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Abstract - In this paper a general method for the evalnation
of singular boundary element integrals over three-dimensional
isoparametric boundary elements of higher order is presented.
This method permits an efficient integration of strongly
singular kernels of order O(1/r*) and of nearly strong singuiar
kernels on curved surfaces. For numerical examples the
proposed integration scheme is compared with analytical test
examples showing high efficiency and accuracy. This new
method has full generality and, therefore, can be applied in any
field of electromagnetics. The actual computation can be easily
included in any existing computer code, e. g. for the selution of
electromagnetic scattering problems.

1. INTRODUCTION

Many boundary integral equations in three-dimensional
space contain, at least a weak singularity (integrable across
the singularity in the sense of an ordinary improper integral)
or a strong singularity (not integrable in the improper sensc),
usually both. Some integral equations of electromagnetics
contain in addition even hypersingular integrals. The
hypersingular integrals can be avoided in one of two ways:

The first is to use integration by parts to improve the
singularity of the kernels at the expense of differentiation of
the density or boundary variable function. This results 1 a
strongly singular integral with the unknown being the
surface divergence of the density function. Most of these
methods are based on either the electric- and magnetic-field
integral equations (EFIE) and (MFIE) or the combined field
integral equation (CFIE) [1]-[4].

The second way is to transform analytically this surface
divergence term into the normal compenent of the fields.
This results in more unknowns to be solved and also a
strongly singular kernel function [9].

Consequently, one of the key problems of integral methods is
the integration of strongly and weakly singular kernels in
which higher order shape functions represent the local
behavior of the unknown function. Nearly singular integrals
or nearly strong singular integrals will occur in applications
of BEM whenever the observation point is close to the
surface on which the integrations have to be performed.

In many cases it is too complicated or even impossible to
integrate analytically higher order element types. The
natral and most common numerical practice in BEM
applications is to use more integration (Gaussian) points on
the surface which is usually subdivided into small cells to
ensure convergence. This simple approach certainly works
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but at 2 very high price. The computer time consumed by
evaluations of these singular integrals in this way is, in most
cases, many times longer than that used by evaluations of
other integrals. Many methods have been devised to deal
with sutface integrals defined in the Cauchy principal value
sense. They have the common feature of avoiding the direct
computation of strongly singular integrals by employing
known elementary solutions of the boundary integral
equation. But these indirect approaches fail if solutions of
the boundary integral equations are not available {6].

One of the aims of the present paper is to show that the
difficulty in directly computing any type of Cauchy principal
value and nearly singular integrals arising in BEM is only
apparent. It will be demonstrated that Cauchy principal
value integrals defined on curved surface elements can be
always transformed in ordinary integrals through rigorous
manipulations.

The boundary element method formularion applied here
uses eight-noded quadrilateral isoparametric surface
elements shown in Fig. la and point collocation is used to
provide a set of equations for the solution.
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Fig. 1. Eight- noded surface element in the global coordinate system and in

the local parameter space.

Subdomain expansion by shape functions is used to link
each element in global space where £ and m are the inttinsic
coordinates (see Fig. 1). The global coordinates and the
unknown functions are then defined in terms of their
interpolation values.

0. REGULARIZATION OF CAUCHY PRINCIPAL VALUE INTEGRALS

Regularization [5], {6] here refers to singularity cancel-
lation by subtraction of successive terms of a Taylor
expansion of the singular kernel function. It 15 a technique
used to isolate strongly singular inmtegrals from the
numerically calculated integrand. The added back terms

121



contain, of course, the same order singularities as the
original, but these terms can be easy transformed in regular
one-dimensional integrals around the singularity.

BEM integrals with strongly singular kernels occur when
the kernel contains the gradient of a Green’s function of the
order O(1/r). In the following a strongly singular kernel
function is comsidered as appeared in three-dimensional
electromagnetic wave scattering problems
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Other strongly singular kernel functions can be treated
similarly. The term |r — r/| represents the distance between

the source point r' and the observation peint r, and u is the
global unit normal vector at the observation point. For such a
kernel of order O(1/r°) the boundary element integral (2)
only exists in the Cauchy principal value sense
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where N(&,n) represents the shape function and J(§,1) is the
Jacobian. Qbviously, all m elements neighboring the pole
must be considered, since at the limit any single contribution
is unbounded. It is convenient to introduce in each element
neighboring the pole a polar coordinate system (p, ¢)
centered at the local coordinate (£, 1, ) of the singular point
r . (see Fig. 2b)
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becomes singular of order O(1/r), because p cancels out one
order of the singular kernel function. In the neighborhood of

the singularity |r —r{ is expanded into a Taylor series as
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Fig. 2. Subdivision of a rectangular element into two triangles if the

observation point lies in a corner node (a) using polar coordinates in
the {ocal parameter plane (b).

