3B-Splines in the Integral Equation Solution
for Scattering from Bodies of Revolution

F.L. Teixeiral, IR. Bergn'ua.nn2
'EMBRATEL S.A., Satellite Transmission Department
2CETUC - Center for Telecommunication Studies, Catholic University of Rio de Janeiro

Abstract- The use of B-Spline functions is investigated in
conjunction with the Method of Moments integrai-equation
solution to the problem of scattering from  conducting
bodies of revolution. Its computational performance in
terms of relative accuracy and storage/CPU time
requirements is evaluated against entire-domain and
sampling-like basis functions. Particular attention is given
to the description of currents near edges. Questions of time
(space) and frequency (wavenumber) localization are also
addressed. A simple scheme devised to enforce boundary
conditions @ priori is shown to be potentially capable to
stabilize otherwise spurious solutions.

I. INTRODUCTION

The numerical treatment of open-boundary
radiation or scattering problems in the frequency domain
is usually done with the use of a linear integral equation
(IE) formulation. The Method of Moments (MoM) is a
general procedure to reduce an IE to a matrix equation
[1] that is usually dense and computationally intensive to
solve. In order to reduce the matrix dimensions, a crucial
aspect of the MoM solution is the adequate choice of
basis functions. Two major classes of basis functions
commonly employed in the MoM can be identified:
entire-domain  functions [2-4] and local-domain
(compact support) functions [4-6]. Entire-domain
functions are more specialized, being used in specific
problems to attain a fast convergence. Local-domain
functions are geometrically flexible, being more
practical to analyze complex geometries.

The fast rate of convergence achieved with the
use of entire-domain functions for certain problems of
scattering from perfect electric conductors (PECs) [2,3]
is related to the spectral characteristic (in the spatial-
frequency domain of the wave-numberk) of the
induced electric currents. Of particular interest, because
of its practical importance, is the class of smooth
objects, i.e., with local radius of curvature greater than
one wavelength. For these objects, a reasonable
assumption is that the induced current has a bandlimited
nature, i. e., can be well approximated by functions of
confined wavenumber spectrum, |7 |< k. (moreover
in the context of far-field scattering). Heuristic
arguments in favor of this hypothesis were well posed by

Hermann [7). Entire-domain functions as Fourier
trigonometric functions usually have a low-frequency
spectrum and thus, are natural candidates for an efficient
expansion for the unknown currents.

One attractive characteristic of the local-domain
functions not shared by the entire-domain functions is
focal support. It permits a faster evaluation of integrals
since only a small region of the scatterer needs to be
integrated in the evaluation of each coefficient of the
MoM linear system (impedance matrix). In addition,
since the entire-domain functions are defined over the
whole object, the CPU time for evaluating each
coefficient is also dependent on the electric size of the
object. As a consequence, it implies an even worse
frequency-scaled dependency of the required CPU time
to solve the problem,

The interest to develop a scheme combining the
attractive aspects of local and entire-domain functions
can be traced from the above observations. It would
cotrespond to the use of basis functions having band-
limited spectrum and, simultaneously, local support.
Ideally speaking, this objective is not strictly possible,
since the Fourier transform of any function with a finite
spatial support has necessarily an infinite support. The
objective to be sought is then an approximation to this
ideal.

One scheme that proved successful in this
direction was the use of the so-called quasi-localized
bandlimited basis functions (sampling-like) {7,8]. In the
examples considered there, the sampling rate associated
with the MoM was reduced from the usual number of 10
basis functions per wavelength to an average rate of
between 2.5 and 3 bandlimited basis fumctions per
wavelength. At the same time these functions allowed 2
very rapid computation of the integrals involved due to
their limited overlap. The basic limitation of this
approach is that it does not provide special treatment for
currents near the edge of the scatterer (in the case of
open scatterers), where a singular behavior is expected
in the induced currents (leading to spatially localized
high-frequency components). Failure to incorporate the
correct edge behavior can result in erroneous currents
and anomalous behavior of the solution near the edge

[9].



