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Abstract

A new conjugate direction (CD) based method, GaCD by name, is addressed with its full
derivations. Comparison with some commonly used CD methods is made, concluding that
the GaCD method is among the best of them, in terms of an assessment number. A practical
example is presented in which a waveguide-microstrip transition section is optimized with
respect to its transmission parameter S5;,. The measurement of the transition agrees very
well with the numerical results.

1 Introduction

A numerical optimization procedure can be divided into two distinctive parts: local extrema search
and global area search, which is really necessary for most practical optimization problems. In its
analytical counterpart, however, there will be no such clear classification. There, the determination
of the global optimum is done relatively explicitly.

Here we will only concentrate on the local extrema search phase. As known, in a certain close
vicinity of a local extremum, the goal function in question can be well approximated by an ap-
propriate quadratic function, say, the 2nd order approximation of its Taylor’s expansion series at
that point.

For quadratic functions, there is a unique property that if there exist n conjugate directions,
at most n 1d (one-dimensional) extrema searches along these directions are needed before the
function’s extremum is reached. This property is usually referred to as quadratic convergence or
quadratic cut-off.

Based on this property, there developed a class of optimization methods, which are usually desig-
nated by the name of ”Conjugate Direction” (CD) methods, e.g. DFP, Fletcher-Reeves, Powell,
Daniel, Sorenson-Wolfe, etc [1].

In all the CD-derived methods, the key point is how to generate successively linearly independent
search directions, which are conjugate to one another. In the GaCD method here, the gradient
”G” of the goal function is used for providing an offset from current optimization point, which
will never degenerate to zero unless a stagnation point has been reached. The offset serves as
an indispensable ingredient for generating a next conjugate direction in this method. The above
statements hold exactly true at least when the method is applied to the quadratic functions.
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2 The GaCD Method

2.1 Preliminaries

Any n dimensional quadratic functions can be written in the following form:

1

X)==

G(X) = 3

H is an n x n positive-definite symmetric matrix. Therefore the function has one minimum

point which is denoted by X*. X and b are n-dimensional vectors; ¢ is a constant; T denotes
transposition.

XTHX +b™X +¢ (X e R™). (1)

Conjugate: If there exist two n-dimensional vectors P; and P;, and they fulfill:

PTHP; =0, PIHP;#0, and PJHP; #0, (2)
then the two vectors P; and P; are called conjugate to each other with respect to H, or simply,
H-conjugate.

Definitions below will be used throughout the derivation: ,
Q:=VG(X,)=HX; +b, (8)

R;=Qin1 — Qi ' (4)
V(X)) =V VG(X)=H. (5)

Let us assume that P; (i = 1,2,---,n) are n H-conjugate vectors. Since H-conjugate vectors are
linearly independent of one another, X* can be expressed with the n H-conjugate vectors in the
following form:

X* =Y AP, (6)
=1
with X* (1 = 1,2,---,n) being coefficients to be determined. Since X* is an extremum point, it
satisfies
VG(X") =0, ie (7)
HX*+b=0. (8)

Substituting X* in Eq. 8 with Eq. 6 yields

H (ZA;‘P;) +b=0. (9)
=1
Using the conjugate property (Eq. 2}, we obtain
PTb
S S 1

Now the key point is how to find out H and b. For large dimensional problems, finding them 1s
almost impossible or too time-consuming. Thus such a direct solution is not practically usable. We
have to figure out other ways. One of them is an iteration procedure using the so-called accurate
1d search. To illustrate this method in a clearer manner, we split it into two steps. In the first,
the concept of accurate 1d search is introduced, and then derivation of the iteration procedure is

presented.
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2.2 Accurate 1d Search

Below is a 1d search problem
G(Xps1) = G(Xp + 14Py) = g}ie%{g(Xk + AP:)}, (11)

with X being current point and Py current search direction.

