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Abstract - Adaptive Finite Element (FE) mesh
refinement combined with a robust and
functionally reliable error estimate provides nearly
optimal solution accuracy. The efficiency of
adaptivity depends on the effectiveness of the
mesh refinement algorithm and also on the
availability of a reliable and computationally
inexpensive error estimation strategy. An adaptive
mesh refinement algorithm utilizing a hierarchical
minimal tree based data structure for 2D and 3D
problems is discussed in this paper. Two different
‘a posteriori’ error estimation schemes, one based
on the local element by element method and the
other using the gradient of field approach are also
presented. The usefulness of the mesh refinement
algorithm and the error estimation strategies are
demonstrated by adaptively solving a set of 2D
and 3D linear boundary value problems. The
performance of the error estimates is also verified
for adaptive modeling of a nonlinear problem
involving the design of a permanent magnet
synchronous machine.

I. INTRODUCTION

Due to the presence of discretization errors in any
numerical modeling, the accuracy of the solution
is limited. An accuracy in the range of 5% - 10%
is often acceptable for most engineering
applications. However certain scientific
applications require solutions with a higher
accuracy, in the range of 2%-3%. When the
solution is plagued by the presence of domain
singularities such as boundary layers, re-entrant
corners, sharp bends, and multiple material
discontinuities, it is necessary to selectively add
more degrees of freedom where the solution varies
abruptly. Under these situations, adaptivity helps
to optimally improve the accuracy by selective
spatial decomposition of a problem domain.

Many triangular and tetrahedral elements based
adaptive mesh refinement techniques were
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proposed in the past [1,2]. However only a
limited number of adaptive strategies are available
for generating quadrilateral and hexahedral meshes
[3]. The main reason is that the triangular elements
match irregular boundaries better than quadrilateral
and hexahedral elements. On the other hand, for
the same number of unknowns, quadrilateral and
hexahedral meshes require only about half that
many elements as are needed in triangular or
tetrahedral element meshes. Although triangular
elements provide a good approximation to curved
boundaries and complex geometries, they often
produce elements with obtuse angles which need
to be corrected using a Delaunay triangulation.
Moreover visualizing higher order elements and
refined meshes is easier in the case of
quadrilateral/ hexahedral element meshes
compared to triangular/ tetrahedral elements which
produce unstructured meshes.

In an adaptive process, the critical areas of the
problem domain are identified and refined based
on a reliable error estimate. The equi-distribution
of error in the problem signals the optimality of
the adaptive mesh. An adaptive spatial
decomposition technique employing first order
quadrilateral elements in 2D and hexahedral
elements in 3D utilizing a minimal hierarchical tree
based algorithm is presented in the first part of this
paper. Two different ‘a posteriori’ error estimation
strategies for activating the adaptive mesh
refinement are discussed in the second part of the
paper. In the third part of the paper, many
numerical examples with experimental results are
presented to demonstrate the application potential
of the proposed mesh refinement algorithm and
the error estimation strategies. The effectiveness
of ‘a posteriori’ error estimates in adaptively
solving a nonlinear problem for the computation
of design parameters of a high field permanent
magnet synchronous machine is presented in the
last part of the paper.



. ADAPTIVE MESH REFINEMENT
TECHNIQUES

Starting with a coarse mesh, an efficient adaptive
mesh refinement algorithm with the help of an
error indicator and error estimator generates a
nearly optimal mesh, in which the discretization
error is equally distributed. It is imperative to
generate a graded mesh in an adaptive process in
order to produce a smooth solution. An adaptive
mesh refinement algorithm should be capable of
managing the computational complexity and data
functions with a minimum of overhead on
resources. In addition to providing an asymptotic
rate of convergence, it should be able to handle
different material properties and boundary
conditions, while maintaining compatibility during
the adaptive process. It must be flexible and
robust and incorporate an efficient error estimation
strategy to activate the adaptive process. Generally
three different types of mesh refinement policies
are available. A solution can be improved by

reducing the size of an element (A,,,—0) or
increasing the order of approximating polynomial

(p—><°) or combining both or by moving the mesh
and relocating the nodes. Accordingly the mesh
refinement procedures are classified as h, p, h-p
and r-methods. In terms of number of degrees of
freedom, the p-method is found to be nearly twice
as efficient in convergence as the h-method [4].
Many different algorithms and the associated data
structures were proposed in the past for automatic
adaptive mesh refinement [1-3,5]. The proposed
adaptive mesh refinement algorithm utilizes a A-
version based mesh refinement policy.

