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Abstract : The well knownChargeSimulation Method, which is
commonly used for electric field calculations, is shown to be a
particular and ill-conditioned case of the Least Squares Charge
Simulation Method. By solving a practical problem, it is shown how
to efficiently handle a least squares problem, thus obtaining results
of higher precision if compared to the traditionalChargeSimulation
Method. For the solution of the resulting linear system, several
mathematical methods are analyzed and compared, being stated that
the optimum combination of higher precision, lesser ermor
propagation, lesser CPU time and lesser computer RAM are

P. Pulino
Universidade Estadual de Campinas
(UNICAMP) - P.O.Box 6065
13.081.000 - Campinas, SP, Brazil
fax or. 55-19-239-5808

how to deal with these methods in a more efficient way. The result
is that the LSCSM, if properly applied, presents incontestable
advantages over the traditional CSM.

Section 3 is devoted to a detailed error analysis, statmg the
optimum relation number of charges / number of contour points.
Section 4 deals with the problem from the condition number point of
view. Section 5 presents the QR Decomposition and the Singular
Value Decomposition methods for the solution of the LSCSM,

-allowing the resulting linear system 2 condition number many times

simultaneously reached when applying the Least Squares Charge smallerthan the CSM or than the LSCSM with normal equations. In

Simulation Method, solved with the QR decomposition and
Householder transformations.

Key words : Electric fields, numerical methods, high voltage
engineering, electrical engineering computing, digital simulation,
least squares methods.

1. INTRODUCTION

The Carge Simulation Method (CSM) has been very commonly
used for electric field computations in the last 20 years. From its
introduction by [1], the method was modified with optimization
techniques (OCSM) [2], least squares techniques (LSCSM or
LSEM) [3], and in combination with other numerical methods
(finite elements and finite differences) [4,5]. References {6.7] also
present a good overview and some applications of the method.

While the mathematical formulation of the OCSM is somewhat
more complicated, the CSM and the LSCSM reduce to few and
relatively easy steps:

o Choose arbitrary points over the boundaries where electric
potentials are kmown (vector @), ‘

s Choose arbitrary electric charges placed inside the giv
electrode (vector q),

» Solve the system of linear equations P q = @ then obtained,

« Calculate the electric potential 4 and the electric field vector E
where desired, using the solution vector q.

P is a full matrix obtained from known relations between points
and charges (the Maxwell Electric Potential Coefficients [1]), which
depend essentially on geometric data. In the CSM, the number of
contour points is equal to the number of simulated charges, while in
the LSCSM a lesser number of simulated charges is chosen.

As shown above, the CSM and the L.SCSM are simple to apply.
In some cases, however, the CSM lead to poor results (see section
2). On the other hand, if the LSCSM is used with the so called
normal equations (see [3], Appendix 3), it may result in 2 system of
linear equations with a condition number (see Appendix V) many
times higher that the CSM itself. In this case the increased error
propagation may aliso lead to poor resuits.

Considering thesepoints the present work is intended to show
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addition, nine different mathematical methods are analysed and
compared for the solution of the problem. Appendices I and V
include the mathematical background necessary for a full
understanding of the problem.

Based in the resuits obtained with the new proposed formulation
for the LSCSM, it can be concluded that, with an adequate relation
number of charges / number of contour points, and with an adequate
mathematical and computational treatment, the LSCSM results
remarkably more efficient that the CSM. As a matier of fact, the
LSCSM constitutes the generalization for the methods of simulated
charges, where the traditional CSM is a particular and ill-
conditioned case.

2. APPLICATION

Consider the three-dimensional axi-symmetric problem of Figure
1, to be solved with the CSM and the L.SCSM. The same problem
was also solved by {6], using the CSM only. Note that problem 2 is
similar to problem 1, except that it includes different electrical
permittivities. The simulated (ring) charges and contour points were
considered as shown in Table L. :

TABLE I - NUMBER OF CHARGES
AND CONTOUR POINTS
1 Problem | Problem 2
contou contour
points[TSM JLSCSM|points [CSM | LSCSM
Electrode 66 66 27 | 66 66 27
Enclosure 12 12 04 12 12 04
In diele_ctric. _ _ 16 06
near air
- 16
ln'alr. n?ar _ - _ 16 06
dieliectric
Total |88 88 31 104 EZD' 43
rder of the CSM - B¥xB8 CSM - 120x120
linear system] LSCSM - 88x31 {LSCSM - 120% 43

A detailed formulation of the CSM equations for problems 1 and
2 is found in [6]. For both cases, a systems of m linear equations
and n = m unknown electric charges is obtained, which can be
wTitten as
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Pqg=i¢ (1
where

P is a full sguare matrix of order n x n,

q is a vector of o¢rder n, with the values of simuiated
charges which represent the physical problem,

¢ is a vector with the given electric potentials.

