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Abstract: The calculation of forces and torques
developed in electromechanical devices, and their
variation with changes in position or excitation, is
often what the designer is, ultimately, interested in.
This paper addresses some of the problems
associated with the force and torque calculations
based on numerical field solutions for 2-D
magnetostatic  problems. The problem of
calculating the copging torque characteristic of a
neodymium-iron-boron permanent-magnet motor is
considered and the technique of torque
measurement is described briefly.

1. INTRODUCTION

Forces developed in the air-gap of an
electric machine can be resolved into two
components: normal and tangential. The resultant
of the tangential components provides the useful
electromagnetic torque, and the resultant of the
normal components has to be accommedated in the
bearings. One of the sources of difficulty is that the
size of the useful tangential force component is
usualtly small compared with the radial force. Errors
are more likely to occur when the force of interest
is calculated in the presence of a much larger force
field [1-2].

Forces can be obtained from numerical
field solutions by evaluating the Maxwell stress
tensor along a given integration path, by the virtual

work concept, or by integration of I(dl x B).
The laiter is only applicable in systems containing
current carrying conductors. In general, all these
methods tend to give rise to errors in the forces that
are greater than the errors in the field solution.
When the problem solution is obtained in
terms of the magnetic vector potential, flux
densities are obtained from the curl operation
B=vx1i (LD
This involves numerical differentiation and,
therefore, any errors in the potential solution lead to
larger errors in flux density values. This affect all
subsequent post-processing operations.
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The Virtual Work Method

The force acting on a movable part of a
device may be evaluated by determining the
variation of the magnetic stored energy of the entire
device when a small displacement takes place. For
the simple case where only one-dimensional
movements are considered, the force is given by

di2

F (12)

where W; and W represent the stored energies at
the two distinct positions; dy2 is the positional
displacement and F is the estimate to the force at
the intermediate position {(d; + d)/2}.

The Method of Maxwell Stress Tensor

The basis of the method is the caiculation
of the force and torque directly from the field
distribution. The force and torque are evaluated by
integrating the force density over a contour
surrounding the part of interest. For a known two-
dimensional flux density distribution (B) and a
contour C enclosing a body (or the movable part of
a device), the total force and torque acting on the
body are given by:
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and

T=FxF (1.4)
where 7 is a vector function with its origin taken at

the action point for the torque and #is the unit
vector normal to the contour.



2. ACCURACY OF FORCE CALCULATIONS

The finite element method produces a
solution to the problem in terms of scalar or vector
potentials. The potential distribution is only a
numerical approximation to the true potential
distribution, i.e. there is an inherent error in the
potentials, commonly referred to as error in the
approximation or shape function {3-4].

In conventional formulations, the forces
and torques are directly related to magnetic flux
densities, not to the vector or scalar potentials. Flux
densities and magnetic field strengths are obtained
from potential solutions by means of numerical
differentiation. All the familiar sources of errors are
present in numerical differentiation but errors in
the approximation function are the most critical,
even when small. This is because they are
magnified by differentiation algorithms [5]).
Therefore, errors in field distributions are,
generally, greater than those of the corresponding
potential distributions. This helps to explain why
some formulations for predicting force and torque
are more prone to inaccuracy problems.

in the following, an attempt is made to
enumerate and analyse the factors that affect the
accuracy of force and torque calculations. To
simplify the analysis, it is assumed that the
discretization is appropriate to the problem (i.e. the
finite elements are properly shaped to model the
non-uniformity of the field). The factors that affect
the accuracy of force and torque calculations may
be summarized as follows:

(i) For some algorithms, the quality of the
force and torque prediction is dictated by the
accuracy that can be achieved in determining the
flux distribution. This sensitivity is evident in the
Maxwell stress equations (1.3) and (1.4), but not so
obviously from the virtual work equation (1.2).
Here, it is worth remembering that the differences
in stored energies are due to the different field
configurations associated with the system
displacement;