To solve this 1d problem, the following commonly used method can be employed:

d
g b= [VG( Xk + AP [12n, Pi = 0. (12)

Due to
VG(Xi41) = HXpq1 + b, (13)

inserting Eq. 13 into Eq. 12 yields

(HX441 +b)"Pp = [H(X: + MPi) +b] Py

[(HX; + b) + AHP,]"P,

= VIG(Xi)Px + P THP;

=0 _ (14)

(Note: The property HT = H is utilized above.). Then we obtain

A = _PkTvg(Xk) — PkTQk (15)
k P.THP, P.HP,’

The above procedure is called aecurate 1d search.

2.3 The Derivation

Assume we have n H-conjugate vectors P; (i = 1,2,---,n) and an initial point X, performing
accurate 1d search once along P; leads to X:

X, =X; 4+ MPy, (16)

(Note: ), satisfies Eq. 15.). After n such searches which are performed along P; (i =1,2,---,n)
respectively, a point denoted by X,4; is reached:

Xn+1 - X1 + Z Aipia (17)

i=1
with A (i = 1,2, -, n) all fulfilling Eq. 15.

We will prove that X,;; must be the minimum point X*, i.e.

Qn+1 - vg(}{n+1) =0. (18)
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From Egs. 3 and Eq. 17, we have
Qnt1 = VG(Xns1)
= H (ZA;Pf +X1) +b

i=1

= > AHP;+ (HX, +b)

=1

= S AHP+ Q.. (19)

=1

Multiplying both sides with PT:

PIQ.u = PJ (EAiHPi+Q1)

=1
B2 A\ PTHP, + PTQ,

Eqg.15 PTQ, _, T
s L=l pTHp
PTHP1 1+ PrQu

= 0 | (20)

And multiplying with PZ:
Pan+1 = P’{

= P (D> A\HP; +A1HP1+(HX1+b))

0. (21)

Repeating the above for all other P; (¢ = 3,---,n), we have

PIQ.u=0 (Vi=1,2,---,n). (22)

As known, H-conjugate vectors are linearly independent of one another. It means that the n

H-conjugate vectors (P;, i = 1,2,---,n) span a complete basis over ®*. A vector in £" which is
orthogonal to all the base vectors is nothing but a zero vector. That is,

Qnt1=0. (23)

Then Eq. 18 gets proved. From the above, following conclusions can be drawn:

85



For any function which can be expressed by Eq. 1, if there exist n H-conjugate
n-dimensional vectors P; (1 = 1,2,--- n), then its eztremum point X* can be oblained
by doing at most n accurate 1d searches in the directions of P; (1 = 1,2,---,n),
respectively.

This relieves us from the difficulty in using the explicit form for A’s (Eq. 15), since normally the
matrix H is unknown. In the following, whenever we say "do accurate 1d search”, it implies an

evaluation of Eq. 15.

Next we will discuss how to generate H-conjugate vectors. First, let us derive three important
properties, from which the method is deduced.

P,THP; = AijP{TH,\jPJ- = %PgTH(Xj+1 - X;)
= PN s +b) = (HX; + ) = 1P (Quur ~ Q)
-~ Xlgp,-TR,-{ ;g E:ijg (i,j=1,2,---,n) (24)
Eq. 24 can also be written in the following form:
P7Qi=P,7Qi.s =P."Q;y=---=P7Q: (i=1,2,---,n). (25)

Below 1s given the derivation of another conclusion which reads as

P,7Q; =0 (i <j). (26)
Let y =141,
P7Qiyn = PT(HXi, +b) =P HX; +\P;)+b]
P.7[(HX; + b) + A,HP;) = P;/Q; + \,P;THP;
Eg.15 P.7Q; EQLP.THP. -0 (27)
- T 1 PtTHPz T ' .

Likewise, let 7 > ¢+ 1,
P'Q; = P7(HX;+b) =P [H(X;-1 +Aj-1P;1) + b]
= PT[(HX;.; +b)+},HP; ] =P,7Q;_, + ),_,P,"HP;_,
= PTQjo1="-
B PiTQ{_H_ = 0 (28)

Equation 26 gets proved.

