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Abstracte - This paper presents a methodology for
tridimensional analysis of the electric field produced by
transmission lines. It utilizes the complex electric scalar
potential, which makes it possible to consider variation of
module and phase in the voltages of supply lines. The
Finite Element Method (FEM) is applied to solve the
differential equation that describes the phenomenon in the
domain of this study. Finally, a comparison is established
between the results obtained applying the propesed
methodology and the values reached through the classical
method of charge simulation.

I. INTRODUCTION

With a voltage level increase for transmission of large
quantities of electrical energy, the effect of electrostatic
field becomes an important factor in transmission lines
(TL’s) design.

This problem has been receiving increasing attention
in recent vyears, from electrical power companies
throaghout the world. The origin of this concern is due,
not only to the constant increase in the voltage levels in
transmission systems, but also to the steady growth of
urban concentrations, resulting in an increasing number
of residential areas with TL's.

It is a well-known fact that the electric field produced
by TL’s at ground level, acting on a person, can cause
nasty sensations, such as sparkling in the skin, attraction
of the hair, organic and physiological alterations, when
exposed for a prolonged period to a field of high
intensity.

There exists the further risk of people touching objects
with a high degree of isolation in relation to the ground
{such as vehicles, fences, antennas and others) and being
in contact with electric currents that can reach alarming
levels, as a result of the electrostatic energy stored up by
these objects when exposed to electric fields.

Although the gravity of some effects may still be
debatable, the influence of the electrostatic field on men
and the environment may become critical with the
advent of high vollage and extra-high voltage TL's.

There is also the problem of the interference that these
systems (TL’s) can cause in other nearby installations,
such as pipelines for the transport of fluids (oil ducts,
gas ducts, aquaducts, etc.), railways and communication
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systems, etc. For this reason, a study of the
electromagnetic compatibility (EMC) between these
installations and the environment in which they are
inserted, has become a matter of fundamental
importance. One way of evaluating the EMC of these
installations {in terms of disturbances of electrical
origin) is through a knowledge of the values and
distribution in the electrical field produced by them. For
this purpose, the availability of precise and versatile
calculation tools becomes necessary in order to
guarantee the quality of the results.

The great majority of softwares for calculating the
electric field of TL’s are based on the axial symmetry
that characterizes the fields in this installations, thus
permitting a bidimensional analysis [1,6]. However,
there are several different situations in which such a
consideration could not apply, without giving incorrect
results, or due to the very complexity of the geometry
(for example, crossing among TL’s).

The proposed methodelogy allows for a tridimensional
analysis, making possible the study of a series of
practical and interesting situations, such as considering
various TL’s, with some laid out assymetrically in
relation to others [2]. Another important aspect concerns
the utilization of the complex electric scalar potential,
that permits to calculate the field for a sinusoidal applied
voltage, still making possible a temporal analysis of the
phenomenon throughout a cicle alternation voltage.

II. MATHEMATICAL FORMULATION

The Maxwell's equations used are:

curlH =T+a—D 6}
at
cuﬂE+a—B=0 @
ot
divB=0 (3)

where His the magnetic field (A/m), E the electric
field (V/m), B the magnetic flux density (Tesla), D the



electric flux denmsity (C/m%), J the current density
(A/m?) and t the time (s).

The constitutive relations, concerning isotropic and
linear materials are:

D=eE 4)

J=oi 5)

where £ is the electric permissivity (F/m) and ¢ the
electric conductivity (Qm)™.

Utilizing equations (2} and (3) and kmowing that
(curl grad) is always zero [2], yields:

= A
=— Ve
E grad 3t 6

But considering that in the case of the TL's, the
electric field originated mainly due to the potential to
which the conductors are submitted and, assuming that
the variation of the values are sufficiently slow that the
effect of the potential vecior A can be ignored

G A S¢S 0), we can define the electric field as;

E= —grad V {7}

However, the electric scalar potential V is not
sufficient to represent the total characteristics of the
electric field produced by TL's, for the voltages in the
line supply are sinusoidal, showing variations in module
and angle of phase [2].

Therefore is necessary to utilize the complex electric
scalar potential, defined how:

V =V, efl®+%) (8)

where V, is the voltage to which the line conductors are
submitted (V), @ is the phase angle (rad), @ is the
angular frequency (rad/s) and t the instant of time
considered (s).

Applying the divergent operator in the equation (1)
and using equations (4) and (3), we get the equation that
describes the phenomenon in the domain of this study:

div [(c + joe)gradV]=0 )

In this problem the following boundary conditions are
considered:

o Dirichlet boundary condition, where the value of
complex electric scalar potential is specified.
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V=YV, (10)
¢ Neumann boundary condition, where the normal
derivative of complex electric scalar potential is
specified.

av

T 0 (1)

Since an analytic solution to equation (9) is difficult,

numerical techniques are utilized to solve it. Applying
the FEM to solve this equation, subject to contour
conditions (10) and (11), for each element in the mesh, a
matrix, called the matrix of elementary contributions is
obtained. In our case, the elementary contribution matrix
is complex and symmetrical. Its generic term is given
by:

gii= | [(o+jme)graaNi‘grade]dge (12)
Qe

where i and j are lines and columns positions in the
matrix, Nj and Nj are functions of nodal interpolation

and Q, represents the domain of the finite element
being considered.

