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Abstract - This paper presents the mathematical
formulation concerning the solution of inverse
electromagnetic problems, i.e. the shape optimization of
power frequency electromagnetic devices, based on a
combination of numerical methods. The optimization
problem is solved using deterministic methods in which
the electromagnetic field problem is treated as a
subproblem of the optimization process. The field
problem is calculated using the finite element (FE)
method. Three determiristic approaches are studied in
detail, the quadratic extended penalty method (QUA),
the augmented Lagrange multiplier (ALM) method and
the constrained quasi-Newton method (PLBA-CR). The
work highlights the advantages and drawbacks of each
approach. The search direction for the optimization is
found by two distinct methods, the direct differentiation
of the FE matrices and the finite difference (FD)
method. In total, three problems are discussed in order
to show the power and applicability of the theory
presented. The PLBA-CR, when combined with the
direct differentiation of the FE matrices, appears to
offer important advantages over the other methods.

I. INTRODUCTION

The design of electromagnetic devices, such as
electromagnets, electrical machines etc., has always
been a challenge for electrical engineers. This
process normally involves the determination of the
shapes, dimensions, position of the core, permanent
magnets and windings of the device, amongst other
factors,  which may  produce  prescribed
electromagnetic quantities such as flux distributions,
forces and torques.

In the past, such designs were a task based very
much on the engineer's experience and intuition. After
the advent of the computer in the fifties and its
subsequent widespread use in the eighties, the whole
process of design has changed. It is now possible to
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analyse electromagnetic devices using computer aided
design (CAD) techniques, see for instance [1]-[3].
However, a pure field analysis package may in many
situations leave the engineer in an uncomfortable
situation of having to change some key parameters
in the design and then rerunning the program until an
acceptable result is obtained.

In recent years there has been an enormous amount
of work concerning the solution of inverse
electromagnetic problems by means of numerical
methods, see for instance the proceedings of the last
Compumags and CEFCs. In addition to the solution of
particular problems there have been advancements
towards the automatization of some specific tasks, the
shape optimization of electromagnetic devices is one
example.

Mathematically, inverse problems such as the shape
optimization of power frequency electromagnetic
devices may be stated as a constrained optimization
problem [4]. In general onre may write

Minimize
F = F{{p}o({2})) M

Subject to
gi({pho({p}))<0 j=L...1 @
m({pho({p}))=0 k=lusm 3)

ph<pi<pl izh.n @

where F represents the objective function, g; are the
inequality constraints, A are the equality constraints,
p; stands for the design variables and ¢ for the field
variable. It has been assumed that the field variable ¢
is also a function of the design variable p. It is also
important to note that the lower and upper limits

given in (4) define the region of search in the »-
dimensional space.
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Classically (1) to (4) may be solved using either
stochastic =~ or  deterministic = methods. What
differentiates these two sets is the way their numerical
methods iterate.

Stochastic methods are based on probabilistic rules,
i.e. they attempt to achieve the solution by exhaustive
evaluations of the objective function (1). This feature
is often seen as an advantage of these methods since a
global optimum may be achieved theoretically.
However, in many cases that same feature is regarded
as a major drawback since the computational cost
may become prohibitive. Recently special attention
has been paid to the method of simulated annealing
and the method of genetic algorithms for solving
inverse problems, see for instance [5]-[7].

Deterministic methods, on the other hand, are based
on an iterative line search where the design
parameters p are varied systematically until an
optimum value is found. Mathematically this is
expressed by

1
{p}"" ={p}* +alsT ®)
where o stands for the step size and S for the search
direction which is calculated by

{5} = -vF9 +p4{s}*”! ®)

with

2 2
p? =|vF1| /lVF9'1| Q)
Thus, it becomes clear that the calculation of S
requires the total differentiation of F with respect to p
which in turn requires the differentiation of ¢ with
respect to p. Indeed, deterministic methods have the
advantage of using the information from one iteration
to move to another. In many cases this feature makes
the solver converge rapidly to an acceptable solution.
This can represent substantial savings in
computational costs. However, due to their nature
deterministic approaches suffer from the potential
limitation of getting stuck in a local minimum. For
some works conceming the use of deterministic
methods to inverse problems in electromagnetics refer
to [8]-[10].

