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Abstract — A point-matched time domain finite element
method (TDFE) applied to the analysis of
electromagnetic  transients in  multi-conductor
transmission line network is presented. The TDFE
method solves the partial differential transmission line
equations based on a semi-discrete approximation using
the finite element method and leap-frog scheme. Some
oscillations can occur due to the stability condition of
the technique. Using the modal analysis these
oscillations can be eliminated. A surge propagation in a
simple muiti-conductor network is presented and the
results are compared with the Electromagnetic
Transients Program (EMTP) simulations.

1. INTRODUCTION

A transient is the situation that occurs when the initial
stability of the system is disturbed and the system is
forced to settle in other stability condition. They are
usually of short duration and decreasing amplitude with
respect to time, space or both. In engineering practice,
studies of these conditions are of increasingly
importance.

The transient response of transmission line networks
can be found by accounting for all interactions between
forward and backward traveling waves as a result of
discontinuities or disturbances. The evolution of the
waveforms on the lines can be computed by solving a
system of linear nodal equations in discrete time steps.

Some transmission line problems cannot be adequately
modeled by the equivalent circuit approach. For
transient scattering applications the point-matched time
domain finite element (TDFE) method has been used
[1-10] with great advantages. One of the great difficult
with this approach is the errors due to the stability
condition necessary to obtain the numerical solution
(the others are the boundary conditions) which can
introduce high frequency oscillations in the simulations.

This paper presents the modal analysis applied to the
point-matched time domain finite element method for

multi-conductor transmission line transient problems. In
this approach, the propagation of dismurbance on multi-
conductor transmission line is simulated numerically in
the modal domain by solving a n-dimensional boundary
value problem at each time step. Results are presented
for a simple network and compared with the
Electromagnetic Transients Program (EMTP).

2. TRANSMISSION LINE EQUATIONS

The time domain formulation of multi-conductor
transmission line problems (in the TEM approximation)
can be described by a system of partial differential
equatidns in{x1)[11,12]
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where v(x,t} and i(x,t) are column vectors of the phase
voltages and currents and R, ¢, L and C are the
resistance, conductance, inductance and capacitance
matrices per unit length respectively. There are »
voltage and current equations describing the system and
they are correspondingly increased in their number of
terms to accommodate the couplings between the
conductors. The simultaneous solution of these
equations reveals » modes of propagation with, in the
general case, each having its own velocity. Analytical
solutions can be obtained for simple cases (e.g., lossless
and distortionless lines) [11].

3. FINITE ELEMENT METHOD

Using the finite element method in the solution of time-
dependent problems, the spatial approximation is
considered first and the time approximation next. Such
a procedure is commonly known as semidiscrete
approximation (in space) [13]. The finite element
method requires the line to be subdivided into a finite
number of regions called elements. Each element has
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points called interpolation nodes. This allows the
voltage v and the current 7 to be written in the form
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where M and N are the number of nodes of the finite
element segments, and ¢, (x) and y, (x} are basis
functions which interpolate the voltage and current
within each element, defined as

1 x=x
b.(%)= {0 at other nodes,
3
1 x=x
W (x) = {0 at other nodes.

The two nodes of a first-order finite element are located
such that each voltage element contains an interpolation
node for the current and each current element contains
an interpolation node for the voltage. Only the
interpolation functions associated with the adjacent
nodes contribute to the summation in (2). Hence,
substitution of (2) into (1), using (3) yields
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In this equation, ¢, =¢ (x}), w_ =y, (x), V¥,

represents the value of the two voltage nodes adjacent to
the current /,, and /, represents the value of the two
current nodes adjacent to the voltage node V..

This completes the semidiscrete finite-element
formulation of (1), resulting in a set of ordinary
differential equations in time. The second step is the
time approximation, using the leap-frog scheme
[3,4,141. In the leap-frog scheme, the time derivatives in
(4) are approximated by the Euler method, where the
current time derivative is computed one-half time step
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before the voltage time derivative. Substituting the
independent current and voltage terms in equation (4)
by the interpolated values at #=n+7% and r=n-%, the
following equations are obtained
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where Z, =(2L+RAt)” and Z, =(2C+ GAt)™. The

approximation functions ¢, (x) and w,(x) depend on
the type of element (number of nodes). Using ¢, (x; and
v, (x) as first-order interpolation polynomials, (5)
reduces to the following final equations [3,4]
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4. STABILITY CRITERION

The solution to the leap-frog scheme approximation
represented by (6) is stable [1,14] if
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where u is the wave propagation speed. This implies
that the wave must not propagate more than one
subdivision in space during one time step. Condition (7)
can be analyzed using the step response of a single-
conductor system shown in Figure 1 [5].

