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Abstract - In this work, we present a methodology for
solving simultaneously the equations of magnetic fields
and electric circuits of electrical machines. To consider
the magnetic phenomena the Finite Element method is
used. The machines are voltage fed and, thus, the electric
circuit equations are present in the matricial system
which takes into account both physical aspects. A time
stepping technique is employed to simulate the steady and
transient states. As result, we obtain the magnetic vector
potential describing the magnetic behavior of the machine
and the current established in the exciting coils.

INTRODUCTION

The modeling of electrical machines and their
feeding circuits is related to two type of equations: the
Poisson equation describing their magnetic behavior
and the differential equations of the electrical circuits
related to the exciting windings.

It is also possible to determine the equivalent
electrical circuit of the machine. By this procedure, it is
necessary to obtain the parameters of the machine by
analytical calculations or, for better accuracy, ficlds
calculations. The equivalent electrical circuit, obtained
by this procedure is associated to the electric feeding
circuits [1],[2).[3]. This methodology presents
limitations mainly when the machine has massive parts
(not laminated regions), where eddy currents exist. In
this case, it is practically imnpossible to detéerminate the
equivalent electric circnit of the machine, for both,
steady and transient states.

To solve such problems, it is necessary to solve
simultaneously the field and circuit equations
[43,153,16],[71,I8],[91.[10].

In this work, we present a brief survey based in
works performed by us and, after the presentation of the
general equations and solving techniques, the proposed
methodology is illustrated by permanent magnet and
induction motors fed by different electric circuits.

INVOLVED EQUATIONS

The pglobal equations to solve are obtained
associating the equation which describes the magnetic
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structure of the machine with the equations
representing the feeding circuits.

Equations representing the magnetic structure of
the machine

The general case of an electrical machine containing
magnetic materials of reluctivity v, permanent magnets
with magnetization B, and reluctivity v, and with
conductive solid parts with electrical conductivity ¢ is
considered bellow,

If a two dimensional representation of the machine
structure is adopted and using the magnetic vector
potential 4, the equations describing the whole
structure are:
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where:

1 is the current in the machine windings,

S is the winding surface,

N is the number of turns in the winding,

¢ is the machine depth,

U is the voltage at the machine windings,

L represents the end winding inductance, not taken
into account in a two dimensional magnetic
representation of the machine.

The analytical solution of equations (1) is not easy
to accomplish due to the complex structure of electrical
machines. Then we adopt the Finite Element method
[11]. Equations (1) can then be written in the following
matrix form:
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Matrices M, N, P, D, Q are dependent on the machine
magnetic structure (dimensions, reluctivity,etc.).

Electrical feeding circuits equations
The differential equations representing the electric

feeding circuits coupled to the machine windings can be
written as:

%X=HIX+H2E +H;3l (3.a)
U=HX+HE+Hgl Gb)

where:

X is the inductance current and capacitor voltage
vector of the electrical circuit connected to the machine,
Eis the vector of the voltage sources of the external
circuit,

matrices H,;, H,, H;, H,, Hg, Hg are dependent on
the electrical circuit topology. Equation (3.b) allows
coupling between magnetic and electric equations.

Global equations

Combining equations (2) and (3), the global matrix
system representing the whole electrical machine-
feeding circuit is obtained and given by (4). The
urtknowns in this global system are [5]:

a) the magnetic potential vector in the finite element
mesh A,

b) the currents in the machine windings I,

¢) the capacitor voltages and inductance currents in the

feeding circuit (state variables).
d
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RESOLUTION METHOD

Equations (4) above are solved step by step with
respect to time. In this way, the time derivatives must
be discretized (by means of the &-method or Euler’s
scheme [12]). During the step by step solution, the
following must be observed:

a) The matrix terms concerning the external circuit can
be modified due to the topologic changes in the feeding
circuit (commmtation of the semiconductors, for
example).
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b) Matrix Mterms are modified due to the rotor
movement.

¢) If magnetic non-linearity must be taken into account
an interactive procedure is used. In this work the
Newton-Raphson method is emplioyed [13].

The rotor movement is considered by remeshing the
airgap at each position as follows.

Movement modeling

In this work, the movement is taken into account by
a method based on meshing stator and rotor and
connecting these meshes by an adaptable layer of Finite
Elements placed in the air gap. This method is known
as the Moving Band method. Its working principle is
shown in Fig.1 [4],{10].

Fig. 1 : Moving Band method working principle.

According to the airgap deformation, the Moving
Band technique is based in a dynamic allocation of the
periodic or anti-periodic boundary conditions. With this
technique, in spite of the new nodes created with the
rotation of the moving part, the number of unknowns is
always the same.

When using the Moving Band technique, if the
rotation step is different than the discretization step, the
finite clements placed in the airgap are deformed. This
deformation can give rise to numerical oscillations on
the voltages waveforms. To obtain better results,
quadrilateral finite ¢lements are used. These special
elements are assembled in the global matrix as four
triangular elements [10].

Torque calculation during the rotation



The choice of the method to simulate the rotor
movement is related to the way employed to the torque
calculation. This statement is based on stdies made
previously [10]. From this investigation, we concluded
that the Maxwell Stress Tensor presents, with the
Moving Band, very good accuracy. This method was
chosen, but the following remark must be considered: if
the displacement step is different of the discretization
one (therefore, when there are deformations of the
quadrilateral elements in the Moving Band), the torque
is calculated in another layer of quadrilateral clements.
This procedure is necessary to aveid numerical
oscillations in the torque waveform.