The same procedure is applicable to the LSCSM. except
that a $maller number of simulated charges is chesen.
resuiting in a system of linear equations with m eguations
and n unknown electric charges (m > n). This system can alsc
be writtent in the condensed form (i), where P is now a
rectangular matrix. of order m x n.

A comparison of various metheds for the computation of g
is found in section 5. Once q is obtained, the electric
potential ¢ and the electric field E can be computed at
every desired point P, by means of

n
¢lp) = z P} Qi (2)
=1
N r z
Elr) = ): (fi§ ar + f1) Az} Q (3
j=1

where

p1 and f1j are Maxwell coefficients (see [1.6]).
g) are the simulated charges obtained from gq. and
ar and az are unit vectors for directions r and 2 -

An exact solution would give the equipotential line of
¢ = 1,0 for all p located on the eiectrode boundary.
However, due to the finite discretization of charges and
contour points, the CSM and the LSCSM give an egquipotential
tine which deviates somewhat from the electrode boungary, as
shown by Figure 2.

It is clearly shown in this figure the surprising fact
that a reduction in the number of simulated charges gives
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better results, since the respective equipotentia. line of

¢ = LO clearly fits better to the electrode contour. The

error of each method is quantified in section 3.

In Figure 3, the electric potentials and electric fieid
as computed by [6] for gap A-B of Figure | are reproduced
and compared to the values computed with the LSCSM with data
taken from Table . Note that the previcus unstabie zone
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generated by the CSM (strong osciliations) is not present in
the computation with the LSCSM. Furthermore, in (6} matrix P
required the calculation of 77 x 77 = 5929 Maxwell
coefficients, while the LSCSM used here required 388 x 31 =
2728, what means considerable reduction in CPU time, as well
as in required computer RAM.

It can be concluded that the CSM is more unstable and
gives pocrer results if compared to the LSCSM, particularly
ciose to the boundaries. This is due to the fact that matrix
P. having logarithm terms or similar, is close to a singular
(non invertible) matrix and therefore, ill-conditioned {see
Appendix V) .

3. ERROR ANALYSIS

The conciusions of section 2 can be quantified by
plotting the cumulative error of the electric potentials
computed along the electrode boundary for several relations
n/m, as shown in Figure 4. For instance, if we take the
LSCSM with n/m = 0.90, the electric potentials computed
along the electrode boundary (where the exact solution is ¢
= 1.0} have an error greater than | % for 50 % of the
electrode contour length.
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Figure 4 - Cawlative error for several relations n/m
{nr. of charges / nr, of contour points)

Figure 4 allows some important conclusions:

a)} The cumnulative error increases for relations n/m close
to 1.0. This is due to the fact that P tends to be
ill-copditioned (see section 4) and therefore, close to a
singular matrix. This also alfects the norm of the vector of
simulated charges q, as shown by Figure 5. Note that
n/m = 1.0 is the particular case that represents the CSM .

b) For the lower relations n/m, the number of simulated
charges tends to be insufficient to represent the physical
problem, leading o a  significant  residua! vector
r =P g - & ., as shown by Figure 5. Therefore, the
cumulative error also increases.

c) The optimum range of the relation n/m is from 0.35 to
0.80 .
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4. CONDITION NUMBER ANALYSIS

The condition number of the linear system (I) depends on
the relation n/m Figure & shows the behavior of this
parameter, which can be computed with the SVD method (see
Appendix IIL.3) .

It is clear from Figure 6 that the method used for the
solution of the LSCSM equations is of primal importance. The
LSCSM equations solved by the method proposed in |3} (normal
equations} may generate a matrix P with a condition number
greater than the CSM itself, what may lead to severe error
propagations during the computations.

On the other hand, the LSCSM equations soived by the OR
decomposition {Appendix 1.2} or the SVD (Appendix II1.3)
always resuit in a cendition number for P which is lower
than the condition number computed for the CSM and for the
LSCSM with normal equations. Therefore, as far as the
condition number is concerned, the QR decomposition and the
SVD methods are more effective.
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5. METHODS FOR THE SOLUTION OF
THE RESULTING LINEAR SYSTEM

It can be concluded from above sections that the LSCSM,
with an adequate choice for the relation n/m, gives resuits
of higher precision than the straight CSM. It was also shown
that under the condition number point of ¥view, the QR
decomposition and the SVD methods are prefered te the
method of normal equations used so far. .