Using a fixed time step (Ar), for space discretization
{Ax) greater than At, the solution for the transmission
line differential equations is incorrect. For the matrix
system presented in (6) the errors obtained with the
TDFE method applied to the solution of the partial
differential equations are due to a unique value of space



discretization used for different wave propagation
speed.
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Figure 1 - Stability criterion

5. MODAL ANALYSIS

Wedephol [15] and Bickford [12] show that it is
possible to normalize (1) and thereby replace them by a
similar set of equations free of mutal terms. The
problem then reduces to the solution of # single-phase
equations of the same general form [16]. Just as the
solution of the single-circuit wave equation leads to the
mode of propagation and relationship between current
and voltage (wave speed propagation and surge
impedance) for the voltage and cwrrent waves on the
single circuit, so the solution of these equations yields
the n modes of propagation for the multiple conductor
system.

Rewriting (1) in the frequency domain, one can obtain
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where Z= R+ jwl, Y= G+ jwC. The approach used
to decouple each one of those equations is similar to
diagonalize either Z¥ or YZ [17]. In the diagonalization
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process, two transformation matrices are needed: matrix
Q for the currents (/. = @/ . ) and matrix P for the

voltages (V. =PV, ). P and @ are the solutions of
the eigenproblems

P'(zZY)P=v’
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where v, is the i-th eigenvalue and the columns of P
and Q are the eigenvectors of ZY and YZ respectively.
The transformation matrices are theoretically complex
and frequency-dependent. With a frequency-dependent
transformation matrix, modes are only defined at the
frequency at which the transformation matrix is
calculated. Then the concept of converting a multi-
conductor line into decoupled single-conductor lines (in
the modal domain) cannot be used over the entire
frequency range. It is possible to find an approximate
transformation matrix which is real and constant. The
errors of this approximation vary with frequency. They
are small in one particular region and large in other
regions, depending on how the approximation is chosen.
However, the problem of how to choose this constant
transformation matrix remains.

There is a class of conductor configuration in which the
process of diagonalization is greatly simplified. It is
called balanced system. A balanced transmission line is
defined as a line where all diagonal elements of Zand ¥
are equal among themselves, and all off-diagonal
elements are equal among themselves. Balanced lines
have a useful property, that is, the transformations to
decouple their differential equations are independent of
the particular system. There are several well-known

transformations for balanced lines: symmetrical
components, Clark's transformation, Karrenbauer's
transformation, among others. For Karrenbauer's
transformation
1 1 1 1
1 1-n 1 1
1 1 l-n 1
P=Q0= (10)
1 1 1 1-n

where N is the number of conductors. For lossless high
frequency approximation one can show that (10) is a



good approximation and can be used to solve some
problems.

6. NUMERICAL EXAMPLE

A performance test is considered using the circuit
shown in Figure 2. This simple geometry was chosen
for two reasons. First, its boundary conditions are stable
{open ended lines and simultaneous switch closing) and
easy to compute. Secondly, a balanced lossless three-
phase transmission line is used for simplificaticn of the
modal analysis application.

T = 0.0 sec.
Up = 1.0 pu \ Zo-,VO/Z.,.,‘q,
o— —
3 phase
synchronous O }—
voltage
source O , -

Figure 2 - Example circuit

Table I shows the switching surge modal parameters for
the system of Figure 2. A switching surge is computed
considering that the switches close at time =0, for
maximum voltage at phase 1. Figure 3 shows the
voltage at the end of the line (phase 2} where high-
frequency oscillations can be seen due to the different
wave propagation speed.

Table I - Modal parameters

mode Impedance {(2) Velocity (m/s)
zZero 966.98 2.58E8
positive 362.59 2.30E8
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Figure 3 - TDFE method
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Figure 4 shows the results for the numerical simulation
using the modal analysis. Using three equivalent
decopled single-conductor lines the oscillations due to
the stability criterion are eliminated. For comparison,
Figure 5 shows the same results obtained from the
EMTP simulation (Microtran version [18]).
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Figure 5 - EMTP simulation

7. CONCLUSIONS

The point-matched time domain finite element method
applied to the numerical solution of the multi-conductor
transmission line partial differential equations is stable
but some high frequency oscillations can occur due to
the different line speed wave propagation.

Applying the modal analysis to the numerical solution,
the simulation errors are corrected. Some
simplifications were made to obtain the transformation
matrices. Work is in progress to obtain better results by
modifying the constant-frequency  approximate
transformation matrices.
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