Fig. 1- Geometry and coordinates of a body of revolution

To alleviate these problems, this work explores
the use of B-splines in the context of scattering from
PEC bodies of revolution (BoR). Among the advantages
presented by these functions and herein investigated are:
(1) Near-optimal localization on the spatial and spatial-

frequency (or wavenumber) domains (7,k) with
asymptotic convergence to Gaussian functions, which
have an optimal localization [10]; (ii) Ability to model
the singular behavior near the edges through the use of
multiple knots; (iii) Analytical simplicity that permits an
exact analytic extraction of singularities arising in the
kernel of the [E. Two specific examples are considered:
the scattering from an infinitely thin, PEC circular disc,
and the scattering from a finite, PEC hollow cylinder.
For the second example it is also shown that a simple
scheme devised to enforce a priori boundary conditions
on the longitudinal current component can also solve the
problem of instability in the azimuthal component when
using the Electric Field Integral Equation (EFIE) [11].
This work is organized as follows. In section 1I
the MoM solution of the electromagnetic scattering from
conducting bodies of revolution is briefly reviewed.
Section III contains a description of the basis functions
used in this paper, with particular attention given to the
interesting properties of B-splines. In section IV
comparative results from the analysis of a circular disk
and a finite hollow cylinder are presented. Finally,
section V summarizes the most important conclusions.

II. METHOD OF MOMENTS SOLUTION OF THE
SCATTERING FROM BODIES OF REVOLUTION

In this section the basic formulation of the
MoM analysis of conducting BoRs is briefly reviewed.
For a more detailed discussion the reader is referred to

[5].

Fig. 1 depicts a general BoR. It is generated by
a rotation of the curve C about the z-axis. For numerical
purposes, C is approximated by a sequence of linear

segments €. Any point on the BoR surface can be

described by two coordinates: ¢, the azimuth angle; and
t, the arclength along C. Given an incident electric field

E™ the solution of the problem follows from the
application of the pertinent boundary condition:

AX(E™ +E5=0 (1)
on the surface of the PEC scatterer, where E°(F) is the

scattered field due to surface currents J(#’) on the body
and 5 is the unit normal vector to the surface. The
scattered field can be expressed in terms of the induced

current through the radiation integral, with an &
dependency assumed:

E*(F) =~ joulf J(F)GF .7 ')ds

P - - - 2)
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here G(¥,r") is the free space Green’s function:
iidedl
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Combining (1) and (2) the Electric Field Integral
Equation (EFIE) is obtained:

E = (D)= jou[[ JFHGEF,F)ds" +

j = o (4)
av,{j(vs.J)G(r,r Yds

By decomposing the induced current and the
incident tangential electric field in terms of its
{orthogonal) components along the t and ¢ directions, a
set of two coupled integro-differential equations is
obtained. In a dyadic form they are written as:
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(JF+J,0)= E"i + EP¢
where I are the integro-differential scalar operators (p
and q stand for t and ¢). The MoM is then applied to
solve the above equations. We start by expressing the

unknown currents in terms of a suitable set of basis
functions:
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The. factor I/p(f) (radial distance to z-axis) in the t-
component serves to cancel the p(2) associated with the
element of surface dS’ = pdgdr. The coefficients in (6)
are the unknowns of the problem. The above integro-
differential equations in a Hilbert space are transformed
(projected) into a matrix equation by inserting (6) in (5)
and performing an inner product of the resultant
equations with a set of test functions defined as complex
conjugates of the basis functions (Galerkin method). The
inner product is operationally defined to be the integral
over S of the dot product of the basis and test functions.
From the choice of harmonic dependence on ¢, there
follows, in view of the rotational symmetry of there
problem, 2 natural decoupling among different modes
(index m). The resultant linear system matrix
(impedance matrix) exhibits a block diagonal form and
each mode can be treated separately, greatly reducing
the computational effort to solve the overall problem.
The impedance matrix equation for the m-th mode is

expressed as:
v zZe L = |V
z ze|le]

(), = (L@3).BE)

M

() =2

I

where ( , ) denotes inner product. The right-hand side
vector in (7) is called the excitation vector. Explicit
expressions for the impedance matrix and excitation
vector (plane-wave excitation) elements and can be

found in [5]. The solution of the above matrix equation
(7) determines the induced electric current according to
(6).

The necessary number of modes in a specific
problem can be determined from a convergence study.
In case of plane-wave axial incidence only the m = + 1
modes are excited.

