@ @)

Therefore the total power carried by the even TMy mode

i3
Znhi

P, = ——=|A*N? (34)

where N is the discrete normalization factor given in (12),

Zo = /oo = 120782,

The Radiated Power

The total power of the radiating field for the upper half
region is defined as

1 =]

Pua=3 / P(6)d8 (35)

0
where P(#)}, the angular power density per unit width in
the y—direction, is defined by

P(6)d6 = Zo|Hy(p,0)]>, [p— o]
where p is the distance to the far field observation point
from the origin and # is the angle between the direction
of and the z—axis, measured from the latter (Fig. 1).

For TM psendo-modes the pseudo-surface wave H field
is given by

(36)

Hy(z,2) =3 f hat B(s) hy(z,s)e‘j"*(’)’ds (cf.(31))

37)
where B(s) is the unknown spectral density and hy(z, s),
the transverse function for the continucus TM mede field
is given by
[v(s) = juw(s)] €355,
where v(s) and w(s) are given by (14) and (15), respec-
tively. Notice that in writing (37) one considered only the
outgoing term of the pseudo-mode solution because the
incoming one makes no contribution in the upper half re-
gion. It is possible to show that the incoming term leads
to an expression for the radiated power in the lower half

hy(z,5) = >4  (38)
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region, which, by symmetry can be deduced from that for
the upper half region.

The integral above - (37), cannot be evaluated in closed
form. Fortunately, for radiation problems, the primary in-
terest is with the far field and so one can apply asymptotic
integration techniques such as the saddle-point method. It
is convenient o make the following changes of variables,

¢—b=psin(f), z= pcos(f) (39)
s = kgsiny, h(s) = kq cos(v) {40}
since
JE (41)
k3 = &% + h*(s) (42)

In terms of the new variables, (37) can be written, for
(0<b<m)

Hy(p,8) = %f B(kgsiny, 2k cos )

c

[v(ko sin 7) — jw(kosin y)] e¥For ooV gy

(43)

where the upper and lower signs in the exponential term
and in the function B stand for z > 0 and z < 0, respec-
tively. C is the integral path for the saddle-point method
of integration.

For 2 > 0 {x/2 <8 < 7) the saddle poiat is § =06 and
for z < 0 (7/2 < 8 < ) the saddle point is § = 7 — 8
([9],p-108,9).

For very large kop, that is, for points far from the dis-
continuity, the following asymptotic expression is obtained

Hy(p,6) = 1/ B(ku sin @, kg cos §)

[v(ko sin 8) — jw(kg sin #)] e—ilkor—=/4) (44)

Thus the far field of (44) is a diverging cylindrical wave
satisfying the radiation condition, with pattern given by

Q) = B@)[v(f) - jw(d)] (45)
In view of (44) one writes
[#00. )| = 5 (BON [#) + @) (46)
and consequently, with reference to (36),
Hﬂ-—ﬂﬂmmﬁﬂ (47)
where N2(f) is given by
N*(0) = 510 (0) + w?(9)] (48)



Substituting (47) into (35) gives

_Zy [T aaaas s
Py = T A |B(8)|"N=(6)d# (49)
More explicitly, in terms of s
_2% = 22
Prag = |B(s)|°N*(s)ds/h(s) (50)
4ko Jo

Notice that ds/h{s) = 6, due to the change of variable.
The forward and backward radiation powers are in-
cluded in (49) when € is properly replaced; thus when
# runs from 0 to =, é has two stationary values and conse-
quently the integrand is split into two terms, correspond-
ing to the forward and back scattered radiation each as-
sociated with the same value of s.
The power pattern is then
Q(6) = |B(®)I*N?(6),

[0<§ <] (51)

V1. NuMERICcAL REsurTs aND DISCUSSION

For numerical calculation purposes the incident power
is set to unity. Consequently, the transmitted, reflected,
and radiated powers are normalized with respect to the
incident power. They are in the convenient forms given

as follows : N2
— 2 2:¥2
Ptrms - T (thlg) (52)
Pt = R? (53)
1 & i? a2 @|° a2 As
Prag = thlzz byl Ni(sn)+ |87 N3(sn) h_(;'-_)
n=1 n
(54)

The superscript upon &, and the subscript in the other
variables refer to the medium on the left ‘1’ and on the
right ‘2’

The actual total power (incident plus scattered) for the
slab waveguide is double the value obtained here because
one is considering only half the slab.

The backward and forward power patterns are written
as functions of 8, and bs,l) and b,(,z) as

Qu(6n) = 8P NE(6n), [m/2<bn<7]  (55)
Q2(0n) = |BPPN2(8,), [0< b <w/2] (56)
where
- Sin-l( ﬂ/k )a [0 <bp € /2]
ba = {w i o k), [r2<b <a] O

Notice that, in principle, the total scattered power equals
1 and that the following relation must hold

Ptrans+Pref+Pradzl (58)
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The expression above is useful to indicate whether the
calculations performed are or are not accurate. Of course
this relation is not a sufficient condition for the solution
of the problem.

In the following subsection the solutions of the system of
equations (22-25) are presented for several selected cases.

Convergence

Curves showing the variation of the transmitted, re-
flected, and radiated power with changes of the slab thick-
ness in the right region are shown in Fig. 3. These
plots were obtained by varying 2bz/As from .001 to 0.40.
The conservation of energy was verified in all cases with
N = 48 points and Ny = 24 points. These results show
that there are no problems of convergence for changes
in by, even for very small values. It is worth remark-
ing that the radiated energy is very small, unless large
steps are considered (small values of b;). For example,
when 2b3/Ag = 0.001 almost all energy is radiated and
the reflected energy is very small.

Power Patterns

The main concern here is the radiation characteristics
due to the step in the geometry. Several cases were con-
sidered in order to show these properties. Curves of Fig.
4 and 5 show the pattern characterists for some particular
cases. One can notice that the smaller the dimension of
the slab at the right side the closer to # = 0° is the peak
of the radiated field. The error with respect to the total
power involved in the calculations above is less then 1%
for all cases with N = 48 and Ny = 24.

V. CONCLUSION

The Moment Method applied throughout this work has
been shown to be accurate, efficient, and the results are
very convincing for many practical cases of axial discon-
tinuities in dielectric waveguide structures. The formula-
tion of the field equations are exact and straightforward.
On the other hand one concludes that the truncated num-
ber of equations N and the number of equations in the
visible range Np play a very important role in the conver-
gence of the solution. For most specific cases the number
of points in the invisible range need not be large.

The technique applied in this work can also be used for
the slab and rod (TMg;) waveguide with ascending steps
in the geometry. Steps in the dielectric medium are also
possible and the formulation is slightly simpler. Mixed
cases can also be treated with some increase in complexity
of mathematical handling.

The method has to be changed in the case of free-end
structures (b = 0) since one gets more equations than
needed because T becomes zero (see set of equations (22-
25)). That is the reason the system gets unstable as by
approaches the air.
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Figure 3: Power vs. the Slab Thickness in the Right Re-
gion for 2b, = .4); and ¢, = €2 = 2.56.
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Figure 4: The Power Pattern for b3/A; = 0.005...0.063
with €7 = €2 = 2.56.

1.00+

Figure 5: The Power Pattern for b2/Ap = 0.075...0.150
with €1 = €2 = 2.56.