The aim of this paper is to present the mathematical
formulation for the solution of shape optimization of
power frequency electromagnetic devices. This is
achieved by combining deterministic methods, which
are used for the optimization process, with the FE
method, which is used for solving the field problem.
Three deterministic approaches are investigated: the
quadratic extended penalty method (QUA), the
augmented Lagrange multiplier (ALM) method and
the constrained quasi-Newton method (PLBA-CR).
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The advantages and drawbacks of each approach are
highlighted. Conceming the calculation of the search
direction, the work describes in detail how (6) may be
obtained by direct differentiation of the FE matrices
for time-barmonic, magnetostatic and electrostatic
systems. Finally three problems are solved in order to
show the applicability of the theory.

II. SENSITIVITY ANALYSIS

‘We shall describe in this part a methodology to obtain
quantitative information on how the performance of
the device is affected by changes in the design
variables p;. It is this information that provides the
essential guideline for the search direction § given in
(5). It will be assumed that the field analysis will be
made using the FE method. Calculating the total
derivative of (1) with respect to p; gives

dF({P}""({p})LEJr AP P=1..n
dp; p; {&P} {ap,-} ©

The first term of (8), that is 8F/dp; , may be found
from F which is normally given. The second term of
(8) involves the calculation of {acp/ap,.} which can
be evaluated from the FE formulation.

Time Harmonic System

Two dimensional time harmonic problems are
governed by the following equation

v -(vVA*)-— gjo A* = -J, ©)

where v is the magnetic reluctivity (linear), o is the
conductivity, j = s/—_l , @ is the frequency, J, is the

source current (assumed to be flowing only in the

axial direction) and A® is the complex vector
potential (entirely oriented in the axial direction). It is
important to note that in this case the field variable ¢
is A*. Equation (9) may be solved term by term using
the finite element method together with the Galerkin's
approach to yield

n
2 [(Ky + o Ty)d; - R]=0 i=1..n (10)
7=l

where n is the number of nodes. The three terms K,
T; and R; may be found in [2], [3]. Thus, the



derivative -{aA*/api} may be obtained by
differentiating (10), that is

7 ) . aA; n ﬂ}- (K;',r' +gl;
Jrg-:i[{Ky +°J‘DT l & ja {Q’ @
Q)

The right hand side of (11) may be obtained by
considering the derivative of Ky, T; and R; with

respect to p, that is

0

gK*'fA;:%jn," L 4G |dudv
%
+X ] VIN A4S dudv (12)
e-{ﬂ iy dp
7} N d , *
Pl _-:%fne-a;(—cijﬁAjMGe dudv
. 367
-ng ~cjoN;A; & A 03
2 R=%i, -a—(N,-Je)G" dudv
op e °
6|Ge
+ZIQ NyJ, (14)
in which |G®| is the Jacobian of the element of

reference and N is the trial function. After the
calculation of {aA* /ap,-} , the expression for

{83'/5}7,— } may be obtained using B* =V x 4*.

Magnetostatic System

Two dimensional magnetostatic systems are governed
by the Poisson equation
Vid=—pJ (15)
in which A4 represents the magnetic vector potential
(the state variable ¢ in this case), p the magnetic
permeability and J the current density (oriented in the
axis direction). Similar to the previous system,
equation (15) may be solved using the FE method
together with the Galerkin's approach to yield

S Kyd;~R; =0 i=l..,n
j=1

(16)

where n is the number of nodes. The two terms Kj;
and K, are identical to those from the previous

system. In this case the derivative {BA/BP,'} may be
obtained from (16), that is

zl[K oy ELJ{A,-} (17

&p e 3P op
which can be calcnlated using (12) and (14).
Likewise, after the calculation of {6A/6p,-}, the

expression for {BB/ap,-} may be obtained using
B=Vx4.