The sum of all the elementary matrixes will form a
global matrix system, where all the elements of the mesh
are considered. This could be represented by:

nno .
i=1

where Vj is the value of complex electric scalar

potential at node j and NNO is the total number nodes
in the mesh.

The resolution of this matrix system gives the value of
complex electric scalar potential at the nodes of the
mesh,

For its resolution the method of conjugated
orthogonally conjugated gradients (COCG) is utilized
[3). Once the system is solved, the electric field can be
obtained by (7).

HI1. RESULTS
In the following section, results obtained for three
sitnations will be shown, in order to demonstrate the
validity of the methodology utilized.
A. Analysis of the 1050 kV three-phase transmission line

Here, a curve on the lateral profile of the electric field
is shown. It was obtained by FEM, for a three-phase



transmission line of 1050 kV (Fig. 3.1.2) and will be
compared with the result given by the classical method
of charge simulation and also with the values measured.

The picture below (Fig. 3.1.1), shows the view in the
plan of the domain of study.
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Fig. 3.1.1 Domain of study.

In this case, the domain of the study was separated
into 10586 elements. 79 iterations were needed to obtain
convergence and a 4 minute and 28 second calculation
time in a station Sun SparkStation 2.

Table I, below, shows the main characteristics of the
TL being stdied [1].

Table I - Main features of 1050 KV transmission line.

Voltage kV) 1050
Conductors per phase 8
Diiameter of conductors (m) 0,03307
Diameter of lighting conductors (m) 0,01016
Distance between phases (m) 15,20
Height of phases (m) 18,03;18,92; 18,27
Distance between lightning conductors (m) 35,66
Height of lightning conductors (tn) 39,0

It was adopted for ABC phase sequence calculations
from left to rightand t=0.
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Fig, 3.1.2 Electric field calculated by FEM, CSM and measured values.
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It is observed in Fig 3.1.2 that the results supplied by
FEM are satisfactory. In Fig 3.1.3 equipotential lines are
shown with the application of FEM. They provide a
notion of potential distribution within the domain of this
study and also point to regions where the electric field is
or 18 not uniform.
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Fig. 3.1.3 Equipotential lines.

B. 1050 kV Line in the presence of material conductors

In this case, we consider the existence of two metallic
sheds, under phases of 1050 kV transmission line. The
figure that follows shows the domain of this study.

P1 and P2 are lighining conductors and A, B and C
are phase conductors.

Fig.3.2.1 Domain of study.

Fig. 3.2.2, presents a view of the eguipotential lines,
obtained for this study.
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Fig. 3.2.2 Equipotential lines.

The influence of the metal sheds on the potential
distribution is observed, and consequently the
distribution of values in the electric field.

Due to the continunity of the tangential component of
the electric field, the appearance of electric current
density is observed in the inner superficial part of the
conductor materials.

C. Hypothetical case of crossing between two TL's

Here we imagine the crossing (at 90%) between two
TL's, one of 138 kV and the other of 500 kV. In the
literature, no similar case is registered, which justifies
the difficulty and even the impossibility of making such
an analysis, with methods that were then available. For
this case two curves on the lateral profiie of the electric
field were obtained, one on the y axis, that is, on the
central phase of the 138 kV line (Fig. 3.3.2) and the
other on the x axis, on the central phase of the 500 kV
tine (Fig. 3.3.3). The equipotential lines is shown in Fig.
334

In the picture below (Fig. 3.3.1) is observed the
approach of the domain of the considered study.

Fig. 3.3.1 Approach of the domain of study.
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In this case, the domain of study was separated into
39,600 elements. 35 iterations were needed in order to
obtain convergence, as well as a calculation time of 5
minutes and 23 seconds in a station Sun SparkStation 2.
Tables II and IO shown below, present the
characteristics of each one of the lines considered.

Table TI - Principal features of 138 KV transmission line.

Valtage (kV) 138
Conductors per phase 1
Diameter of conductors (mm} 0,03195
Distance between phases {m) 70
Height of phases (m) 10,0

Table I - Principal fearires of 500 kV transmission line.

Voltage (kV) 500
Conductors per phase 2
Diameter of conductors (m) 0,03195
Spacing between subconductors (m) 0,40
Distance between phases (m) 15,0
Height of phases (m) 18,0
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Fig. 3.3.2 Curve on the lateral profile of electric field on the ¥ axis.
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Fig. 3.3.3 Curve on the lateral profile of the electric field on the x axis.

In this case, values were not measured for comparative
purposes. Nevertheless, analyzing the two lines
separately, it can be observed that the results obtained
are coherent.

Fig. 3.34 Equipotential lines in crossing between two transmission lines.

IV. CONCLUSIONS

In this study, a2 mathematical model was presented to
analyze a tridimensional electric field generated by TL's,

Values of the electric field are presented for two
sitnations: one tri-phase transmission line of 1050 kV
and the other a hypothetical case of ¢rossing between
two TL's. _

Potential distribution on 1050 kV line was also shown,
considering the presence of metallic objects along the
line.
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FEM has proved to be highly flexible, inasmuch as it
easily permits the analysis of a large number of
interesting practical situations, such as, the evaluation of
values and of electric field distribution when there is a
crossing of two or more TL's, the possibility of
considering in calculations both the presence of
conductor and/or multidielectrics materials, as well as
irregularities of the land.

Therefore it can be demonstrated that the methodology
utilized makes possible the analysis of more realistic
sitnations, and consequently leads to obtaining more
correct results.
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