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Abstract —~ Mathematical theory is used to obtain
convergence estimations for magnetostatic formulations
using nodal and edge elements. Numerical results of two
closed boundary problems that confirm the theory are
presented.

I. INTRODUCTION

Much research has been done recently with nodal
and edge elements in electromagnetic problems.
However, it has not been discussed how an approximate
solution, obtained by the finite element method,
converges to the exact solution of the problem, when
the mesh is successively refined. Recent papers [1, 2]
show the characteristics of those elements and their
convergence rates, when the field variable interpolated
is the magnetic field H. In [3] and {4], convergence
rates for regular meshes of nodal finite elements are
presented, when the field vaniable interpolated is the
magnetic vector potential A. In approximately closed
boundary magnetostatic problems, the obtained results
confirm the theoretical convergence rates [3,4].

Nevertheless, the authors do not know any
convergence study that compares the edge and nodal
elements when the magnetic vector potential A is being
used as the field variable.

In this paper, convergence rates for nodal and edge
elements with one degree of freedom per edge (also
named Nédélec elements or Mixed elements), applying
regular meshes, are established. Convergence rates of
closed boundary problems are also presented, applying
nodal and Nédélec elements.

I1. DESCRIPTION OF THE ELEMENTS

Nodal elements represent vector functions with
continuous components and show good results in
homogenecus domains. Edge elements guarantee the
continuity of the tangential components of these
functions across the element’s interfaces, allowing the
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discontinuity of the normal component. They can be
applied in homogeneous or inhomogeneous domains,
and they are better than the nodal elements in the
treatment of the singularity of re-entrant comers [1,5].

The nodal elements in 3-D have 3 degrees of
freedom per node, while the Nédélec elements have 1
degree of freedom per edge. Some results seem to
indicate that the Nédélec elements are more efficient
computationally than the nodal elements {1]. If the
following assumptions are made: (i ) there exists a large
mesh with hexahedral finite elements; (ii) the reduction
of the number of unknowns due to the boundary
conditions can be ignored; (iii) no gauge is applied in
the problem; then it is found that the number of
nonzero elements in the global matrix is equal to 236
Ne for nodal elements, and 99 Ne for edge elements,
where Ne is the number of elements in the mesh [6]. So,
it seems that, in terms of memory occupation, edge
elements are better than nodal elements.

III. MATHEMATICAL FORMULATION

In the computation of magnetostatic fields using the
magnetic vector potential, the following equation is
used:

Vx(oVxA)=J, 1

where v is the magnetic reluctivity and J the current
density in the problem domain €. This equation is 2
partial differential equation of second order that has the
weak form
D{A,w)=1({J,w) Ywet, )
where D and f are symmetric bilinear forms that consist
of integrals over Q, and 1/ is the space of admissible

functions. This weak form has only derivatives of first
order.



IV. ERROR ESTIMATES AND CONVERGENCE RATES
A. Nodal Elements

Let A, be an approximate solution found by the
finite element method to the magnetic vector potential,
and A the exact solution of the problem. Lete = A - A,
be the error between A and A,, then we define the
foliowing Sobolev norms:

ehor = [ 2. 5 dx ®
and
k+1 2
Al gy =| | Z(A“j & @
Q a=0

where k is the order of the pelynomials used in the local
basic functions, m the order of derivatives that appear

in (2), e* and A% all the derivatives of order o of e

2) €Z7 (Set of all
and

and A, with a=(a|,a2,...,a
ordered n-tuples of non-negative integers),
la|=c| +0y+..+a,. Considering that the finite

~ element mesh is regular, and using the Aubin-Nitsche
theorem [8, 9], the following estimate for the error norm
is obtained:

lellip () < Cor* [Algem gy 5)

for 0 £ s<m and p = min [k+1-s, 2(k+1-m)]. h is the
paramneter of the mesh, defined by the diameter of the
smallest circle that contains the largest element of the
mesh, and C, is a constant independent of A and A.