Electrostatic System
Similar to the magnetostatic system two dimensional

electrostatic problems are also described by the
Poisson equation

P (18)
&

viv=

in which V represents the electric scalar potential (the
state variable @ in this case), & the electric permittivity
and p the charge density. In this case an axisymmetric
system will be considered. Equation (18) can be
solved using the FE method together with Galerkin's
approach to yield

ZKV -R;=0 i=1..,n (19)

iy

in which » is the number of nodes. In this case the
two terms Kj; and R; are slightly different to those

from a system with Cartesian symmetry, see [3] for
instance. The derivative {6V/dp;} may be achieved
by differentiating (19), that is

N R

J:l =1

The right hand side of (20) may be calculated by
considering

a

— KV

P §V¥;= dudv

¥
VjG"3

GE
+%, jne VN,V 5
é

audv

@1)

and
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3 7
ER:' = %‘Iﬁe Ty E(Nipe)

G |dudv

Ge
+Z]q mroN;p
e Qe e dp

dudv

(22)

where 7 represents the mean value of the distances of
the vertices of a generic element to the 0z axis. For a

linear element ry=(r +r, +n)/3. The expression

for {BE/ap,v } can then be obtained using £ = -VV.

It is important to note that for the three systems
described previously the global system of equations,
i.e. equations (10), (16) and (19), and their derivative
with respect to p;, i.e. equations (11), (17) and (20)

respectively, are characterized by the matrix [Ky}

Therefore, the application of an appropriate method
for solving (10), (16) or (19) could represent a major
saving in computational time. Indeed this is achieved
if the Cholesky-decomposition is used as discussed by
[9]. In this case the computational effort for the
calculation of a single additional gradient vector
{Bq)/dp,—} is reduced to forward and backward

substitutions using the already decomposed matrix
[K ,J] from the corresponding global system.

An alternative way to calculate {acp fap,-} would be

to use the finite difference method rather than using
the direct differentiation of the FE matrices. In
general one may write

f_(g__ ‘P(P"‘hiei)_(P(P—hfei)
op; - 2h

(23)

where #;, A; >0, is a small perturbation that is made
in the global system of equations of the respective
system. Indeed, equation (23} is much simpler and
easier to implement into an existing FE code.
However, there are two drawbacks associated in
calculation of (23). The first is concerned with the
introduction of round off errors. The second is related
with the high number of field calculations required. A
simple comparison to illustrate the latter will be made
in the analysis of the resuits.

I NUMERICAL OPTIMIZATION METHODS

We shall consider in this part the mathematical
formulation of three deterministic methods which are
capable of solving the general optimization problem
posed by (1) to (4). The advantages and limitations of
each approach will be highlighted.

Deterministic methods may be divided into two
sets: indirect and direct methods. Indirect approaches
are also known as SUMT (sequential unconstrained
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minimization techniques). The concept of these
techniques is to create a pseudo function ¥ using the
original objective and constraint functions and then
minimize this pseudo function as an unconstrained
function. In general form one may write

Minimize
¥ ({p}.7,) = Fl{pho({2))) + ({2} ol(p)) @9

where 7, is a penalty multiplier and P is an imposed

penalty function whose form depends on the SUMT
being employed. Normally, the penalty multiplier is

updated according to rg = rg_l Y. In this paper two

SUMT are investigated, the quadratic extended
penalty function method (QUA) and the augmented
Lagrange multiplier method (ALM). In both cases the
unconstrained fimction is minimized using the BFGS
method [4].

Direct methods are those approaches that tackle the
original objective and constraint functions directly
rather than creating a pseudo function. In this work
only the constrained quasi-Newton method PLBA-CR
will be investigated.

Quadratic Extended Penaity Function Method (QUA)

The quadratic extended penalty function method
(QUA) was proposed in 1976 by [11]. The pseudo
function is defined everywhere and also has a
continuous first and second derivative. This important
feature allows the application of second order
methods, if needed, for the unconstrained
minimization of the pseundo function. The QUA
method also provides a sequence of improving
feasible designs. In theory, this approach tends to be
numerically better conditioned when compared to its
predecessors [4].
Mathematically the penalty function is defined by

i
P{p)= Zlij(p) (25)
I=
where
- if gl
g(p) !
§j(p)=<
2
1 I:g-’(p):‘ +3g](p)+3 if gi{p)>—=
g|| e £
(26)

in which £ is in this case the transition parameter



defined by e=-Clr,)"; /3sasl/2 and Cis a

constant. It is clear that due to its quadratic form the
penalty function (26) may become highly nonlinear.
This is often seen as the disadvantage of this
approach. Highly nonlinear functions may converge
slowly or not converge at all. In addition, it has also
been noticed [4] that the QUA method is sensitive to
the value of the penalty multiplier r,,, a feature that

may lead to overflow. This may be avoided by
selecting a small r,, say 1 and a soft y, say 0.7.