[11. B-SPLINES BASIS FUNCTIONS IN BOR ANALYSIS

In this section the use of cubic B-splines as the
basis functions in t is discussed. The domain of interest
is limited to the interval [0,T¢], where Ty is the total
arclenght of the generating curve. In order to construct
cubic (order n=4, degree n—1=3) B-splines on this
bounded interval the first step is to define a partition of
K+1 nodal points (knots): { & }-;x . where 0 = £, <
...< ty = Tr. In this work a uniform spaced partition will
be used. Additional points are placed at the ends of the
interval (multiple knots): £; =¢; =¢;, =0and t,, =
gy =tge; =Tk

Let’s define :

(s—1)y"" s=2¢

0 s<t ®

Yalst)=(s—1);" E{

Then the (normalized) B-spline of order n is given as the

n-th divided difference of %,(5;2) inson ¢, ..., tj, for
fixed £ [12],1. e,
B (D=t = 1)Y ntisensliny32), foralli )]

Fig.2 shows cubic B-splines (n = 4) on a unit interval
with uniform spacing of five interior knots. Explicit
expressions for (9) can be found in [13].

The above cubic B-splines present a series of
potential advantages when used as a basis set. First, they
have a local support which permits a fast evaluation of
the integrals in (7). Second, they are smooth, having 2
spectrum concentrated at low frequencies, as the Fourier
transform of the central B- spline of order n is given by

B, (2) &> sinc” (f) with sinc(f)=sinnf /af . Thisis
an important characteristic to fast convergence modeling
of currents on smooth scatterers, as discussed in section
I. B-splines are thus essentially limited both in the
spatial (time) and the wavenumber (frequency) domains.
Indeed, it can be shown [10] that B-splines converge to
Gaussian functions pointwise as the order of the spline



tends to infinite. Gaussian functions are optimal in terms
of time/frequency localization. The approximation error
for the cubic case is already less than 3% and the
variance product is already within 2% of the limit
specified by the uncertainty principle (Fig. 3).
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Fig. 2- B-splines basis functions in the unit interval with uniform
spacing (K=8).

A third attractive characteristic is that such
bases are aiso local in the sense of a small degree of
overlap, i. e. , at every point, except very near the ends
of the interval, only three B-splines are non-zero.
Moreover, through the use of multiple knots they tend to
be more localized and to have a higher spectral content
near the ends of the interval. This is just what is needed
for an improved description of currents near the edges,
where a singular behavior for the currents is expected.

Finally, the analytical simplicity of cubic B-
splines is also of importance. In particuiar, its
polynomial form permits a more accurate analytic
extraction of singularities when evaluating the integrals
that define the elements of the impedance matrix in (7)
(see Appendix).

The expression for the basis functions in (6) in
terms of the B-splines is written as:

i=1,...K+n—2=N,
i=],.. ,Ktn—1=N,

(10a)
(10b)

F@y=tByia(®
20 =By s
The factor ¢ enforces a priori the condition J, (1=0} = 0

in case of an edge at his point (p(r=0) # 0) and cancels
the factor I/p(t} in case of p(r=0) = 0. 1t also avoids

instabilities in the ¢ current component in regions where
J, dominates both equations in (5) [11], as will be
shown in the next section.
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Fig. 3- Cubic B-spline with its corresponding Gabor approximation:
Ba(x) = (1.5/m) exp(-1.5x%)

Two other sets of basis functions are used in the
examples of the next section. Entire-domain functions
are defined by a series of sinusoids [3]:

= sin(;ﬂ) i=i,...N, (11a)
!

ff"(t)=cos|:(i‘—;712£} i=1,.., N, (11b)

S

Quasi-localized, bandlimited sampling-like functions,
are defined as [7], [8]:

)= tsinc[a(KT -1, )]sinc(xt -1;)

i=l,..N (12a)
12 @) =sincfa(xr -7, ) sinc(w - 7, )
i=1,.., N, (12b)

witha=03,x=N, /T and 7, = (i — I). The above
functions are truncated at the first zero of the factor
sincfofxa — 7;)]. It gives a negligible degradation on the
bandlimited characteristic of these functions, due to the
fast decay (. I/d)z they present from the middle-point.

In the examples studied (open bodies), the
number of basis functions for t and ¢ components are



related through N, = N, + /. As a consequence of this
choice, the J, component is forced a priori to satisfy the
boundary condition at the edge, vanishing at ¢ = T (for
the case of open bodies) in expansions (10)-(12).

IV. NUMERICAL RESULTS

In this section two numerical examples are
presented. The first one involves the determination of
the induced current on a 4 A diameter infinitely thin
circular disk. The axially incident electric field is a plane
wave x-polarized (Fig. 4). In this case only the m = *+ 1
modes will be excited and the current will likewise be x-
directed.