This equation indicates that

The gradient Qiyy after k accurate 1d searches is orthogonal to all former search
directions (P;, 1 =1,2,---,k).
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Besides this, it also delivers us another deep connotation: after n accurate 1d searches, the last
gradient Q,4; satisfies P.7Q..1 = 0, (Vi = 1,2,---,n). Since, as known, there are at most n
linearly independent vectors in an n-dimensional linear space, the only solution to this equation
is Q41 = 0, which means that X,,4; is nothing but the extremum point X".

A next search direction may be formed using Q4. It is this that the so-called conjugate gradient
method is based on. Here we will use it for another purpose, namely, for finding an offset which does
not lie in the subspace which is spanned by all previous search directions. The actual usefulness
of the offset will be investigated right after.

To derive the GaCD method, one more conclusion is needed.

Known that P; (1 =1,2,---, k) are H-conjugate. k successive accurate 1d searches
in these directions from two different initial points, say X; and X; have been per-
formed, yielding other two points X, and Xpi1- Then the difference vector (Xpp1 —
Xyy1) s H-conjugate to P; (i =1,2,---,k), that is,

(Xipy — X)) HP; =0 (Vi=1,2,---,k). (29)
Since .
Xis1 =Xy + 2 AP, (30)
1:1
Xin = Xi + 2 APy, (31)
we have - .
Xy — X = X = X + (0 - X)Ps (32)

=1

For any P; (j = 1,2,---,k),

k
r H T t 1l I "
(Xipp1 — X)) HP; = (X=X )THPj + 3 (x = X))P;THP;
f=1
' 0T ' "
= (Xl - Xl) HP; + (’\j - }‘j )PJ'THPJ'
_ (X! _ X")THP' + P TQ; _ PJTQ;
. T " ;
= [H(X,-X;)] P;+P;,"Q; —-P;7Q;

- [(HX+b)— (HX| +b)] P; + P,7Q] - P,7Q;

" T " '
= (Q;- Ql) i +PTQ; —P,-,-TQ,-
= P;7Q,-P;7Q, +P;7Q; - P,”Q;
Be2s g, (33)

Because the above assumption is made for an arbitrary j, Eq. 29 gets proved.

Equation 29 provides us an effective way to acquire search directions which are H-conjugate while
Eq. 26 may be utilized to get an offset point which is needed by Eq. 29. No care needs to be
taken whether the offset will degenerate to zero or not, since, if true, it means that current point
is already the extremum one, i.e. the X*, therefore, no more search is needed.
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2.4 The Algorithm

Based upon all the arguments above, the GaCD method can be formed as follows. a <= b stands

for assign b to a. ¢ is a given stop-criterion. X; is an initial point.

1. <=0

2. j‘\:j+l;X?<=Xj;

3. Find Q% = VG(X?) and do accurate 1d search in the QF, i.e.
X = X2 + A9Q};

4, If 7 > 1, thenfor ¢ = 1,2,---,7 — 1, do accurate 1d searches:
X =X 4+ MNPy

5 X =X P, =X — X

6. If j > 1, then do one more accurate 1d search in P;:

X;41 4= Xjp1 + XPy;

7. If 7 < n, then go back to 2; Else,
if | X1 — Xn| < ¢, then stop; Else

Xy = Xut1,

and go back to 1.

2.5 A 2d Verification
Assume we have a 2d quadratic function as follows:
G(zy,z) = 23 + 222 — 4zy — 22429,

It is found that

2 -2 —4
ao( 2 2) ba( ). om0

It reaches its minimum at point X* = (:ﬁ’;,z;)T = (4, 2)T.

x=(1)

By selecting an initial point

and following the algorithm above step by step, we obtain the final result X*

(4,2)7 = X*

after two search loops, which verifies the quedratic cut-off property of the method. Note that the
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Figure 1: Search Path in Minimizing G(z1,T2)

above verification holds true both analytically and numerically. The search path for the numerical
verification is shown in Fig. 1.