Augmented 1.agrange Multiplier Method (ALM)

The augmented Lagrange multiplier method (ALM) is
an approach which incorporates the advantages of the
penalty methods. In particular the ALM method
includes information concerning the constraint
functions in the process which updates the Lagrange
multipliers. This feature enhances the efficiency and
reliability of this approach. In fact, it has been argued
by [12] that the use of SUMT which do not include
Lagrange multipliers is obsolete as 2 practical
optimization tool.

In mathematical form the ALM method may be
defined by a pseudo function expressed as

L(p,)\,,rp) = F(p)+ _2’31[7‘1"”1 +rpw§]
j=

m 2
+ {hanti(D) (o} @D
where
¥, = max [g () i ] (28)
. = . p ’__
J J 2"p

in which A stands for the Lagrange multipliers. The
update formulas for the Lagrange multipliers are

-39
1 J .
AL =27 4 2r, max gj(p),z J=1,1(29)
1
AT =W +2ph(p7) E=1m (30)

In summary, the following important advantages
can be highlighted concerning the ALM approach.
First, the method is relatively insensitive to the values
of Tp- Second, it is not necessary to increase rp >

to get the optimum solution since the process of
updating the Lagrange muitipliers requires
information concerning the constraint functions, a
feature which speeds up the convergence process.
Third, in theory it is possible to obtain precise
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g;{p)<0 and & (p)=0. Fourth, the starting point
may be either feasible or infeasible.

Constrained Quasi-Newton Method (PLBA-CR)

In the PLBA-CR approach the search direction is
found by solving a subproblem with quadratic
objective and linear constraint. The objective function
is augmented using Lagrange multipliers and an
exterior penalty so that the resulting one dimensional
search is unconstrained. In mathematical terms the
subproblem to be solved, ie. the search direction
vector 5, may be expressed by

Minimize  f= ¢S5+ 05STHS

€2))

Subjectto ATS<b, NTS=e,S5<0 (32)

where

T =[5F[P,‘P(P)]

oF] p,o(p)] 3)
apy op;

A is an nx ! matrix of the gradient of the inequality
constraint (a; =g ;(p)/dp; ), N is an nxm matrix

of the gradient of the equality constraint
(ng =0m(p)/op;), H is an nxn approximate
Hessian matrix of the Lagrange function,

bi=- [gj(p)] and ¢ = - [hk(p)].

The QP subproblem that gives constraint correction
can be developed by neglecting the first term of (31)
and subject to the same constraints as (32). The
solution to this subproblem gives a direction with the
shortest distance to the constraint boundary from
infeasible point. The subproblem for the objective
reduction algorithm can be defined by setting the
right-hand side vector e in (32) to be zero. The step
size (at) can be calculated with the required reduction
in objective which is based on a fractional reduction

(y)as a=ly fl/jc S| [4].
IV. RESULTS
Magnetostatic Problem

The problem consists in determining the optimum
shape of the poles of an electromagnet in order to
maintain the magnetic flux density B constant in its
air gap. Half of the electromagnet is shown in Fig.2a.
The 2D mode] used in the analysis is given in Fig.2b.
The 2D domain is made up of three main regions
defined by Q=Qr + Q- +Q 4, where Qf, Q- and
£ ; represent the ferromagnetic, coil and air region,
respectively. Dirichlet and Neumann boundary



conditions are imposed on Iy and on I respectively.
The mesh used in the simulations consisting of 156
nodes and 263 elements is illustrated in Fig.3a. A
zoom in the pole face showing the moving nodes is
given in Fig.3b. The data used in the simulations are
given as follows: p=1000n, in Qp and

J=1000 A/cm? in Q.
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Fig. 2. Electromagnet
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Fig.3 FE mesh used in the simulations

The aim of this problem is to find the optimum
position of the moving nodes indicated in Fig.3b, the
design variables p;, which set up a shape in the pole
of the electromagnet that insure a given constant flux
density B, over D (which includes ¢ elements, also
indicated in Fig.3b). Mathematically the problem can
be defined as

9 2
Minimize  F=3 |B, -Bd\ (34)
g=1
Subject to
2 U L Uv_L
Pj ‘(Pj * P )Pf TP Pj
gilp)= — 3 <0 (35)
e
0.012<p;<0.017 m; j=L...6  (36)

This problem was also used to validate the sensitivity
analysis. The comparison for the calculation of
{e8/ap} using the differentiation of the FE matrices
and the FD method for node 5 is given in Table I.
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Each component of the gradient vector VF is
obtained as a summation of terms of the form

F OB B

£= _B_Ii+6__5[_¢i= 2|,3E _Bd]al_°| G
dp; op; 9B op; p

The term §|B, [/ap ;in (37) is calculated using the
formulation presented in section II.