(ii} Regions where a considerable amount
of field energy is stored, like geometries with pole
tips, are the most critical for the force and torque
calculations. in the method of Maxwell stress they
contribute the main component of the line integral
in equation (1.3}. Similarly, in some formulations
of the virtual work method these regions also
contribute the main component of the area integral
used to calculate the magnetic stored energy. In
other words, the main contribution to the net force
and torque is due to stresses (or stored energy) in
regions where pronounced concentration and non-
uniformity of the field occur; these areas being
where an accurate field solution is most difficult to
obtain;
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(iii) Problems involving the computation
of tangential force are often more difficult. This is
because the tangential component of the force can
be of a much smaller magnitude than the
component in the normal direction [6]. This can be
illustrated by considering a hypothetical system
where the tangential force is small but non-zero.
The diagram in figure 1(a) represents the “true”
field distribution B at some point, while the
approximate field distribution B’ is shown in figure
1(b). Although the error in the magnitude of B’ is
small, the incorrect field direction will result in
wrong prediction of the tangential force. Therefore,
slightly incorrect flux direction is a point of
concern because this causes errors in force and
torque values calculated by whatever method;

B, ¢ B tB’

B t
(a) (b)
Fig. 1: two flux distributions of similar magnitude.

(iv) incorrect flux directions result from
the fact the finite-element methods use some form
of energy minimization to drive convergence. The
homogeneous Neumann boundary conditions, for
example, are not exactly satisfied and this affects,
even locally, the flux direction [3]. Different flux
directions imply different values of stored energies.
Special aigorithms are used to perform the
numerical differentiation of the shape function and
this feature is code-dependent. For example, some
packages use the first of the two methods discussed
by Binns ef all [7] in which the continuity of the
normal flux density is not imposed at the air-iron
interface.

3. PROBLEMS OF IMPLEMENTATION

The above discussion identifies the factors
which may affect the accuracy of force and torque
obtained by whatever method. The following
discussion is concerned with the aspects of each
method that could result in difficulties iIn
implementation and substantial numerical errors.

The Virtual Work Method

In contrast to the easy realization of its
formulation, the implementation of the method
requires a judicious choice of the positional
displacement. This choice is problem-dependent



and has to take into consideration errors of
conflicting nature. If, in an attempt to improve the
accuracy of the approximate derivative expressed
in equation (1.2), a small displacement is used, the
energy values will be of similar magnitude and the
subtraction {W,-W,) will be more sensitive to
round-off error. On the other hand, a larger
displacement may not be adequate to model the
true non-linear characteristic that represents the
variation of the system’s energy with respect to
position [8].

The method requires careful planning of
the model and this must be followed by a critical
examination of the results. In order to reduce
discretization errors, one single finite element mesh
must be used in ail the solutions representing the
sequence of the disturbed movable part {9]. In some
cases the results might show that the variation of
energy with respect to position is not consistent
with the physical realization of the actual device,
and a model re-definition may have to be done.
From the observations made zbove it is evident that
the method is computationally expensive.

The Method of Maxwell Stress tensor

Once the field distribution B in equation
(1.3} is an approximation to the true one, i.e. there
is an inherent error in the numerical field
distribution, the independence of the resuits relative
to the choice of the integration contour disappears;
the definition of integration contours thus assumes
a great importance. This aspect has to be
considered very early, during the planning of the
finite-element model, and adds complexity in the
construction of the mesh.

The energy minimization used by the
finite-element method produces a numerical
solution to the problem that is optimal for a given
discretization. This scheme has no concern for
variations in local energy accuracy. Consequently,
the resulting fields are globally optimal, even
though may possess considerable local error [10].
The forces and torques in equations (1.3) and (1.4)
are related only to flux densities of the elements
crossed by a given contour (C). This makes evident
why the method is so sensitive to mesh artifact and
to the location of the integration contour [1].

4. FINITE ELEMENT MODEL AND
TOROQUE MEASUREMENT

In order to investigate the numerical
problems associated to the conventional methods,
the problem of calculating cogging torque in a
small permanent-magnet motor has been chosen.
Cogging torque values in small permanent-magnet
motors are typically in the range of millinewton-
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metres and, therefore, they are very difficult to
¢compute and measure accurately.

Cogging torque is defined as the non-
uniform torque that arises when only the excitation
field is present (i.e. the armature current is absent).
Cogging torque is a saliency effect that arises from
the interaction between a salient pole on one
member of the machine (rotor or stator) and the
teeth on the other member. The interaction implies
a magnetic field distribution which depends on the
rotor position. In dc permanent-magnet motors, the
interaction between the edges of the magnets and
the teeth, situated on the opposite side of the air-
gap, causes alternate cycles of restoring and anti-
restoring torques as the rotor moves.