In this section the problem is analyzed as function of
the CPU time and the required computer RAM, including a good
number of mathematical methods for the computation of the
vector of charges q .

Note that the CPU computer time is alsc a good indicatien
of the number of arithmetic operations taken by _T.he
computer. Thus, the bigger is the required CPU computer time

the bigger is 1the possibility of a significant error
propagation.
Table 2 shows the CPU time required by an

1BM 30%90-3005 computer for the solution of problems ! and 2,
taken in percentile rates of the time required for the CSM.

TABLE 2 - COMPARISON OF VARIOUS METHODS
Condi=- CPU time(7
Method of . Approx.
R tion Frob.|Prob.
calculation number RAM 1 2
csM o Xl mem 100 | 100
cG 91 66
Nor -
mal |CGS{K(P'p) 172-| 188
6 mxn
= 10
LSCsM Egua- CcD 37 35
tions
(with LU 39 36
n/m & CLG mxn + 42 38
0.35)
ni{n+1}
R MOG KIP) 2 40 39
GR | = 10° 40 37
MmxI
HD 37 33
SVD mxn+n’ 57 66
Code Description Appendix
1CSM Charge Simulation method -
LSCSM Least Squares Charge Simulation Method -
QR QR decomposition Iir.2
SVD Singular Value descomposition 1{1.3
CcG Conjugate Gradients Iv.1.1
CGS Conjugate Gradients Squared{| 1V.1.2
CcDh Cholesky decomposition Iv.1.3
Lu LU (Gauss pivoting Jdecomposition] IV.1.4
CLG Classical Gram-Schmid: iv.a.!
MOG Modified Gram-Schmidt iv.2.2
GR Givens rotations Iv.2.3
HD Householder transformations| IV.2. 4

From Table 2 it can be conciuded that

a} The LSCSM solved with the QR decomposition and
Householder transformnations presented the best performance,
since it requires lesser CPU computer time and lesser RAM .

b} The CGS method, which showed an excelient performance
in problems with sparse matrices as reported by [S5], did not
show a good performance here with a full matrix .

c) All methods for the solution of the LSCSM with normal
equations (i.e. CG, CGS, CD and LU} require special
computational considerations in order to aveid additional
RAM reguired for the storage of matrix P'P .
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6. CONCLUSIONS

The traditional Charge Simulation Method was shown to bes
a particular and ili-conditioned case of the Least Squares
Charge Simulation Method, which is the generalization.

The best relation number of charges / number of contour
points (n/m) lies in the range 0.35 < n/m < 0.80 , where the
LSCSM results remarkably more precise than the straight CSM,
specially close to the boundaries of the probiem.

The LSCSM computed with the QR decomposition generates a
system of linear equations with a condition number
significantly lower than the LSCSM with normal equations as
used so far, thus reducing error propagation during the
computations.

The optimum combination of higher precision. lesser error
propagation, lesser CPU computer timme and lesser computer
RAM are simuitaneously reached when applying the Least
Squares Carge Simujation Method, solved with the QR
decomposition and Householder transformations.

APPENDIX 1
Mathematical background (I8,9,10,11,121}
Let A = [ai] denote a real matrix of order mxn (mzn)
with elements ai), and x = [x1,x2,...,xp] denote a real

column vector of order ' with elements xt .

The transpose of A is A'. where A' = [ap] . A is

symmetric if‘1 A" = A, If m=n. the inverse of A is denoted by
A7, with A""A = I {unit matrix).

The Euclidean norm of vector X is Uxll = (f xaf) R
Another usual vector norm is the infinite norm defined as
Ixhe = max {xil. A norm for matrix A can be defined as
AR = max WAXxH#/HEXIU, for all x = O.

The n column vectors al from A, of order m, is said to be
lineariy independent if ¥ miai = 0 ijs satisfied only for
a=0. In this case, A i5 said to be of rank n. A is
invertible if rank(A) =m =n .

If x*Ax > O for all vector tx==0. A is said tc be posilive
definite. If rank{A} = n, A'A is symmetric and positive
definite.

If A'A = 1 A is said to be orthogonal and in this case,
ANl = 1. A is a lower triangular matrix if ai) = O for all

1, upper triangular if ai) = O for all i), and diageonal
if aiy = O for ail 1=).

The inner product of two vectors x and y is a real number
denoted by <x.y> = T xivyi.

APPENDIX 11
Matrix dec itio
LU decomposition: [ rank(A) = m = n. then only one

decomposition A = LU exists, where U is upper triangular and
L is lower triangular. with unit diagonal ([8,9,100).

