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Abstract

This paper presents a detailed comparison of numerical
and analytical calculations of the low-frequency electric
and current density fields, induced by an applied uniform
axial magnetic field, in an equatorially stratified sphere
having the conductivity distribution ¢(ip) = gge™? @r¥)
with p € {1,2} and A > 0. As shown by the ana-
lytic solution, the resulting induced fields are fully three-
dimensional, and the model therefore serves as a rigorous
test of numerical codes.

The numerical method is a scalar-potential finite-
difference scheme based on Stevenson’s method for iso-
lated conducting bodies. This computer code was re-
cently shown to provide excellent agreement with results
computed independently by a modified Finite-Difference
Time-Domain method. Nevertheless, both codes share
some underlying similarities, such as their common use
of parallelepiped material voxels to represent the conduc-
tivity distribution, and of an edge-based staggered grid
to model the electric fields. Therefore, it is of value to
compare the numerical results with analytic ones.

The analytic model has a freely adjustable contrast pa-
rameter, and supports both m- and 2m-periodic conduc-
tivity distributions. Numerical and analytical results
are compared for several configurations. Full three-
dimensional volumetric correlation coefficients are typi-
cally of the order of 99% or better. As might be expected,
the main differences occur at the surface of the sphere,
where the true circumferential fields are most poorly ap-
proximated by the staircasing approximation inherent in
the numerical approximation.

1 Introduction

Accurate numerical modelling of electromagnetic fields
is important in many areas, perhaps particularly in the
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assessment of any potentially detrimental health effects
of power-frequency electromagnetic fields on humans, if
such effects are related to the induced electric fields and
currents in tissue.

Among the numerical methods commonly used [1] to
model extremely low-frequency (ELF) electromagnetic
fields are the finite-difference time-domain (FDTD) {2]
method, and the impedance method (IM) (3, 4, 5. Al-
though standard FDTD codes are powerful and general,
their direct application to extremely low-frequency mod-
elling can result in excessively long simulation times on
account of the stability criterion. With appropriate mod-
ifications, however, FDTD can compute accurate decou-
pled electric and magnetic ELF fields in complex het-
erogeneous conducting bodies in relatively short (5 ns)
simulation times [6]. The IM is particularly useful for
induction by magnetic sources, but has several draw-
backs [7i, including a vastly over-determined matrix sys-
tem, and difficulties in handling multiply-connected do-
mains in three-dimensional modelling. Both the FDTD
and IM are inherently vector codes, which can limit the
size of the problems that they can handle.

It was recently shown {[7] that ELF modelling in com-
pact isolated conducting bodies can be handled by a sim-
pler and more attractive scalar potential scheme based
on Stevenson’s Method [8]. At low frequencies, the elec-
tric field internal to the conductor can be represented in
terms of a vector potential of the static limit of the ap-
plied magnetic field, plus a scalar conduction potential.
The excitation for the conduction potential consists of
surface injection currents driven by any applied electric
field, together with a term related to the induced electro-
motive force, distributed throughout the conductor vol-
ume, driven by any applied magnetic field. The method
has several advantages. The indeterminacy in the under-
lying equations is removed, and the result is a matrix sys-
tem which is approximately a factor of six smaller than in
the impedance method formulation of the same problem.
By choosing the source term appropriately, it is possible



to treat electric and magnetic sources in a decoupled man-
net. Results computed by a numerical implementation of
the Scalar-Potential Finite-Difference (SPFD) method [7]
in a human full-body model at 7.2 mm resolution resulted
in a 3-significant digit agreement with modified FDTD [6]
calculations in the same model.

Although the modified FDTD and SPFD codes use dras-
tically different formulations (full-wave vs. static poten-
tial descriptions), they nevertheless share some underly-
ing similarities in their numerical approximations. Both
codes use parallelepiped material voxels to represent the
conductivity distribution, and therefore use a staircased
approximation of the actual conductor shape. Both use
a voxel-edge-based staggered grid approximation to the
electric field. Therefore, it is of considerable value to
compare the numerical results with analytic ones.

The uniformly conducting spherical model commonly
used to verify ELF magnetic modelling codes is in fact
not a rigorous test. The induced electric field is essen-
tially the applied magnetic vector potential in this case.
The calculation of the loop currents in an IM formulation
is therefore essentially devoted to calculating the (known)
vector potential.