The test machine uses radially oriented
neodymium-iron-boron magnets to provide a four-
pole rotor excitation. A cross-sectional drawing of
the motor is shown in figure 2. The magnet arc
spans 90 mechanical degrees and the stator has 24
evenly spaced slots. The cogging torque
characteristic is therefore periodic, with a period of
15 mechanical degrees.
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Fig. 2: Top: view of one-quarter of the test motor;
Bottom: enlarged drawing of one tooth.
Dimensions in millimetre.



The cogging torque is zero at any rest
position where the edges of the magnets (interpolar
regions) are radially aligned with the centerline of
stator teeth. Such positions are stable equilibrium
points for the rotor. Alignment of the interpolar
regions with the centerline of the stator slots also
implies symmetry, hence zero torque; but these
positions are unstable equilibrium points for the
rotor. The cogging torgue is expected to be a
smooth function of displacement in the absence of
magnetic saturation.

The cogging torque characteristics of the
motor were determined experimentally by
displacing the rotor shaft and measuring the torque
induced. The rotor shaft was rotated, via a flexible
coupling and a torque sensor, by a rotary table
mounted so that its axis was collinear with the rotor
shaft. The rotary table was driven by a stepping
motor via a worm-wheel gearbox. The resolution of
the stepping motor was 200 steps per revolution
and the gearbox had a speed ratio of 90:1 giving an
angular resolution for rotor displacement of 0.02
degree. The estimated backlash in the gearbox was
less than 0.1 degree. The torque was measured
using a Lord six-component sensor. A data
acquisition system capable of recording and
processing up to 1000 measuremenis per second
was used. The resolution of this system was 1.4
millinewton-metre. The effect of friction was
eliminated from the measured torque-position
curves by moving the shaft in one direction a total
of 30 degrees (two slot pitches) and than reversing
direction. Torgue readings were taken in both
directions and the results were averaged.

In order to investigate the accuracy
obtzinable by the conventional methods, a single
pole pitch of the motor was modeled, subject to
periodicity conditions. A commercially available
two-dimensional magnetic field analysis package
(MagNet Release 4) was used to solve the field
probiems. Initial investigations showed that
magnetic saturation was not present anywhere in
the machine. Therefore, in subsequent runs, all
materials in the motor were considered to be
magnetically linear, and 2 Ilinear solver was
utilized.

Values of cogging torque were computed
by both the virtual work and the Maxwell stress
tensor method, Each torque characteristic is
associated with 2 series of problems representing
eleven rotor positions separated by 1.5 mechanical
degree (10% of the period). In order to guard
against mesh artifact in the resuits, a single finite-
element mesh is used in all eleven runs belonging
to one curve. Rotor movement is simulated by
redefining material properties.

To gain some idea how sensitive the
methods are to mesh artifact and fineness of
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discretization, solutions are obtained utilizing two
different meshes. Results were firstly obtained on a
reasonably fine mesh containing 952 nodes with
1834 first-order elements. A second, coarser mesh
was created by deletion of nodes in the clusters of
elements close to the comners of stator teeth in
figure 2. The number of elements was thereby
reduced to 1546, the number of nodes to 808. The
two meshes only differ in the air-gap region,
because this is a critical region regarding energy
transfer and it is where most significant field
variations occur.

5. NUMERICAL RESULTS

Figure 3 shows zoomed views of the air-
gap zone illustrating different node densities and
corresponding flux plots.
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Fig. 3: Mesh detail in air-gap zone
Top: finer mesh,;
Bottom: coarse mesh.

The second mesh is a great deal coarser
near the tooth tips, and flux density values in the air



gap and near tooth tips are expected to loose
accuracy accordingly. While most of the flux lines
trace roughly similar courses on the two meshes,
tooth-tip flux density distributions. differ. In the
regions situated slightly to the right of the comners,
flux lines do not impinge the laminations at right
angles, despite the contrast between the
permeability values, taken as 1:10000. This helps to
explain why errors in the finite-element
approximations are more accentuated in these
regions. The low order polynomials used in the
finite-element solutions are not adequate in
approximating the sharp variations in potential
values that occur in these regions.