A. Quadrilateral & Hexahedral Mesh Refinement
Strategies

In the proposed adaptive scheme, the use of a
hierarchical minimal tree data structure reduces the
amount of tree travel necessary during the mesh
refinement. Although most of the mesh refinement
methods available in the literature employ tree
based data structures they are computationally
expensive. In the present approach a one-level rule
is applied in order to generate a graded mesh with
smooth mesh transition. The imposition of a one-
level rule generates a constrained node on the
boundary between two elements (common edge or
face) in the quadrilateral and hexahedral meshes.
Due to this, the meshes produced by this method
are called 1-irregular meshes. The constraint
nodes are processed in such a way that the
sequence of admissible adaptive meshes produced
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during the course of refinement will satisfy the
compatibility and continuity conditions. Utilizing
the local property of quadrilateral/hexahedral
elements an element is subdivided to produce a
congruent element The use of the one-level rule
imposes the following conditions on the
quadrilateral/ hexahedral mesh:

- There cannot be more than one constrained
node between elements sharing an edge in 2D.

- There cannot be more than one edge or face
constrained node between elements sharing a
commeon edge or face in 3D.

- The difference in the refinement level between
adjacent neighbors cannot be more than one.

Before proceeding to refine an element. a check is
made on the large neighbors; if a large neighbor
exists, it is refined first and the actual element is
refined next. Fig. la and fig. 1b illustrate the 2D
and 3D adaptive meshes with constrained and
regular nodes.
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Fig. 1. Regular and constrained nodes. a. In
quadrilateral mesh. b. In Hexahedral mesh.



The quadrilateral and hexahedral adaptive mesh
refinement algorithm is based on the assumptions
that the initial meshes are structured: the
subdomains and the elements generated are of the
same shape and type as that of the parents; if the
initial meshes are admissible then the set of
meshes generated during subsequent phases of
refinement are also admissible. The basic set of
initial data includes the element order list, node
numbers, nodal coordinates and neighbor array
and node types. The refinement proceeds by
connecting the mid-points of the sides of a
quadrilateral and the mid-points of faces of a
hexahedral to the centroid of the element. After the
refinement, an element order list is generated to
maintain the natural sequence in order to identify
the location of elements in the domain. The
dynamic data structure maintains only two levels
of the tree at any point in time during the
refinement. New constrained nodes are created
during refinement and the existing constrained
nodes may become regular nodes. The nodes after
refinement are identified as regular(m),
boundary(bn), edge constrained(ecn) and face
constrained(fcn) nodes. In addition to the one-
level rule the minimal tree maintains a relatively
simple data structure facilitating minimum tree
travel during mesh refinement and thus reducing
the computational overhead.

III. 'A POSTERIORI' ERROR ESTIMATION

Minimization of the discretization error can be
achieved by incorporating an efficient error
estimation procedure which computes the error
indicator to mark elements with more errors and
error estimator which decides on the level of mesh
refinement necessary. Error estimates are
computed ‘a posteriori’ due to the uncertain nature
of the discretization error at the beginning of the
adaptation. Some of the heuristic error estimation
methods are based on mathematical analysis with
extensive numerical results and others are based
on benchmark computations satisfying specific
computational goals. This is due to the fact that the
error estimates are sensitive to the complexity and
structure of the problem domain, the mesh quality
and the nature of singularities. Most error
estimation procedures use the solution, its
gradient, system energy, post-processed solution,
continuity conditions of field components or the
residual of the solution as the primary field
components to compute the error [7,8]. The error
estimates not only decide an the optimal mesh but
also assess the quality of the computed solution.
An error estimate with a high degree of reliability

63

will ensure proper adaptation in all classes of
problems irrespective of the nature of problems
and the type of material interfaces. In order to
provide an adaptive computation of
electromagnetic fields, the ‘a posteriori’ error
estimate should be computationally inexpensive
and must be able to compute errors in complex
domains and singular regions. Two different types
of local ‘a posterior’ error estimates are briefly
discussed in this paper.

A. Error Measures

It is important to choose a suitable error measure
not only for computing error indicators and error
estimators, but also to assess the quality of the

computed solution. Let &,, and @ be the exact
and approximate solutions respectively, then by
using an L energy norm, error measures for the
local error estimate can be derived as follows,

1/2
lellz, = jeTedQ . e=idy—d (1)
L¥]

The relative energy norm error in percentage is,

112
= [Ilell / (ildﬁllz + !Idilz) ]*100% (2)
The admissible error is derived using the global
relative error and the number of elements as

lietl, = (3)
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A reliable error criterion for refinement can be
derived as, {;=llel);/llell, and an element gets
refined whenever §; > 1, V lleli; > liell,

B. Local Error Estimates

Local error estimates are advantageous compared
to other methods since they are simple and
computationally less expensive. It takes only a
fraction of computational power necessary to
solve a problem, since a local error estimate solves
a local problem consisting of a subdomain with
only a few elements. Another advantage of a local
error estitnate 1s that it accurately predicts elements
to be refined in the critical regions of a problem.
Of the two different types of local error estimates



presented, one makes use of an improved solution
to compute the error and the other utilizes the
gradient of the solution to estimate the error for
adaptive mesh refinement.