Equation (5) can be written as

r—r'=p A{p)+0(p*). 9

Using (8) and (9) the following equation is easily obtained

r-r _Algp)

|'._rl| = A((P) +O(p) .

(10)

It is mow possible to give explicitly the asymptotic
expression of the singular integrand function (4)
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It is important to note, that in (11) the Jacobian and the
local shape functions are calculated at the singular point (5;,
1 ) only. From (11) immediately follows that
<lk| if

p->0 (12)
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is limited by |k|<x if p tends to zero Adding and
subtracting the first term of the series expansion (11) in (2),
we obtain
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can be written now (first term of series expansion)
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The added-back term in (14) can be transformed using (16)
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The second integral on the right-hand side of (17) is
vanishing. After these manipulations the final formula for
the calculation of strongly singular integrals can be obtained
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In (18) it can be seen that the first integral became a
regular integral in the local polar coordinate system. The
second integral is a regular one~dimensional integral around
the singularity, which can be evaluated with a standard
Gauss-Legendre quadrature. It is important to note, that the
interpolation functions on the elements neighboring the pole
must be at least C°~continuous [6] at the collocation point.

III. REGULARIZATION OF NEARLY STRONG SINGULAR
INTEGRALS

Nearly singular integrals appear if one wants to evaluate
the electric or magnetic field vectors at points close to the
boundary of a body. On the other hand, nearly singuiar
integrals arise from boundary integral equations, when parts
of the boundary surface become close to one another, as in
the case of thin shapes or shells (see Fig. 3). For example,
the field evaluations inside the thin steel plates of TEAM
workshop problem No. 13 require an extremely accurate
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Fig. 3. Exampie of a thin body problem.
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computation of nearly strong singular integrais [7]. Accurate
evaluation of nearly singular integrals is a demanding task
since the integrands vary rapidly on the surface of
integrations when the source point is close to this surface.
Now, we extend the approach of section II for the
computation of neatly strong singular integrals.

Assuming that the observation point is close to the surface
but not on the surface the kernel function (1) shows a nearly
strong singularity. To transform the integral (2) into a nearly
weakly singular integral and a one-dimensional integral
around the singularity, we first find a “projection point’ P, of
the observation point P (see Fig. 4) on the surface S.

e P .-

Fig. 4. ‘projection point’ F; of the observation point P on 8 and definition of

vector 1y and vector ry-.

The ‘projection point’ P, should be located as near as
possible to the observation point P and we assume now the
point P lies inside the boundary element S. The case that the
image point is located on the border of element S can be
treated similarly. The difference between the observation
point P and the source point P’ (see Fig. 4) can be written as

r-r'En=n+nEn) 19
with the constant vector

r=r-r'E,mn) (20}
and

nEm=rE,m)-rEmn [#3))

where (§; ;) are the coordinates of P; in the focal parameter
plane. Similar to (5), r - r’' is expanded in the neighborhood
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of the point P; in a Taylor series in the local parameter plane
and (22) can be easily obtained

r-r'=n +p A()+0(p°) (22)
by the introduction of a polar coordinate system (3) centered
at the point P, (£, m). Using (7) and (22) it is possible to
obtain an asymptotic expression of the nearly singular kernel
function (1), as follows
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if p—0. Adding and subtracting the asymptotic expression
(23) in (2), we obtain
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The integration of the second integral in (25}
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with respect to p can be performed analytically (the
dependence of ¢ has been omitted for the sake of brevity), as
follows
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Consequently, the final formula (29) for the calculation of
nearly strong singular integrals can be obtained
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Similar to (18), in (29) it can be seen that the first integral
became a regular integral. The second integral is a regular
one-dimensional integral, which can be evaluated with a
standard Gauss quadrature. In the limit case (r;—0)
equation (29) is identical to (18).

IV. NUMERICAL IMPLEMENTATION

For the numerical calculation it is comfortable to calculate
the integrals in a local Cartesian system. The first integral in
(18) is now a weakly singular integral. This weak singularity
is removed by using polar coordinates (polar Gauss method)
for the computation of the Gaussian points and of weight
coefficients.

Thereupon, these coordinates of the points are transformed
into the Cartesian coordinates and can thus be inserted in the
Cartesian kernel function without any modification
necessary. For a detailed derivation see [7]. Consequently,
the final formula (18) can be transformed into Cartesian
coordinates, as follows
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Subdivision of the transformed domain into elementary triangles, if the
singular point is identical with the middle side node (a) and if the
singular point lies inside the boundary ejement (b).