Starting from X, evaluating the gradient at that point, using the gradient as a search direction
P,, it reaches X, after the first loop. Then a search in the current gradient is performed, yielding
X9, which serves as the offset point. Searching in P;, we get a new point X3, which is a counterpart
to X, for they are both the extremum points in the same search direction (P;) but from two
different initial points, X9 and X, respectively. From Eq. 29, it is known that the difference
vector P, = (X} — X,) must be H-conjugate to P;. Now down to this direction P2, the algorithm
finally converges to Xz = X”.

3 Comparison with Other CD Methods

The comparison is made by optimizing nine ”standard” test functions [2], which are listed in
Appendix A. The methods to be checked are GaCD, DFP, Fletcher-Reeves, M-Powell (modified
Powell), of which DFP and Fletcher-Reeves’ are among the best and most popularly used CD
ones. In addition, the Evolution Strategy (ES) [3] is also tested and presented here for the readers
who may be interested in such stochastic methods.

In order that a uniform assessment of optimization performance of the methods can be achieved,
a parameter 7 is introduced, which is defined as

A GO

7= M ® 100,
Ng

where G° are G” are the initial and final goal values, respectively; Ng is the number of function

evaluations. The greater the number, the more effective the method is supposed to be. In the

definition, we took the number of evaluations of goal function as a factor which reflects the
computation time, not directly the time itself. It is because for numerical optimization procedures,
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the evaluation of a goal function means a complete solution of an electromagnetic problem, which
takes, normally, the most significant part of the whole computing time including the optimization
strategy and other auxiliary operations.

The test runs are performed on a SUN SPARC-1 workstation. Each run takes normally less than
one second. Table 1 shows the statistic summary and rankings of the methods, which are derived
from the raw calculation results in Appendix B. It is seen that the GaCD method is the most
robust (o,) while its effectiveness () comes to the second after the DFP method.

Comparison of Various Optimization Methods via
Common Test Functions (Statistics&Rankings)
GaCD | BFGS DFP | Fletcher | M-Powell ES
Rankings <no> | 0.86 (1) | 0.84(2) [ 0.77(3) | 065 (4) | 0.35 (5) 0.17 (6)
on. | 017 {2) | 024 (5) | 0.19(3) | 0.22 (4) 0.28 (6) | 0.10 (1)
BEALE 1.0 0.6284 0.7339 0.8970 0.0527 0.1085
CRAGG 0.9053 0.2524 1.0 0.3437 0.2660 0.1003
ENGVALL-2d 0.9170 1.0 0.8207 0.6696 0.7281 0.1540
ENGVALL-3d 0.8453 1.0 04120 0.3170 0.0 0.2465
POWELL 0.4286 1.0 0.7788 0.4342 0.2757 0.0896
WHITE 0.7663 1.0 0.5217 0.6521 0.3339 0.2352
wOoOD 1.0 0.7594 0.7213 (.8710 0.5734 0.3802
ZANGWILL-2d 0.9070 0.9785 1.0 0.8722 0.0873 0.1795
ZANGWILL-3d 1.0 0.9357 0.8963 0.8220 0.8046 0.0534

Table 1: Rankings of the Optimization Methods Tested. The 5’s associated with respective test
functions are normalized with the highest 1 value of the different methods. For instance, 7’s for
the BEALE function are normalized with that of the M-Powell’s, i.e. 1.923, which is the largest
in that row (Appendix B). n = 0 means that the corresponding methods failed for the related
functions, e.g. the Fletcher-Reeves method failed in handling the WHITE function. In principle,
the larger the number 7, the more effective the method is considered to be; while the smaller the
number o, (deviation of n), the more versatile or stabler the method is regarded.