The virtual work method was used in its
classical form, evaluating the stored total energy
for successive rotor positions, then subtracting to
give energy differences. The computed cogging
torque characteristics are presented in figure 4,
along with measurements.
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Fig. 4: Cogging torque characteristics, virtual work
method.

The error in torque prediction is quantified
in terms of the torque magnitude error and peak
torque position error. Table I summarizes the errors
for the two sets of data related to the virtual work
method.

Mesh | Magnitude error, % | Position error, %
Coarse 99 5
Finer 92 5

Table I: Errors, virtual work method.

The energy difference JSW  between
successive rotor positions are in the range 0.5-2.9
mJ in a total stored energy ¥ of about 5.4 Joules.
Inspection of the results has shown that data
associated with this method have produced curves
with the right shape, correctly exhibiting zero
average torque over the 15° period. Also, the
positions associated with peak torque are close to
those obtained in the measurements with errors of
the order of 5%. Errors in peak-to-peak torque,
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however, are very high, exceeding 90%. Visibly,
the small differences in stored energies affect the
accuracy of the computed torque sufficiently to
render the straightforward virtual work approach
questionable for this class of problem. The
sensitivity of the method in its classical form to
numerical error is seen here to be very high.

Torque computations based on the
Maxwell stress method were performed using
different integration contours, consisting of single
arcs spanning one pole pitch. Stress integration
over an arc of radius 27.0 mm resulted in more
accurate values. In both meshes, this contour
crosses the centre of the second layer of air-gap
elements. Values for the cogging torques using this
contour are presented in figure 5, along with the
curve that represents measured values. Table II
summarizes the errors for the two sets of data
related to the Maxwell stress method.
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Fig. §: Cogging torque characteristics, Maxwell
stress method.

Mesh | Magnitude error, % | Position error, %
Coarse 33 23
Finer 27 13

Table II: Errors, Maxwell stress method.

None of the two curves related to the
Maxwell stress method follow the curve of
experimental results very closely. The errors in
torque magnitude are significantly smaller than
those obtained by the classical virtual work
approach. Prediction of peak torque position,
however, is even worse for the computations based
on the Maxwell stress method. These results are not
ideal, but this is to be expected when dealing with a
geometry that contains  sharp comers. The
geometry contains 12 comers per pole pitch and
this affects the level of accuracy of computed
torques.



Further refinements of the mesh
containing 952 nodes with 1834 elements (finer
mesh) have not led to any significant improvement
in results. Torque computations based on the virtual
work method remain excessively high. The
Maxwell stress method continues to predict peak
torque at the wrong positions.

6. CONCLUSIONS

Calculation of forces and torques from
numerical field solutions is a very difficult task.
Usually, the solution is obtained in terms of
potential distributions and, therefore, force is not
the primary guantity in the computational analysis.

Among the various methods for the
evaluation of force and torque, the methods of
virtual work and Maxwell stress tensor have been
chosen for a detailed numerical investigation.
These methods have been used to solve a
notoriously difficult problem: prediction of cogging
torque in a small permanent-magnet motor.

Torque computations based on both
methods have been compared to measured values.
Numerical results have shown that, for both
methods, the refinement of the finite-element mesh
at an earlier stage has led to improvements in the
results. For this particular problem, computations
not reported in the paper and based on very coarse
meshes with less than 700 nodes have produced
oscillatory torque characteristics not consistent with
the physical understanding of the problem. Mesh
refinement at this level of discretization has, in fact,
produced  improvements in the results.
Disappointingly, at the level of discretization of the
finer mesh (952 nodes with 1834 elements), the
accuracy of computed torques has not increased
significantly as a result of an increase of mesh
fineness.

The virtual work method in its classical
form fails to predict cogging torque accurately.
This is mainly due to the energy values
corresponding to the two adjacent positions being
of very similar magnitude.

The main problems of Maxwell stress
method are related to its sensitivity to mesh artifact
and to the location of the integration contour.

The key to accurate torque computation is
to avoid numerical differentiation entirely. In many
problems involving numerical differentiation and
integration, the order of differentiation and
integration can be so rearranged that all integrations
are done numerically, all differentiations
analytically. Torque computations based on the
technique of mean and difference potentials use the
magnetic vector potential directly and can produce
resuits which agree with measured values to within
a few percent, within the limits of measurement
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accuracy and the approximations inherent in two-
dimensional analysis.
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