Fig. 5.
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These modified Gaussian points are used to calculate the
first weakly singular integral of (19). Equation (29) can be
transformed into a similar one. It is important to note that
according to the position of the observation point inside the
element, the intrinsic domains of integration should be
subdivided into a set of elementary triangles (see Fig. 5) in
order to achieve a fast convergence.
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V. NUMERICAL EXAMPLE

Some tests have been performed on the present method for
the calculation of the singular integral In the first test the
singular integral (32) of order O(l/r") given in [6] is
evaluated on different distorted boundary elements. The
integration region is a square (-1<x'<+l and
~1<y'<+1) in the z = 0 plane. Without loss of generality

the following integral is considered

2
T
a4 T

(32)

The kernel in (32) shows all the relevant features of any
strongly singular integral arising in BEM. All computations
were performed in double-precision arithmetic and for all
computations the modified Gaussian points described in
section IV are used.

A. Compuztation of the Cauchy principal value integral

The integration domain is subdivided into a different
number of eight-noded boundary elements (see Fig. 6 and
Fig. 7). The coordinates of the singular point X in the first
and second case are located at the node connected to all four
elements. The singular point is located for all cases on the
position r = (0.3, 0.2, 0.0)". Note, that two middie nodes in
fourth case are shifted.

Fig 6. Distorted meshes for testing the integration procedure
(case 1 and case 2).

Fig. 7. Distortad meshes for testing the integration procedurs
(case 3 and case 4).

The quadratic intggration domain is chosen for the purpose
of comparisons since the integral (32} can be integrated in
closed form. The number of Gaussian points for the one-
dimensional line integral is identical to the number of points
in the radial integration direction.

TABLE ]
NUMERICAL RESULTS FOR THE CAUCHY PRINCIPAL VALUE INTEGRAL (32)
(CASE 1 AND2)
Gaussian points case 1 case 2
3x3 -0.8785997736 -0.8707257728
6x6 -0.8790176221 40.8790113071
3x8 -0.8790178921 -0.8790140361
analytically -0.8790178509 -0.8790178909
TABLETI
NUMERICAL RESULTS FOR THE CAUCHY FRINCEFAL VALUE INTEGRAL (32)
(CASE 3 AND 4)
Gaussian points case 3 case 4
3x3 -0.8553715163 -0.8538898235
6x6 -0.8790648751 £.8791044310
8x8 -0.8790071557 -0.8790179206
analytically -0.8790178909 -0.8790178909

Table I and Table II give the numerical results obtained for
the four cases shown in Fig. 6 and Fig. 7, compared with the
analytically calculated value of the singular integral (32).
Note, that using the standard product Gaussian quadrature
without any regularization procedure no convergence to the
correct solution can be achieved (about 300% error). The fast
convergence in all four cases shows the effectiveness of the
approach,

B. Computation of nearly singular integrals

The same mesh as in the fourth case is considered. Now
the singular point is located above the element at the
position r = (0.3, 0.2, z) ©. The z-coordinate is varied from
0.1100.001.
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Fig 8  Absolute value of integral (32) along the line x=-0.3 and v=0.2.

The value of the nearly singular integral (32) is plotted in
Fig. 8 against the z-coordinate. If z = 0.0 the intcgral
becomes a Cauchy principal value integral. It can be seen if
the z-coordinate is lower than 0.06 the numerical computed
integrals without any regularization but with a great number
of Gaussian points became unstable. The nearly accurate
value is always evaluated by the quadrature with the
regularization procedure.

In Fig. 9 the relative error of the nearly singular integral
(32) is shown for different Gaussian points and different
numerical methods along the same line as used in Fig. 8.
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Fig. 9. Rel. error of integral (32) for different methods and Gaussian points.
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The distance between the observation point and the ¢lement
(z~coordinate) is varied from 10 to 10, For comparison the
error of the third order polynomial transformation method,
proposed by Telles [8] is shown in Fig. 9. It can be seen that
the error of the proposed regularization method is extremely
low if the observation point lies nearly on the boundary, but
the error is always lower than 0.6 %. The transformation
method [8] without the proposed regularization works enly
for greater distances between the observation points and the
boundary element. For greater distances even a better
accuracy can be achieved by the combination of the
polynomial transformation with the proposed regularization
method.

VI. CONCLUSION

The method presented provides a very efficient procedure
which can be easily implemented for the calculation of
singular and nearly singular integrals on curved surfaces.
The procedure has general validity. It can be applied to
Cauchy principal value as well as to nearly strong singular
integrals defined over curved surface elements of any type
and order. Therefore, advanced BEM implementations {even
with hierarchical shape functions) can now be developed
easily for a larger class of problems.
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