4 Optimization of a Waveguide-Microstrip Transition

The object to be optimized is a pair of transitions between a rectangular waveguide and a mi-
crostrip line. Scattering parameter S;; is used to assess the performance of the component. It is
maximized at the center frequency 10GHz with a +£400MHz bandwidth.

4.1 The Structure

A basic structure of such Waveguide-Microstrip Transition Pairs (WMTP) is shown in Fig. 2.
Such layout with two identical back-to-back transitions will accommodate a more accurate mea-
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surement.
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Figure 2: Basic Structure of a WMTP. The standard X-band rectangular waveguide is used, i.e.
a x b= 22.8mm x 10.0mm. The dielectric is RT/duroid 5880 from Rogers with a thickness of

1.5740.05mm, e, = 2.20.

4.2 Definition of the Problem

; ;4 y
A R AP I ——
Upper Sheet - !
pp I,F/z,/' gt T 1X - lA
| ]
' ' 9 10
L l QL l, E_M Dielectric Substrate
D -
E : : Metallic Sheet
18 20 19 4Y
Lower Sheet -z— . 25 _F
i &1 X ~—
| 5 14131211

« — Movable Points ¢ — Fixed Points
Figure 3: Optimization Vector for WMTP

Total 25 points along the profiles of the upper and the lower metallic sheets are used as the
optimization vector X (Fig. 3). Among them, points #21 to #25 are changeable in both y and 2
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directions while the rest only in 2. It is therefore a problem of 30 degrees of freedom. The definition
range is: [y < z < (I + I7) for points #1 to #20 and Iy <z < (I +ir), ~la/2 Sy < 14/2
for points #21 to #25. The whole set of the definition ranges for X is denoted by X ¢ R¥. A
standard microstrip section in the middle of the structure is maintained by imposing the constraint
that points #5, #6, #11, and #19 are not allowed to pass the limit of z < [)s.

The goal function is defined as

¢(X) = Sn(X), (35)
with S3; being an average of |S;1| over the desired bandwidth, that is,
— 1 n
= Sa(f)l-
= —— t;J 21(fi)| (36)

fm to fn covers the desired bandwidth, i.e. 9.6GHz - 10.4GHz.

The optimization problem can then be expressed as
G*=max{G(X)} (VX e X). (37)

Note: The mode in question is the fundamental one, 1.e. Hiq.

4.3 The Optimization

The optimization is performed by using the optimization driver which is implemented in the
general purpose electromagnetic software package - MAFIA [4], which is a finite difference solver.
With this driver, the whole optimization procedure is carried out fully automatically, from data
initialization to printout of final results.

1.0
0.5

s(t) o.o—f

-0.5

- 1-G ] T LI T T T
0.0 0.5 1.6 1.5 2.0 25 3.0

t/ns

Figure 4: The excitation Signal

The optimization method used is the GaCD presented here. In addition to this local search
method, a global search scheme is employed that uses the so-called Evolution Strategy. It should
be pointed out that no satisfactory result could have been achieved if this global search phase had

not been implemented.
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The evaluation of the goal function is achieved by exciting the structure at the port-1 with a
Gaussian modulated carrier signal (Fig. 4) and picking up the response at the port-2 of the same
mode (i.e. mode Hyg). After an FFT of the two signals, the goal function can be evaluated. The
simulation is the common FDTD procedure.

The simulation is carried out in three dimensions. In the whole process of the optimization, the
mesh is fixed to avoid discretization noises, which may cause wrong actions in the optimization
strategy. Figure 5 describes the mesh in the area of the microstrip in the y-z plane. In x, an equi-
distance mesh is employed. Total number of mesh points is ny X ny, x n, =12 x 11 x 59 = 7788.
The resolution for the optimization points is about 1 mm. With this being known, the stop criteria
for this optimization should be accordingly set (see ”"Error Analysis” later).