C. Element by Element Local Error Estimate

The element by element local error method allows
a solution of a small problem at the subdomain
level to be solved for computing the error. Starting
with a coarse mesh, a local error problem with a
subdomain consisting of a patch of elements
connected to a regular node is constructed. Since
the local problem has only a2 few nodes, it 1s
computationally less expensive. Based on the
location of the regular node, Neumann and
Dirichlet boundary conditions are imposed. The

local problem L&@=f thus created on each
subdomain corresponding to the active node is
solved using a quadratic approximation
polynomial on an h-version mesh. By repeating
this procedure at all the active nodes and
comparing the improved solution with the
original, global solution, the error on each element
is computed locally. Using the error measure
derived above, selected sets of elements are
marked for refinement.

D. Gradient of Field Method of Error Estimate

In singular regions of a problem, the gradient of
the field or flux will be highest, since the rate of
variation of the solution is larger compared to

other regions. Here the local problem is formed by
creating a subdomain consisting of a patch of
elements connected to an active node. With
appropriate boundary conditions, the local
problem is solved and an improved gradient of
field is computed. The error in the gradient is
computed as the difference between the gradient
from the local problem and the gradient of the
original solution. The derivative of the solution
becomes constant in the case of a linear first-order
approximation. Due to this reason the gradient g
will be discontinuous across neighboring
elements. In order to improve the approximation
of the true gradient value, the gradient at each

nodal point g is computed using the local problem
formulation. Based on the fact that the nodal
values are heavily influenced by the changes in the
field quantities of neighboring elements, the
gradient is improved by means of an averaging
technique. Let g.x and g be the gradient in the

exact solution @, and in the approximate solution
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@ respectively. Also let e, be the error in the
gradient. then eg=lg—g.l. Since gex= V P,y and
gex= V@, the true error in the gradient is
eg-=IV Py V.

IV. TEST RESULTS AND DISCUSSION
A. Linear Problems

To evaluate the performance of the proposed
adaptive mesh refinement algorithm and the ‘a
posteriori’ error estimation procedures, different
sets of linear and nonlinear problems in 2D and
3D are modeled using adaptive computation. The
first 2D case is the classical electrostatic problem
with an L-shaped domain with a corner singularity

in the form r¥3sin(26/3), where r and 6 are the
polar coordinates. The second is a Poisson
problem on a unit square region with a charge

density p=1 Coulomb/m2 at the center with a

permittivity of £. A uniform Dirichlet boundary
condition was imposed to solve the
problem. For both problems, using the coarse
mesh and the initial solution the proposed local
error estimates are applied to initiate adaptive mesh
refinement. An intermediate mesh and the final
refined mesh for the L-section problem are shown
in fig. 2. The corresponding equi-potential plots
are shown in fig. 3. The sequence of adaptively
refined meshes for the Poisson problem are
shown in fig. 4. The asymetry in the meshes is
due to termination of the refining process. If the
process were continued, they would eventually
become symmetric. The corresponding solution
plots are shown in fig. 5. In the L-section
problem, the singularity is present near the re-
entrant corner of the problem domain. Hence the
error estimate identified more elements for
refinement and so the mesh is denser near the re-
entrant corner. From the solution plot
corresponding to the refined mesh, it can be
discerned that the accuracy of solution is
considerably improved.

In the Poisson problem a unit charge density
exists in a small square region (0.2m x 0.2m) at
the center of the domain. Due to the presence of
charge density at the center, the field is stronger at
the center compared to other regions and hence the
refinement concentrates at the center. The
sequence of solution plots verify that the accuracy
of the solution is improved during each level of
refinement.
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Fig. 2. Intermediate and final adaptive meshes for the L-section problem.
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Fig. 3. Contour plots for the adaptive meshes in Fig. 2.