OR decomposition: If rankiA) = n, then only one
decomposition A = QR exists, where R is upper triangular of
order nxn and Q is orthogonal of order mxn ([8.9.i2]).

Singular Valg::e decomposition (SVD): A can be written as
A = U S V¥V, where U is orthogonal of order mxn, V is
erthogonai of order nxn and 5 is diagonal of order nxn,
whose diagonal elemenis ¢1 2 ¢2 = ... 2 ox =2 0 are known as
the singular values of A (18.9.11.12]).

Cholesky decomposition: If A is symmetric and positive
definite, then oniy one decomposition A = R exists, where

R is upper triangular with positive eiements in the main
diagenat ([8.10,121).



APPENDIX III
Overdetermined linear systemns

Let A x = b be a linsar system of m eguations and n
unknown vajuss. so that m > n. This system of egquations is
said to be overdstermined, and usuaily have no exact
sojution. Let r = b - Ax be the residual vector.

It is reasonable o search for an approximate solution
this linear system. giving the lowest possible residual
vector. Usualir a least squares method is considered, which
consists in cetermining the unique vector x which gives the
iowest Euclidean norm for the residual vecter (minimum HrH).
A briel descristion of the most common methods follows.

iIl.1 Method ¢c© the normal equations

It is shown by (8,9.12) that vector x, solution for the
least squares oproblem. is also the solution of the linear
system

A'Ax = A% (4)

of order nzn, aisc known as a system of normal eguations.

Since Ata is symmetric and positive definite, some
mathematicai procedures are applicable (ses Appendix [V.1)
for the solution of (4). On the other hand, the condition
number of the resulting linear system is affected since
KIA'A} = K(A!" , which may compromise the solution due 1o
increase of er~or propagations.

IIL.2 Method ef the QR decompesition

It is shown by [8.9.121 that vector x. solution feor the
ieast sguares problem, is aiso the soiution of

Rx = Q% {5

where QR = A. This linear gystem of order nxn is easily
solved by back-substitution sinee R is upper iriangular.
Therefcre, the main computaticnal effort is  the
derermination of the QR decomposition of A (Appendix IV.2).

1IL3 Method of the Singular Value decomposition

It is shown by (8,9,11,12] that wveeror x. solution for

the least squares probiem, is given by
x = vsiute 16)

where U S V' = A is the Singular Value decomposition of A.
Since S is 2 diagonal matrix, S ' is easily obtained ang
then expressica (6) reduces to simple matrix-vector produts.
As in secticn TIL2., the main computational e&ffort is the
determination  the Singular Value decompesition of A

{Appendix IV.3}

APPENDIX IV

Mathematical methods for least squares problems

IV.1 Metheds for the solutjon of the

bl ouationg uazj 4

The conjugate gradients (CG), the conjugate gradients
squared (CGS:, the Cholesky decomposition (CD) and Gauss
piveting (LU decomposition] methods are analyzed in the
Tollowing sections.

IV.1.1 Conjugars gradients (CG)

The CG method is only applicable ¢ symmetric and
positive definite linear systems, as (4). The algorithm
is demonstrated by [8l. The matrix product A'A is avoided
using the property of inmer products <A'AX.Y> = <AX.AYY
which is easily demonsirated. The resulting algorithm for
the solution of (4] is

Xo = Q
re = A
For k= 1..n
ifre-t = 0 then
Set X = xx-t and quit
eise
Br = (re-Lrk-L/<re-2,05-2> g1 =0)
px = Pk-1 + Bk Pk-1 {pt= reo)
ak = rk=1Te-107<A pk.A pr
Xk = Xk-l + &k Dk
re = AS(B - A xx)
X = Xn

IV.L.2 Conjugate gradients sguared (CGS)

The CGS doesn't require A to be symmetric and positive
definite, unlike the CG method. It is included here due to
the good resuits obtained with sparse matrix as reported by
[5,13). The final aigerithm (13] for tne solution of (4) is

estimate Xo
re = A"(b = A xe)

q°= p_i=0 : p_l=[:n=0

while ra > tolerance deo
pn = {ras,ra : Bn s pn/pn-1

Un = rn + Bn Qn

Pn = un + Bn (qn + Bn pn-1)
vn = A (Apa)

cn = {re.vn> ; &n = pn/on
gn+l = Un — a&n ¥n

Xnel = Xn + &n (un = gn+1)}
Pret = AT(b « A Xae1) ; nenel
end

iv.1.3 Cholesky decomposition (CD)

since A'A of (4) is symmetric and positive definite, Jt
is possible to use the Cholesky decompesition A A = RR
(where R is upper  triangular). Therefore, equation (4)
becames R'R x = A'b. The later is easily sclved with an
auxiliary vector y, according to the sequence