TABLE I
RESULTS CONCERNING THE CALCULATION OF {3B/8p}

Node 5 {0B/op}

Element FE FD
93 -3.1506 -3.1437
134 -7.4744 -7.4641
135 -5.0445 -5.0147
136 -6.6736 -6.6680
137 -5.1984 -5.1649
138 -7.5811 -7.5815
139 -7.2837 -7.2755
140 -7.6979 ~7.6616
141 -3.2650 -8.2737
142 -7.9274 -7.8926

The final result for By = 0.35Tis given in Table II.
The number of function evainations corresponds to
the number of field solutions required in which FE
stands for the direct differentiation of the FE matrices
and FD for the finite difference method. The final
shape obtained for the pole of the electromagnet is
shown in Fig.4.

TapLE I
FmaL ResuLt FoR By = 035T
QUA ALM PLBA-CR
Etement Bl(1)  Bd{1)  [Bd(T)
134 (.3498 0.3510 0.3493
135 (.3479 03472 0.3483
136 0.3499 0.3492 0.3496
137 03518 0.3505 0.3522
138 0.3502 0.3501 0.3495
139 0.3514 0.3501 0.3507
140 0.3499 0.3507 0.3493
141 03507 0.3503 0.3495
142 0.3499 0.3509 0.3492
No.of function
evaluations (FE) 742 642 151
No. of function
evaluations (FD)) 2474 2388 755
Air
D
} Bd=035T

Fig.4 - Final shape obtained using the PLBA-CR method



Electrostatic Problem

The objective in this idealised problem is to reduce
the E tangential at the top surface of an insulator to
values lower than 16 KV/m (this is just an example).
The two dimensional model investigated is given in
Fig.5. The mesh used in the simulations consisting of
261 nodes and 494 elements is given in Fig.6. The
insulator is made of porcelain (g, =7) and is
surrounded by air. Neumann boundary condition was
imposed on I';. The problem was reduced to find the
optimum values of Z; and the three arcs defined by
R, R, and R; and their respective angles,
6,0, and O3. The initial values for these variables

are R =40mm, Ry = Ry = 50mm and
91 ‘—'92 =93 =90.

Vel

V=0

in which # is the number of test points where E will
be calculated. Four points were considered, one in the
middle of L; and the other three situated in the
middle of the surface of the arcs 1,2 and 3. The design
variables were subject to the following constraints
3 p<10mm for L;; 3£ p<10mm for R, Ry and
Ry; 0= p <90 degrees for 0,65 and 6;. The initial
and final shape of the insulator for the target defined
are given in Fig.7. Table III gives the information
concerning the optimization process.

fmal shape

initial shape

Fig.7 - Initial and final shape for the insulator

TasLE HI
REstL.Ts CONCERNING THE ELECTROSTATIC PROBLEM
Variables AIM PLBA-CR
L, (mm) 30 3.25
R (mm) 8.25 80
D (degrees) 61.94 64.12
R, (mm) 6.32 6.14
6, (degrees) 53.10 55.10
R 5 (mm}) 7.62 7.48
05 (degrees) 43.63 45.74
No. of function
evaluations (FE) 496 164

! e
| | |

AN R AN AN

Fig.6 - Mesh used in the simulations

The objective function in this case is given by

n
Minimize ~ F = Z|E,, - Eq
i=1

(3%)
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Time Harmonic Problem

The idealised problem considered here consisted in
the determination of the optimum shape of a
conducting cylinder of copper placed under the
influence of a transverse time harmonic field. The
objective is to obtain the magnetic flux density in the
interior region of the cylinder at certain prescribed
values, whilst keeping its area constant. The cylinder
is assumed to be infinitely long in the z direction. One
quarter of the 2D model is shown in Fig.8 (not to
scale). The detail of the mesh used consisting of 264
nodes and 472 elements is shown in Fig.9.