J\y

A
N\f

Fig. 4- PEC circular disk illuminated by an axially incident plane-
wave

Figs. 5 (2) and (b) show the calculated current
(normalized to | #™ |) when using the three basis sets
with N, = 10, N, = 1]. The current is t-directed at ¢ = 0°
and ¢-directed at ¢ = 90° . For the t-component (Fig,
5(a)), the results obtained are virtually equivalent. The
current shows an oscillation with a wavenumber k = &,
around the value predicted by the physical optics
approximation ( Jp, = 24x H™ ).

For the ¢-component (Fig. 5(b)), the currents
agree well except for the behavior near the edge. At this
point the B-spline expansion produces a better modeling
of the current singular behavior. This characteristic is
present as the number of basis functions is increased.
Fig. 6 illustrates the ¢-component when employing

basis functions with N, = 19. The sinusoidal and the
sampling-like sets give essentially the same results for
the current. A small (apparently non-physical)
oscillation in the ¢-component for the sinusoidal and
sampling-like sets can also be observed.
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Regarding the CPU time involved in the
calculation of the impedance matrix, the sinusoidal
(entire-domain) set is clearly the most demanding. The
disk is discretized by 20 segments. In each segment, a 5-
point Gaussian quadrature is use to integrate over t.
Having a spatial support A equal to T, a total of
100°=(A/T;) integrand evaluations are required to
calculate each term of an entire-domain impedance
matrix element.

B-splines

-------- Sampling-ike functions

0 L 1 L ;
0.0 0.5 1.0 1.5 2.0
t/a
Fig. 5(a)- Induced t- component on a PEC disk. Ten functions used in
t direction.
5
B-splines

1.5

1.0
A

Fig. 5(b)- Induced ¢- component on a PEC disk. Eleven basis
functions used in ¢ direction.
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Fig. 6- Induced ¢~ component on a PEC disk. Nineteen basis functions
used in ¢ direction,

In the case of sampling-like functions the
spatial support (except for the functions near the edge
which have a smaller support) equals to 2/ax = 6.677,
/N, . When N, = 10, a maximum of approximately
1002><(6.67/10)2 integrand evaluations for each term in
the impedance matrix elements are required, 44% of the
entire-domain situation. When N, = 18, this relative
number is even smaller, = 13.5%. For the B-spline case,
the maximum spatial support equals to Ty /2 and Ty /4,
respectfully. It corresponds to a number of integrand
evaluations of 25% (N, = 10) and 6.25% (N, = 18),
relative to the entire-domain situation. Table I illustrates
those observations, showing the (normalized) overail
CPU time required to fill the impedance matrix.

{normalized) CPU TIME
BASIS FUNCTIONS | Ne=10 Nt=18
Sinusoids 0.32179 1.0000
Sampling-like | 010246 0.10728
B-spiines 0.05475 0.05560
TABLE1

The second numerical example comprises an
axially incident plane-wave and a finite hollow cylinder
with radius @ and extending from z = 0 to L (Fig. 7).
Twenty segments were used in the discretization of the
generating curve. In this example, the strong coupling
between the two component equations of EFIE (5) and
the dominant behavior of the t-component may cause a

spurious oscillatory behavior in the ¢-component as

11

observed in [11]. This is exactly what happens when B-
splines are used without the factor ¢ in the expansion
(10a), as Fig. 8(a) depicts.

Fig. 7- Finite PEC hollow cylinder illuminated by an axially incident
plane wave.

The non-enforcement a priori of the boundary
condition J, (t = 0) = 0 for this case also implies a
spurious behavior of this component near t = 0 (Fig.
8(b)). In contrast, when the expansion in (11) is used, the
spurious result are eliminated, as Figs. 8 (a} and (b)
illustrate. Also superposed in these Figures are the
currents calculated using sinusoidal functions. In all
cases, N; = 10. The same observations previously done
with respect to the required CPU time for the matrix fill
also apply for this example. Again, the description of the
current near the edge with the use of B-splines with
multiple knots is more accurate.

16

— B-splines with linear factor

o+ Begplines without linear factor

12

& =ees Sinusoids

/A

Fig. 8(a)- ¢~ component of the induced current on the hollow cylinder
illuminated by an axially incident plane wave.
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Fig. &(b)- t- component of the induced current on the hollow cylinder
illuminated by an axially incident plane wave.

V. CONCLUSIONS

- An adequate choice for the basis functions is of
great importance to the computational efficiency of the
MoM solution. While a plethora of choices exists, two
basic requirements should be satisfied by an efficient
basis set; resemblance to the unknown current, thus
leading to a convergent solution with few number of
terms, and provision of a short computational time.