Recently, it was shown [9] that the problem of induction
by a uniform axial applied magnetic field in an equatori-
ally stratified sphere having the conductivity distribution
o(p) = ooe~2<(P?) with p € {1,2} and A > 0 can be
solved analytically. This model has p conductivity max-
ima and minima, and a freely adjustable contrast param-
eter. In the case p = 1 and as viewed in the plane ¥ = (,
the conductivity has a single minimum on the positive z
axis and a single maximum on the negative = axis. For
the case p = 2, there are two minima, located on the posi-
tive and negative z-axes, and two maxima, located on the
positive and negative y-axes. This behaviour is depicted
in Figure 1. The associated conduction potential is en-
tirely related to the conductivity gradient, and provides
the deviation in the fields from those in the uniformly con-
ducting case, which are driven only by the applied vector
potential. The observed current distribution for moderate
and greater conductivity contrasts typically has a vortex,
associated with each conductivity maximum, which inter-
cepts the sphere surface at high latitudes. The fields are
fully three-dimensional, and the model therefore serves as
a rigorous test for numerical codes.

In this paper, results computed by the SPFD method
are compared to analytical ones for several values of the
parameters. It will be seen in Section 3 that the nu-
merical and analytical results are generally in excellent
agreement. For example, full three-dimensional volumet-
ric correlation coefficients between fields are mostly of the
order of 99% or better. As might be expected, the main
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‘Figure 1: Polar diagrams of representative conductivity

distributions in the z = 0 plane for o = 1 Sm~! and
A = 1. The thin black curve and thick gray curve pertain
to p = 1 and p = 2 respectively. The units indicated on
the axes are Sm™~1.

differences occur at the surface of the sphere, where the
true circumferential fields are most poorly approximated
by the staircasing approximation inherent in the numeri-
cal approximation.

2 Summary of the SPFD Method
and the Analytical Solution

2.1 Stevenson’s Method

A three-dimensional domain is described in terms of
Cartesian coordinates (z,y,z) with associated unit vec-
tors {&,¥, 2}, so that a typical position vector is r
& +yf + z2. A compact body, having a maximum
diameter L and electrical conductivity and permittivity
distributions o(r) and z(r) respectively, is located in this
domain, and subjected to incident time-harmonic elec-
tric and magnetic fields E*(r)et®t and B*(r)e*™? of
angular frequency w. It is assumed that the inducing
frequency is sufficiently low (quasi-static) that the body
is much smaller than both the free-space wavelength,
L <« X\ = 2n/ky = 2me/w and the skin depth, L « § =

[wioo(r) /2] - ? and that conduetion currents completely



dominate displacement currents, ¢(7) 3 we(r). The per-
mittivity distribution plays no further role in the present
analysis. Since the body is non-magnetic, the magnetic
permeability has its vacuum value gy = 47 x 107 Hm™!
everywhere.

Under these quasi-static assumptions, Stevenson’s
method [8] can be applied. Each of the incident, scattered
and interior electromagnetic fields can be expanded near
the conductor in a power series involving the parameter
(~iko), where kg = w/c denotes the vacuum wavenumber

of the fields, and ¢ = (sop,o)'l/’ ~ 2.998 x 108ms™! is the
vacuum speed of light. As explained by Van Bladel [§],
the zeroth-order interior electric field in the series expan-
sion is zero due to the induced surface charge distribution,
and the interior magnetic field is equal to the zeroth-order
applied magnetic field.

If the external zeroth-order electric field is ignored {elec-
tric and magnetic fields are commonly viewed as decou-
pled in the low frequency limit; moreover, by choosing the
source to consist of two plane waves propagating in oppo-
site directions with appropriate phasing, the electric fields
can be made to cancel in the vicinity of the sphere [6]),
then the surface charge density on the sphere is zero, and
the complex amplitude of the first-order internal electric
field may be shown [7, 8 to have the representation

Ei(r) = -Vuy(r) - iwAg(r), (2.1)
where Ag{r) is a vector potential for the zeroth-order
applied magnetic field amplitude,

Bj(r) = V x Ap(r). (2.2)

The conduction potential has to satisfy the differential
egquation

V-lo(r) Vip(r)] = V- [—iwe(r) Ag(r)] (2.3)
(which arises from the condition V.J = 0), subject to
the boundary condition E, =0, i.e.,

#(r) -V(r) = —iwh(r) -Ao(r) (2.9)
at the surface of the body. Additional constraints arise

from the conditions of regularity and continuity of the
electric field{g)].