If our interest is in ||e1|Ho(m, and we know that

A g1 (@ i constant, we can set

C = COHA“H“H(Q) , obtaining

"e"]-["(Q) £ Clhp . (6)

But, m = 1, then p = & +1 since 2k = (k +1). In this way,

the convergence rate is of order O(th) for the
magnetic vector potential A. As B, the magnetic flux
density, is computed from A by building the curl, and
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the convergence rate decreases with the derivatives [8],

the convergence rate for B is of order O(hk) .
B. Edge Elements
Let I' be the boundary of the problem, n the unit

normal vector in I', then we can define the following
Hilbert spaces:

H(curl, Q) = {A e(L(Q)):vxA e (Lz(Q))’} M
and
Ho(curl,Q)= {A EH(curl,Q): Axn=0 in I"}

Let P, be the polynomial space of degree <k and

P, the homogeneous polynomial space of degree k.
Then we can also define the space

Sy = {p(x) () :p().x = o}, ©)

where p(x).x is the inner product between p(x) and
x, that is, p(x) and x are orthogonal. Let U, be the
space of approximate function, A €U,, and the

projection operator m;A €U;, so that the following
inner products are zero:

(x(A-n,A),VxV)=0, VVeU, (10
and

(A -m,A,Vp(x))=0, vp(x) €Sy. (11)
Then, we have the following theorem [7]:
Consider a regular mesh and assume that

A eHg(curl,Q) and m,A is defined as above. Then
G )if A e@"*f‘(g)j , then

|A - mrAlgo g, < CHE Al - (12)
(i) if VxA e (H k (Q))a , and 7,Ais well defined as
above, then

[vx(A -7 A)] g0 ) < Ch o \27\ @ (13



Let A,= n,A and B, = VxA,. Then we notice
that the convergence rates for A and B are of order

or%)y.

V. RESULTS

Using 3-D electromagnetic field computation
programs developed by our research groups, the error
estimates for the following problems have been
determined:

(i ) Infinite square coaxial nonmagnetic cable in air.
(ii) Infinite rectangular magnetic busbar in air.

The problem (i )} was chosen because it behaves as a
closed boundary problem (null magnetic field in the
proximity of the cable), when the current that flows in
the outward conductor is chosen to cancel the magnetic
field in the proximity of the cable, created by the
current that flows in the inner conductor. In this way, it
is possible to represent the boundary conditions of the
problem in exact manner, and one avoids that the
boundary condition errors could introduce errors in the
computation of the convergence rates.

The problem (ii} was chosen because it has two
permeabilities and behaves as a closed boundary
problem when the permeability of the busbar is much
greater than the air permeability.

In the following section all those problems are
presented with their convergence rates. The analytic
solutions are found in [10].

Infinite Square Coarxial Nonmagnetic Cable in Air

A cable with an inner conductor of 10 cm x 10 cm,
and an outward conductor of 50 cm x 50 ¢m with a
thickness of 10 cm was considered, as shown in Fig. 1.
A current of 10,000 A was assumed in both conductors.
The current flows axially in opposite senses in the inner
and in the outer conductors. The boundary condition
A = 0 was considered to be 10 cm outside of outward
conductor.

Let us substitute B in (5) and (6). Then, L, error for
Bis

1/2

L2Berr = I(B -B,)? dx
Q

(14)
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The results obtained for this error norm in the nodal
and Nédélec Elements, when the finite element mesh is
refined (-log % is increased), are shown in Fig. 2 and 3
respectively.

Using linear regression, we have found a
convergence rate of p = 0,961 for the nodal elements
[4] and p = 0,959 for the edge elements. As these
computations were executed with interpolating
polynomials of 1¥ degree (k = 1), the rates are near 1,
and confirm the theory.

Infinite Rectangular Magnetic Busbar

it was considered a busbar of 10 ¢cm x 20 em with
magnetic permeability p. = 1000. The current of 400 A
flows axially in the busbar, and the boundary conditicn
A = 0 was assumed at a distance of 15 cm from the
busbar center, as shown in Fig. 4.

The computation of the values of L2Berr is shown
in Figs. 5 and 6. Using also linear regressions, we
obtained a convergence rate of p = 0.991 [3] for the
nodal elements and p = 0,987 for the edge elements.
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Fig. 1 - View of Coaxial Cable
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Fig. 3 - Results of Coaxial Cable with Edge Elements
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Fig. 5 - Results for Magnetic Busbar with Nodal Elements
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Fig. 6 - Results for Magnetic Busbar with Edge Elements
V1. CONCLUSIONS

The convergence rates for magnetic vector potential
formulations using nodal and edge finite elements with
one degree of freedom per edge (Nédélec Elements) and
regular meshes were presented.

Theoretically, when nodal elements are used, the
convergence rates are of order O(hm) for the magnetic
vector potential A and O(hk) for the magnetic flux
density B. When edge elements are used, the
convergence rate is of order O(hk) for Aand B.

Finally, some computational examples that confirm
the theoretical results are presented.
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