R‘y
R x

A'b (¥ is obtained by forward substitution)
¥ {x is obtained by back substitution)

[

Nmthatutematrixprodu:tA‘Aneedstobecomputed
before R. Theelememtsmofnarecomputedfmme
elements of matrix A A = A = [Mji , with the algeorithm
tizh

For j=1...n
Fork = 1...j-1

k-1
rkj=[hu- n:ru] S orex
i=1
end j=1 24172
riy= [AJJ - 7 iru ]
k=1

end
IV.1.4 Gauss piveting (LU decomposition)

The wel! known method of Gauss piveting {8,9.10,11,12]
can be used for the computaticn of the decomposition
AA = ng {Appendix 1I). Thus, eguation (5) becomes
L U x = A'b, which is easily solved with an auxiliary vector
¥, according to the sequence

A'b {y is obtained by forward substitution’
¥ (x is obtained by back substitution)

Ly
Ux

As in section IV.1.3, the matrix product ATA is computed
before the LU decomposition .
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1V.2 Metheds for the QR decomposition {for equation 5}

The Classical Gram~Schmidt, Modified Gram-5chmidt, Givens
rotations and Househoider transformations met.hods are
briefly described in the following.

1v.2.! Classical Gram—-Schmidt {CLG)

In this method, Matrices Q and R are sequentially
computed column by column. The aigorithm and detailed
mathemaztical description are found in (8,9,12]. Once A is
overwritten by Q. an additional space of dimension nin+ll/2
is necessary for the storage of R.

1v.2.2 Modified Gram-Schmidt (MOG)

This is a slight modification to the CLG method, leading
w0 a better numerical performance. Q is computed column by
column. and R is computed line by line. Other comments as
for CLG. See {8,9,12] for algorithm and details.

1IV.2.3 Givens rotations {GR)

Algerithm and mathematical description are found in [81-
A is overwritten by R, and the product Q *% (necessary for
equation 5) is computed while computing R. thus not
requiring additional RAM for R as the CLG or MOG methods.

1V.2.4 Householder transformations {HT)

A matrix H of order nxn, defined as
H=1+2wxwe

is said to be a Householder transformation (also known as
Householder matrix or Householder reflection), where ¥ is a
vector of dimension n. It can be shown that H is an
orthogenal matrix [B].

In this method, an adequate Hi is chosen so that the
product HiA results in a matrix with null elements beilow the
main diagonal of A at a given column. By a chain repetmon
of this product we get the matrix R = Ha...H2HIA = Q ‘A
Algorithm and mathematical detaiis are found in [8.12).

As in the GR method. A is overwritten by R, and the
product Q b (necessary for eguation 5) is computed
sequentially while computing R. Therefors, no additional RAM
is necessary for R

V.2 Methods for the Singujar Value
tien ([ : )

As shown in section III.3. the solution for a least
squares problem by the SVD reduces t0o a sequence of
martrix-vector products, i.e.

make ¥y=U b,
then z=5"y,
and x=V¥ 2z

Note that S is a diagonal matrix. so S is
obtained.

promptiy

The theoretical basis for the computation of the SVD is
somewnat complicated and will not be discussed here (see
[12] {fer instance, which uses basically Househoider
transformations).

Once A is overwritten by U, it is required an additional
space of order nxn for the storage of matrix V. The diagonal
matwrix S obviously requires only a vector of dimensien n for
the storage of the non zero values {the singular values o)
of the main diageonal.

APPENDIX V

Condition number of a linear system

Let A x = b be a system of linear equations of order
mxn so thai m=n. [t is important te know how much smali
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perturbations in the slements of A or b affect the seiuticn
vector x. This can be evaiuated from the condition number of
A, written as K{AL If KiA) is large. smail perturbtations in
A or b may cause significant perturbations in the solution
vector x. In this case, A is sajd to be (li-conditioned.

The condition number is greater or equal to 1. It aiso
indicates how much A is close 1o a non invertible matrix

[see 9. Therefore, it is desirabie that K(A} be as low =z
possible.

If m=n, it is possible o show (see 18,9,111} that
K{A) = UAB-BA™'D. In general, if rank(A) = x, we use the S\D

of A (see Appendix II] to obtain K{A) = er/ex. The condition
number defined in this way is known as the spectral:
condition numoer. Another important result is K(A *A) K(A)".
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