2.2 The SPFD Method

In the numerical implementation of the SPFD to soclve
equations {2.3) and (2.4), the three-dimensional compu-
tational domain is discretized into a uniform set of ele-
mentary parallelepipeds or voxels. Within each voxel the
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electrical properties are assumed constant. The poten-
tial method is naturally confined only to the conductor,
with potentials defined at the vertices of the voxels. The
electric fields are defined as a set of discrete vectors on
the staggered array defined by the voxel edges, with field
values defined at the edge centers. These are computed
o posteriori, using finite differences of the potential field.
To allow for physical interpretation of the results, electric
field vectors are defined at the voxel centers by averaging
the three sets of four parallel edge components. The mag-
netic vector potential contribution indicated in eq.(2.1)
must also be included. The current density is then com-
puted by multiplication by the voxel conductivity.

A finite-difference approximation for equation (2.3) at a
given node can be constructed by an application of the
divergence theorem to an imaginary shifted voxel with
that node at its centroid. It is convenient to adopt a
local indexing scheme, where the target node is labeled
0 and both the nodes and edges connected to it on the
“+x, =T, +¥, =Y, +2 and —z sides are indexed from 1 to §
respectively, as shown in Figure 2. Quantities associated

1

Figure 2: Local indexing scheme at a node.

with nodes or edges are then labeled with the local index
of the associated object. With this shorthand, a simple
finite difference equation results :

] 6 6
(Z s'r) Yo — Zsrwr = WZ(—I)f+ISreon,- {2.5)
r=1 r=1 r=1

In this equation, £, denotes the various edge lengths in
the local indexing scheme, and Ay, denotes the compo-
nent of the external magnetic vector potential tangent to
the P edge, evaluated at the edge centre. The coeffi-
cients are the edge conductances s, = &,-a,/{., where 5,
denoctes the average conductivity of the four voxels con-
tacting edge » and @, is the area of the voxel face normal
to edge r. The above equations need to be modified in



an obvious manner if the central point is connected to
less than 6 neighbouring nodes in the conductor. It may
be noted here that the above equations may be viewed
as modelling a Cartesian lattice of resistors associated
with the voxel edges, and in this sense, the induced cur-
rents may be considered to be confined to these edges.
This point of view has consequences for the surface dis-
crepancies, observed in Section 3, between numerical and
analytic calculations.

When equations of the above form are written for each
vertex of every conducting voxel in the distribution, the
result is a heptadiagonal system of equations which may
be written as (N — E}y = f. This set of equations is di-
agonally dominant, symmetric, positive semi-definite. It
is also singular, since the potential is indeterminate to
within an additive constant. This system may be left-
preconditioned to the form (I — N7'E)y = N7If, or
symmetrically preconditioned to the form (I — A)z =b,
where A = N-Y/2EN-12 ¢y = N-1/2z and b = N~1/%f.
The singularity can be removed by augmenting the sys-
tem with an equation requiring that the potential have
zero mean. FEither form is well-suited for solution on a
computer, particularly using an iterative solvers [10]. The
restarted Generalized Minimum Residual method con-
verges well for the augmented and left-preconditioned sys-
tem. However, the Conjugate Gradient Method applied
to the symmetrically-preconditioned and augmented sys-
tem proved to be the most efficient.

2.3 The Analytic Solution

It is assumed that the zeroth-order applied fieid is uniform
and directed along the z-axis,

o(r) = Boz, (2.6)
so that a suitable vector potential is
Ag{r) = 1oByrsinf ¢. (2.7)

The conducting body is specialized to a sphere of radius a,
centred at the origin, and having the particular positive,
periodic, and equatorially stratified conductivity distri-

bution

o(ip) = ope= 5 39), @8)

with p € {1,2} and A > 0. This model has p conductivity
maxima and minima for —7 < ¢ £ 7, and a maximum
conductivity contrast of e**. The logarithmic derivative
of the conductivity is

s' (@) =o'(p) fo(e) = Apsin (pp) .

Under these restrictions, the conduction potential satis-
fies the differential equation

V. {o(¢) Vir)] = ~Co'(9).

(2.9)

(2.10)
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where
C =iwBy/2. (2.11)
The external boundary (2.4) condition reduces to
p(ry /dr =0 (r=ua) (2.12)

in this case, since the magnetic potential is everywhere
tangent to the sphere surface.

The solution to this problem is considered in detail else-
where [9]. A suitable Green’s function can be constructed
by separation of variables, and a closed form expression
for the conduction potential can then be derived. The
solution has the form of the expansion

Pry=C 3 Z W"’ EZ(p

we{e,0} mm=0

dmn (67} Rug, (7).