T e

| 120 ]

( Unit: mm )

Figure 5: Mesh in the yz Plane

4.4 Results Acquired

After total 338 field calculations (i.e. goal function evaluations), which took about 103 hours
on an IBM550 workstation, the final goal value of S3; = 0.996 over the desired bandwidth was
achieved, with the initial S3; being 0.501! The initial and final patterns are shown in Fig. 6.

e i
Initial

N N

P —
Final

% ﬂ\

Figure 6: Initial and Final Patterns of the Transition Pair



4.5 The Measurement

Both the initial and the final transition pairs were fabricated and measured (Fig. 7). The grooves
in the left block of the mounting waveguide were used for inserting the transition strips.

Figure 7: Transition Microstrips and Mounting Waveguide Blocks

The measurement showed a good agreement with the calculated results. The measured S3; to-
gether with the calculated one can be found in Fig. 8. It is found that the measured S;; is
generally poorer than the calculated one. It is, most probably, because ohmic losses and the
mounting grooves of the structure were not taken into account in the simulation.

18— ———
:/ R

0.8+

0.6 _ Calculated (Final)

SZI(f) 1 0 mememee— Measured (Final)

0.4 —

. B . Match Bandwidth

0.0 - -
9.0 10.0 11.0

f/GHz

Figure 8: Measured and Calculated S;; for the Final Structure
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5 Error Analysis

There are mainly three types of error sources. The first is coming from the evaluation of the goal
function, or in other words, errors from the numerical solvers of the electromagnetic problems.
This part of error has a strong relation with mesh sizes; Computer digital length is another error
source, which limits the sensitivity of the optimization algorithms to the fine changes in goal
functions. If the changes are too small to be digitized with the available effective length, the
algorithm will do nothing and treat the values as unchanged. This can be influenced also by the
definition of the goal function, which is the third source of errors. An inappropriate definition of
the same problem will surely lead to either a premature stop of the algorithm or a wrong action

by it.

5.1 More on Mesh-related Errors

For mesh-supported solvers, like the orthogonal mesh used here, attention should be paid to the
selection of mesh. If the mesh is to be fixed throughout whole optimization processes, the stop
criteria for the algorithm should be chosen accordingly. Figure 9 describes two different choices
of mesh: one is fixed, the other adaptive.

Fixed Mesh Adaptive Mesh

Poor Resolution: Variable Discrete Noises:
May Cause Potential Endless May Cause Wrong Decision
Looping or Premature Stop by Optimization Method

Figure 9: Two Types of Error Source Related to Mesh

For the fixed mesh case, an endless optimization looping is most likely to occur, if the stop criteria
are set too fine or bear no account of the repeated failures due to that any fine tuning of the
geometry will be impossible if the tune step is smaller than half of the local mesh size. This is
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really very hard for practical design problems, since one should have some preknowledges about
the relationship between the stop criteria and the mesh sizes. The best solution for this would be
to impose a stop criterion which checks such non-improvement failures.

For the adaptive case, there comes another problem where due to computer discretization noises,
the algorithms may make wrong decisions if the noises are comparable to the actual changes in
the goal function. Such kind of noises is normally solver-type dependent. It becomes severer
only when a very accurate result is to be achieved. For FDTD, it is relatively loose compared to
eigenvalue cases, where the solution has a relatively high sensitivity to the local mesh size ratios.

6 Conclusions

A full derivation of the GaCD method was presented. In terms of the newly introduced assessment
number 7, the effectiveness of the method was compared with other commonly used conjugate
direction methods against the test functions. It has been shown that the GaCD method is among
the best of the methods tested. Further more, a practical optimization was successfully carried
out using this new method. A hardware was built based on the numerical results, which delivered
a very good performance as numerically predicted.

As a final remark, we would like to point out that for multipeak goal functions, a global search
phase is absolutely necessary, since otherwise, starting from different initial points will, most
probably, lead to different final results.
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Appendix A

The test functions used are defined below.