APPLICATION EXAMPLES

We will present now two examples to describe the
possibilities of the proposed method. These examples
correspond to practical cases, which have been
currently subjects of research,

Single phase line started induction motor fed by a
starting circuit.

A two poles single phase induction motor used in
electrical appliance applications is the first example. Its
half structure as well as the calculated field distribution
are shown in Fig.2 [14],[15]. In the same figure the
induced current densities in the rotor bars at starting
can be seen. The machine presents a different number
of conductors by slot. Two windings are placed in the
stator, namely the main and the auxiliary windings. A
particular electric circuit shown in Fig. 3 is used to feed
the machine. The resistance Ry?) is time dependent.

Fig. 2 : Single phase induction motor: field and induced current density
distribution.

Single phase induction motor
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Fig. 3 : Single phase induction motor electrical feeding circuit.

Using  electric  circuits  theory,  matrices
Hl,Hz,H3,H4, Es,HG,L and vector E associated
to the electrical circuit of Fig. 3 can be obtaised. Using
Euler’'s scheme in order to rcpresent the time
derivatives in (4), one can write;
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In equations (5) v(t) is the applied voltage, r, and
r, are the main and anxiliary winding d.c. resistances.
The main and auxiliary end winding inductances are
represented respectively by /, and /,. The R(t)
resistance and the capacitor C, already defined, are
shown in Fig. 3. The time step is 4f.

In the simulation procedure, at cach time step after
the sohtion of equations (4), the electromagnetic torque
I, is calculated with the Maxwell Stress Tensor. The
angular speed @, and the rotor displacement § are
determinaic with the following equations:

dw,,
dt

- %[r, ~T,-Bo,] 6.2)
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L @ (6b)

where B is viscous damping factor, J is the inertia and
I, is the load torque. '

Results: the simulation of the machine starting at
no-foad and fed by a 60 Hz sinusoidal voltage is
presented in Figure 4. The resistance R(?) has a small
value in the beginning of the operation and it is
strongly increased after 0.3 seconds. The effects of the
resistance change can be noticed in the figures.

It is possible to remark the typical behavior of a
single phase induction motor; the speed and current
curves present particularly the oscillations having the
double of the feeding frequency. In Figure 5 the
calculated and experimental results at 670 rpm are
presented. One can notice the good agreement between
calculation and measurements.
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Fig. 4 : Results of the starting of the single phase induction motor.
(a) Total (source) Current i,(5)+i ft). (b) Speed @, (1) .
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Fig. 5 :Total (source) Current ip(t)-i-i'a(t). (2) Calculated (5A/div.).
(b) Experimental Resulis (5A/div.)

Permanent magnet motor fed by current inverter

The motor under study is fed by the inverter
presented in Figure 6, in which there are thyristors
connected to a current source, which is cbtained by a
voltage source connected to an inductance having a
large value. The inverter is operated by a position
sensor placed on the rotor.

To simulate such a device it is necessary to consider
the actual structure of the electric circuit and its
configuration changes due to the conducting states of
the thyristors. Furthermore, the commutation of
currents in the motor ami the thyristor openings are
made by the voltages in the motor terminals. Thus, the
inverter operation and the machine are strongly
associated and a simultaneous solution is the onmly
procedure providing accurate results. In order to
simplify the simulation, we take advantage of the fact
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Fig. 6 : Current inverter working principle.

that the operation sequences of the inverter are known
in advance and they can be described by only two
sequences:

a) conduction, when two phases are fed and the third
one is not connected.

b) commutation, when the three phases are connected
and the voltage between two phases is zero.

These two states are successive and by circular
permutation they describe the whole operation of the
inverter. The electric circuits of these two sequences
can be represent by the single circuit of Figure 7, where
a resistance assuming values of 0 and 1 MCQ represents
the respectively the commutation and the conducting
sequences. This procedure allows us to keep constant
the matricial system order.

Fig. 7 : Circuit corresponding to the two working sequences.

The beginning of the commutation sequence is
determinate by the position of the rotor. The end of this
state occurs when the current in the commutation loop
becomes zero. The motor shown in Fig. 8 was chosen
for this example.

This machine presents permanent magnets in the
rotor. They are mechanically sustained by an aluminum
hoop and interpolar wedges, where eddy currents can be
induced. Fig. 9 presents the eddy currents distribution
during the motor operation.

Fig 9 : Eddy currents distribution in the conducting parts.

Figure 10 presents, using the same scales, the results
obtained from the simulation and the experimental
measurements. A very good agreement between these
results is noticed. The eddy currents established in the
aluminum hoop causes shorter commutation time,
compared to the one expected for a device without
induced currents.
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Fig. 10 ; Voltage and currents of the inverter.

CONCLUSION

In this work a general modeling describing the
functioning of the whole structure composed by a
machine and its feeding circuit was presemted. This
procedure is based in the coupling between the
magnetic field and the electric circuit equations.

When solving this system, the rotor movement was
taken into account in the Finite Element geometric
discretization of the domain. This technique is based on
the concept of Moving Band using quadrilateral
efements. The Maxwell Stress tensor is applied for
torque calculation.
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Two different simulation cases were presented: a
single phase line started induction motor and a
permanent magnet motor fed by a current inverter. For
both cases, the calculated and the experimental results
present a very good agreement.

Finally, when complex phenomena (eddy currents,
non-linearity, movement and feeding by static
converters) are present, the only method providing
accurate results has to take into account simultaneously
the different variables, as the one here proposed.
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