(2.13)
where the prime indicates that the m = n = 0 term is
to be omitted from the sum. Here the terms FZ(y’)
denote the even and odd eigenfunctions of the equatorial
differential equation

[o(0) Fu(o)] = —i2a(p) Fuly),  (214)

under the boundary conditions of periodicity
Fulp +27) = Fu(p), (2.15)
and regularity, normalized with respect to the inner prod-

uct
+1r
(Fl9),= [ o) s slerdp.  (210)
—-x

In the case p = 2, this equation has both «-periodic and
2n-periodic even and odd eigenfunctions, but onty 27 pe-
riodic ones in the case p = 1. The azimuthal functions

@ (@) have the expression

- (t9)—sin“9C*('“+/2 (cos®) /NZ (n=0,1,...)

mn - m,n? =UL...

(2.17)

in terms of ultraspherical polynomials, and p« denotes any
one of the equatorial eigenvalues. The denominator scale
factors are chosen to make the functions orthonormal with
respect to the inner product

(Flade = fo " {6)g(8) sin6ds.  (218)

The radial functions appearing in the potential are

2

B,() = % (1—21111;-), (v=12),
(e |B) 20} e,
(2.19)



and have zero derivative at ' a, as required. The
expansion coefficients in the potential involve integrals of
the equatorial and azimuthal eigenfunctions,

F"f),p(l | Qi">e'

The potential can be differentiated term-by-term in
spherical coordinates to get the spherical components of
the electric field. These can then be converted to Carte-
sian components for comparison with the SPFD results.

W=, = (g’ (2.20)

3 Results

Comparisons were made for five test cases, using the pa-
rameters shown in Table I. The cases cover a range of
conductivity contrasts for the case of a m-periodic (p = 2)
conductivity distribution, and a single run with a 27
periodic (p = 1) conductivity distribution. The actual
values of the conductivity scale ¢g and sphere radius e
are relatively unimportant — they essentially reduce to
an overall scale factor for the caleulated fields. The table
indicates the minimum and maximum conductivity val-
ues, as well as the contrast parameter (which is the ratio
of maximum conductivity value to the minimum, and.is
given by e2*). Runs A through D of the SPFD code used
N = 100 voxels to span the sphere diameter, while Run E
was done at higher resolution, using 150 voxels. The code
embeds the conductor in a parallelepiped-shaped bound-
ing box, with an extra layer of air added on all sides for
bookkeeping purposes. The row labeled “Nodes (total)”
indicates the number of nodes (located at voxel vertices)
in the bounding box, which is 103% for Runs A through
D, and 153% for Run E. Equations are written only of
those nodes contacting at least one conducting voxel. The
resulting number of equations is indicated in the row la-
beled “Nodes (active)”. In all cases, the inducing field
was a 60-Hz, 1-T uniform magnetic field directed along
the z-axis.

All SPFD calculations were carried out on a Hewlett-
Packard 9000/735 Unix workstation with 336 megabytes
of physical memory. As indicated in the Introduction, the
SPFD conduction potential matrix system was found to
be reliably solvable using either the restarted Generalized
Minimal-Residual Method (GMRES) or the Conjugate
Gradient Method [11] from the PIM package [10], running
in sequential mode on the above-mentioned workstation.
The latter was found to have the better performance. The
primary output of the code is the values of the conduc-
tion potential at the conducting voxel vertices. Finite
differences lead to electric field contributions defined at
the voxel edges. These are then shifted to the voxel cen-
troids using averages of the four edge fields parallel to
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each Cartesian axis. Full electric fields are then calcu-
lated by inclusion of the applied magnetic vector poten-
tial, as indicated in eq.(2.1). Current densities are simply
obtained by multiplication of the resulting voxel electric
field by the voxel conductivity. The corresponding ana-
lytical fields can be computed at the same locations, and
the two calculations compared pointwise.