1. BEALE

G(X) = [1.5 — z4(1 — z9)]2 4 [2.25 — 21 (1 ~ 22))* + [2.625 — 21 (1 — 23)]°

2. CRAGG
G(X) = [exp(z1) — z2]* + 100(z2 — x3)° + tan*(z5 — z4) + 25+ (24— 1)?
3. ENGVALL-2d
G(X) = z} + 23 + 2zfa5 — 4z, + 3

4. ENGVALL-3d 5
g(X) =3 gi(X)

=1

a(X) = zi+ai+ai-1

@X) = zi+2i+(2f-2P7 -1

g3(X) = z+x2+2a—1

9(X) = z1+za—23+1

g(X) = 22 +322+ (5az—z1+1)>—36
5. POWELL

G(X) = (z; + 10z2)* + 5(z3 — z5)* + (z2 — 223)* + 10(z; - z4)*
6. WHITE
G(X) =100(zq — =P+ (11— z,)?

7. WOOD

¢(X) = 100(zz — 222 +90(zs — 23)° + (1 —21)* + (1 - z3) +
10.1[(1 — z2) 4+ (1 — 24)*} + 19.8(1 — 22)(1 — 24)

8. ZANGWILL-2d
G(X) = 11—5(1fo + 1622 — 82,3, — 5621 — 256z, + 991)
9. ZANGWILL-3d
G(X) = (=71 + 22+ 23)? + (21 — T2+ 23)2 + (21 + T2 — 73)°
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Appendix B

X? and GO are the initial point and the initial function value; X*, G* the analytical ones; X", G"

the ones found by the optimization methods; Ng the number of function evaluations.