A magnetostatic problem in 3D is solved to
compute the magnetic field and the stored
magnetic energy for a given current density in a

unit cube having a uniform permeability fig A
homogeneous boundary condition B.n=0 is
imposed to compute the vector potemtial. A
uniform current density Jy=0, J,=0, J,=107 A/m?
is applied along the side of the cube. The magnetic
vector potential is used as the primary field
variable in this problem. The initial mesh and the
refined meshes are shown in fig. 6. The
experimental values of stored magnetic energy and
the corresponding errors are shown in table-1.
The error convergence plot in fig. 7 shows a
notable improvement of adaptive mesh refinement
in minimizing the discretization error. From the
sequence of adaptive meshes and the solution
plots, the performance of adaptive the mesh
refinement algorithm and the error estimation
strategies are verified.

V. NONLINEAR MODEL

A carefully designed adaptive mesh refinement
algorithm and error estimation method are capable
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of performing uniformly on linear and nonlinear
problems. In order to test the performance of the
proposed error estimate, a nonlinear problem
involving the computation of design parameters
for the design of a nonlinear high-field permanent
magnet synchronous motor is modeled for
adaptive FE analysis. The modeling and analysis
of electrical machine design parameters is a
complex task particularly due to the narrow airgap
and the rotating flux due to the rotor and stator
coils. To achieve optimal design and improved
machine performance, accurate calculations of
airgap flux density distribution and core losses are
necessary.

Mesh Number of | Stored Percentage
number elements magnetic of error %
energy (MJ]
1 ] 1.1044 49.98
2 [ 1.8983 [ 14.03
3 288 1.9231 12.91
4 1212 2.1482 2.71

Table-1 Numerical Test Results



A. Accuracy Improvement of Machine Design
Parameters

Permanent magnets are vital components in the
design of machines. In synchronous machines,
they eliminate the steady state conductor losses
associated with the rotor. Since there is no need
far an armature magnetizing current the stator
copper losses are also reduced [9]. However most
permanent magnets made of rare earth materials
are very expensive. By employing different
combinations of inexpensive magnets with rare
earth magnets, an optimal design with improved

efficiency can be obtained while maintaining the
airgap field distribution. To determine the optirnal
design parameters, efficient modeling and
computation of various design parameters is of
paramount importance. The nonlinear problem
modeled for adaptive accuracy improvement in
this experiment involves a high-field permanent
magnet synchronous machine utilizing two
different types of permanent magnets for the
design of the rotor. A rectangular magnet made of
rare earth permanent magnets and an arc magnet
made of inexpensive common materials like iron
oxide are employed in the design.

-
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Fig. 4. Sequence of adaptive meshes for the Poisson problem.

Fig. 5. Contour plots for the corresponding adaptive meshes.
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Fig. 6. Sequence of 3D adaptive meshes for the magnetostatic problem.
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Fig. 7. Error convergence plot.

B. Numerical Results

Utilizing the symmetry of the domain, one fourth
of the problem geometry is modeled. The
modeling takes into account the steady state
performance of the machine and also the
sinusoidal variation of the rotor current. It is
assumed that the rotor rotates at a constant
synchronous speed A triangular element based #-
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version adaptive mesh refinement is employed in
this model. The adaptive mesh refinement
technique was initialized on a coarse mesh with
1040 triangular elements and 574 unknowns.
After computing the mesh refinement parameters,
the mesh refinement was allowed to progress up
to 4 levels and the adaptation was terminated with
1560 elements and 838 unknowns. A sequence of
adaptive meshes for the nonlinear problem and the
corresponding contour plots (flux distribution) are
shown in fig. 8 and fig. 9 respectively. For the
sake of clarity, only an enlarged view of a section
of the refined mesh is presented. From the
smoothness of the flux distribution the accuracy
improvement in the solution can be verified. From
the numerical results the stator core loss and the
airgap flux distribution can be calculated and
compared with the available experimental vaiues.
The numerical test results along with the sequence
of adaptive meshes and the corresponding solution
plots establish the usefulness of the proposed
error estimation strategy in solving a nonlinear
problem for the improvement of design parameters
of a permanent magunet synchronous machine.
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Fig. 9. Flux distribution plot for permanent magnet synchronous machine design.
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VI. CONCLUSIONS

A hierarchical minimal tree based mesh refinement
algorithm employing a one-level rule along with
two different local 'a posteriori’ error estimation
strategies are presented in this paper. The
application of a minimal tree based algorithm
stores only two levels of tree data structure at any
step during the mesh refinement process thus
reducing the tree traversal considerably, and
therefore, providing a computational advantage
over other tree structure based adaptive methods.
The mesh refinement algorithm and the local error
estimates are applied to solve linear and nonlinear
elliptic boundary value problems adaptively. The
numerical test results and the sequence of adaptive
meshes demonstrate the application potential of the
presented mesh refinement algorithm and the error
estimation strategies.
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