In this work, different choices for basis
functions are addressed in the context of BoR. scattering.
Concepts like time and frequency localization, as well as
the description of the current singularity near the edges,
are discussed. It is shown that functions with a limited
spectrum can lead to an economic representation in case
of smooth BoRs, although near the edge the singular
behavior can be overiooked. In this respect, the use of B-
splines with multiple knots permitted a more accurate
description at the edge. When impedance matrix fill time
is compared, entire-domain functions present a basic
limitation, as the fill time increases impressively with the
number of unknowns. The possibility of eliminating the
spurious behavior in the current due to the strong
coupling in the EFIE components is investigated. In
particular, a linear factor introduced for the t-component,
is potentially capable of stabilizing the solution at the
same time that it enforces, a priori, the boundary
conditions.
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Two other observations can be made with
respect to the implementation of B-splines as basis
functions. First, the use of an adaptive mesh grading
{AMG) technique arises naturally with B-splines. It
consists of concentrating the number of knots in critical
regions where a faster variation in the solution is
expected. This can be done by redistributing the knot
points with respect to, e. g., a weighted combination of
the arclength, curvature and edge proximity. Second, B-
splines are also present in the context of Multiresolution
Analysis (MRA). By using B-splines as a starting point
(scaling functions) a sequence of “wavelet subspaces”
can be generated [13], with asymptotic convergence to
Gabor functions (modulated Gaussian) [10], which are
optimally concentrated in both time and frequency
domain.
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APPENDIX

The objective of this appendix is twofold. First,
it reviews the pseudo-analytic procedure used to remove
singularities in the integrals that form the impedance
matrix elements. Second, it shows how this singularity
extraction can be done in a more exact manner by using
B-splines.

The singular integrals that arise in the
calculation of impedance matrix elements (7) have the
following generic form [5] :

- JkR

I= fd!fdtal(t)az(t)jdqbcostpcosmi:
where

R= [(p -V +(z-2"Y +4pp’sin’ ¢/ 2]”2

and , (£), 0, (¢) are functions that depend on the choice

~ of basis functions. The above integral has a singularity at
p=p,z=z",¢ =0 which does not permit numerical
integration. It is rewritten as:

I= fdt_[dt ‘o (Na, ()] Id¢(cos¢cosn¢ =

di
+‘£F¢ ]ZII +]2

1, is a proper integral and the singularity is isolated in
"2 n2]¥?
L. Define: Ry =[(p-p"? +(z-2)*] ",

20

B = and £€=¢/2; Then:
Ry
r Tr xi2 dé
1, =2 [dt [ dra, (e, ()
: I I 1 ? '[ Rl\/(1+ﬁ, sin® &)
T K(ﬁz)

_2jdzj'dr o (Her, (£ 222

2

R,

with R, =[(p+p")? +(z-22]

where K(B,) is the complete elliptical integral of the first
kind. The integral in ¢ was solved, but the above

integral is still singular when p=p’ and z=2z’
t=t"). The behavior of KX(B,) as
t — t"is given by:

(equivalently,

lim
,M = i[en4+ {nR, — fnR,]
t=>t" R, P

Only the last term is singular. It is added and subtracted
so that [, is written as:

I T

Ly =In-In —ZIdIIdt ‘o0, (1), (¢ )[ KBy) | 5"31}
R,

2p

Ty
—jdzjdz oy (1), (¢ )——

I, is a proper integral and can be numerically
calculated. /,, is written as:

Ip== jd a‘p(‘)ZJd: e, (t)nRZ,

llg

where the interval [0,T;] was divided in N subintervals.
Each subinterval defines a segment of the generating

curve C where the dependency of p” and z'with ¢ is
linearized: p’'=p; +a;(t'~t]); z'=z/+5( -1))

and Rlz,i =~ with t,; =1y, (t/,2],p},a;,8;)
and t,; =t,(z,p},a;,b;).
function a@,(t’) is proportional to the basis function

2,2
IO,‘) +1;
In each segment g the

Jf(t). The integrals over each g can be evaluate
through a local approximation:

0, (1) =ay +ap’ +ayt’t +ay” since integrals of the

form

Iy = [t - 1) + e} ]ar n=0.1,2,3.

are tabulated. With the use of B-splines, the coefficients
of the local polynomial approximation equal the B-
spline coefficients and thus no further numerical error is
introduced.
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