Raw Results for Test Optimization Runs

Comparison of Various Optimization Methods via
Common Test Functions (Test Runs Summary)
Init/Final | Item GaCD BFGS DFP Fleicher M-Powell ES
X0: {10,-10) X~ | (6.3068,0.8117) (6.3442,0.8142) (2.9883,0.4959) (6.3426,0.8155) (-12.5481,1.0742) | (2.9861,0.4963)
BEALE GO: 1.0114e8 G* | 2.1017e-1 2.0256e-1 5410]e-5 2.0166¢-1 $.7019e-1 3.2355¢-5
X*: (3,0.5) NG | 350 558 674 391 6308 4641
G* 0 nMe | 5.7119,1.0 3.5854,0.6284 4.1924,0.7339 5.1236,0.8970 0.3011,0.0527 0.6199,0.1085
X0:(5.5, XA ) (-0.0102,0.9445, | (0.2806,1.2365, (0.1747,1,1523, (0.1692,1.1400, (0.1313,1.1028, (0.1326,1.1128,
5.5) 0.9861,G.9992) 1.1070,1.0068) 1.0520,0.9976) 1.0608,0.9954) 1.0404, 1 GO08) 1.0583,0.9997)
CRAGG G(:4.,2340e8 GA | 53528e-6 717384 1.19942-4 6.9229e.5 1.1058e-5 1.5332e-5
X*(0,1,1.1) NG | 761 2312 622 1844 2531 6641
G=0 e 4.2052,0,9053 1.1723,0.2524 4.6451,1.0 1.5966,0.3437 1.2357,0.2660 0.4661,0.1003
ENG- X0:(10,10) XA (0.9949,0.0007) (0.8951,-0.0024) | (1.0009.-0.0058) | (0.9964,0.004%) (0.9950,-1.91e-6) | (0.9986,-0.0021)
VALL GO:39963.0 GA 1.5187¢-4 1.5593¢4 7.2479e-5 1.2493e-4 148304 2.0504e-5
X*(1.0 NG | 475 435 551 657 599 3n
@9 G*:0 nne | 4.0817,0.8170 4.4510,1.0 3.6530,0.8207 2.9807,0.6656 3.2407.0.7281 0.6854,0.1540
X0:(5,-5,-5) X+ | (-0.5195,-0.3588, | (1.5646,-2.8408, | (0.0972,-0.1124, | (0.3715-0.9582, i Failed (0.5986,-0.6582,
ENG- G:1025177.0 08870} 0.0365) 1.0180) 1.0313) -1.2334)
VALL X*(0,0.1) G | 20974 335.6351 7.1720e-3 3.0082 118.2426
3d) 6*:0 NG | 506 262 1488 1312 1201
e | 2.5889,0.8453 3.0627,1.0 1.2619,0.4120 0.9710,0.3170 0.0,0.0 0.7550,0.2465
X0:(5.-5. XA | (0.0601,0.0101, | (-0466,0.1047, | (-0.1104,0.0116, | (0.0256,-0.0014, | (-0.8386,0.0628, | (-0.1806,0.0217,
5,-5) 0.0489,-0.0420) | -0.6756,0.1404) -0.1024,-0.1044) | -0.1072,-0.1256) | -0.3853,-0.4822) { -0.1053,-0.1027)
POWELL | G0:153150.0 Gr | 3.063%¢-3 8.8360 2.2368¢-3 9.8247e-3 7.3507e-1 4.6038
X=(0,000) | N6 |1339 316 750 1235 1438 3761
G0 .Me | 1.3239,0.4286 3.0887,1.0 2.4056,0. 77188 1.3411,0.4342 0.8517,0.2757 0.2768,0.0836
X0:(-5,-5) XA | (-1.7196,-5.0435) | (-1.7088,4.9851) | (-1.5010,-3.3602) | (-17192,-5.0762) | (-1.7146,-5.0438) | (-1.6492,-4.4786)
WHITE G0:1440036.0 G* | 7.5649 7.3401 6.3007 7.3969 73716 7.02268
X*(1,1) NG | 220 169 328 259 506 721
G*:0 TN | 5.5258,0,7663 7.2111,1.0 3.7620,0.5217 4.7024,0.6521 24076,0.3339 1.6964,0.2352
X0:(-3.-1, X* 1 (1.0180,1,0407, (0.7458,0.5275, (1.3441,1.8087, (1.0740,1.1627, (0.8279,0.7390, (-1.0139,1.0307,
3,-1) 0.9709,0.9406) | -0.7379,0.5027) | 00541,00246) | 0.82360.6697) | 0.7766,0.6563) -0.7823,0.6445)
wooD G:12192.0 G* | 7.9214¢-3 12.7312 1.6522 3573261 42780 8.3979
X*=(1,1,LD Ne ! 810 531 715 689 808 1121
G0 e | 1.8149,1.0 1.3782,0.7594 1.3081,0.7213 1.5808,0.8710 1.0407,0.5734 0.6899.0.3802
ZANG- X0:(0,0) X~ | (3.99368.9948) (4.0049,9,0002) (4.0049,8.9993) (3.9950,2.9979) (3.9375,8,9928) (4.0337.9.0108)
WILL GO:66.0667 G* | -18.2000 -18.2000 -18.2000 -18.2000 -18.1961 -18.1989
X*(4.9) NG | 301 279 273 313 3128 1521
24) G*-18.2 N | *0.9070 *0.9785 *1.0 =0.8722 *0.0873 =0.1795
X0:(100,-1, XA | (-0.0246.-0.0045, | (-0.0282,-0.0104, | (-0.0208-0.0245, | (0.0246,0.016%, | (-0.0305,0.0005, | (-0.0004,-0.0009,
ZANG- 2.5y -0.0067) -0.0161) 0.0248) 0.0172) -0.0171) 0.0010)
WILL G0:29726.75 GA 1.3991e-3 1.6628¢-3 1.6782e-3 1.3041e-3 2.6743e-3 3.4492:6
(3d) X*:(0,0,0) NG | 830 878 216 1014 992 20241
G*0 nNe | 2.0327,1.0 1.9019,0.9357 1.8220,0.8963 1.6708,0.8220 1.6355,0.8046 0.1086,0.0534
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