Figures 3, 4 and 5 present a graphical comparison of the
fields for Run E, in the three principal Cartesian planes.
The upper left panel of each figure shows the modulus of
the electric field as computed using the analytic solution,
while the lower left panel shows the associated current
density. The right-hand panels depict the voxel-wise dif-
ference of the absolute values of the analytically and nu-
metically calculated results. It is evident that although
the individual errors can be fairly large (for example, of
the order of 25% in the z = 0 plane of Figure 3, and 10%
in the ¥ = 0 and x = 0 planes of Figures 4 and 5 respec-
tively), they are almost entirely confined to the surface of
the sphere. In the analytic solution, the surface fields are
tangential to the sphere, whereas in the staircased numer-
ical approximation, they are essentially confined to the
voxel edges. It may be noted that the conducting edge-
based path length between nodes at opposite vertices of a
given face (voxel) is a factor of v/2 = 1.414 (v/3 = 1.732)
times greater than the corresponding hypotenuse. This
effectively changes the various resistances in the numeri-
cal model relative to the analytic one. The larger surface
errors are therefore perhaps not too surprising. Notice-
able differences also occur near the z-axis, where the dis-
crete conductivity values inherent in the numerical model
most poorly approximate the true distribution.

Analogous illustrations of the fields for the 2n-periodic
conductivity distribution of Run B are presented in Fig-
ures 6 through 8. The error pattern is similar to those
observed in Run E, again being largely confined to the
surface of the conductor.

To further quantify the agreement between results com-
puted by the two methods, a set of scalar comparison
descriptors is provided for the five runs in Tables II
through VI. All measures are taken solely over conduct-
ing voxels. The scalar descriptors include the voxel-wise
correlation (“cor.”) between the enalytical and numeri-
cal fields. In addition, for each method, the global mini-
mum (“min.”), maximum (“max.”} and average (“avg.”)
values are tabulated, as well as the standard deviation
(“var.”). The latter is included purely as an indicator
of the variation in a given field, not as a statistical mea-
sure. These four indicators are tabulated for the analyt-
ical (“A”) results and for the numerical (“N”) compu-
tations, as well as to the voxel-wise difference (analytical
minus numerical, labelled “A”) fields. Finally, these com-



| Run | A B C D E |
P 2 1 2 2 2
A 3.00 1.50 2.00 0.35 1.61
7o (Sm™7) 0.20 0.22 0.14 0.71 0.20
Trnin (S ) 0.01 0.05 0.02 0.50 0.04
Cmax (M) 4.02 1.00 1.00 1.00 1.00
Contrast 403.43 20.09 54.60 2.00 25.00
a 0.50 0.50 0.25 0.50 0.50
N 100 100 100 100 150
Nodes(total) 1092727 1092727 1092727 1092727 3581577
Nodes(active) | 547865 547865 547865 547865 1822023

Table I: Parameters used for the five comparison runs.

parisons were performed for each Cartesian component
and magnitude of the electric field and current density
distributions. Electric field and current density values are
in Vm~! and Am~2 respectively. In all cases, excitation
is by a vertical 1-T, 60-Hz uniform magnetic field.

Table II details the comparisons between the numeri-
cal and analytical calculations for the high-contrast -
periodic conductivity distribution of Run A. The com-
parisons appear to be worse in the pointwise comparators
(maximum and minimum}. For example, the worst agree-
ment is in the z component of the electric field. However,
the agreement is somewhat better (about 11%) for the
dominant peak values of the y-component (which is re-
quired to drive the circumferential current flow through
the conductivity minima at ¢ = 0,=%w), and the error
in the peak field amplitude is about 13%. This is not
surprising — the numerical electric fields are derived in
part from the conduction potential, which is generated
iteratively as the solution of a global set of linear equa-
tions. The solution minimizes the residual over all nodes,
and the larger numerical values may be expected to affect
smaller ones. There are also large discrepancies evident in
the difference comparators. Similar remarks apply to the
current density, although the agreement is slightly better.
For example, the error in the maximum current density
amplitude is about 8.6%. Note that the peak current den-
sities appear in the z-component and are associated with
the conductivity maxima.

The agreement is markedly better in the global field com-
parators. For example, the average and standard devia-
tion differ in only the third significant digit for both the
electric and current density fields. The three-dimensional
correlation coefficients for the electric field and current
density amplitudes between the two methods are 99.977%
and 09.948% respectively. The poorest per-component
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electric correlation coefficient of 98.911% is obtained for
the vertical electric field (which is entirely absent in the
uniformly conducting sphere model).

Similar comments generally apply to the remaining four
runs. There are perhaps only two features worthy of fur-
ther explicit comment. The first concerns the poor corre-
lations (= 85%) for the vertical electric field and current
density components in Run D as indicated in Table V.
This run has a very low (2 : 1) conductivity contrast, and
the vertical components are small (about 4%) compared
to the peak magnitudes. Evidently, the vertical numetri-
cal fields are somewhat affected by the larger horizontal
values in the iterative solution. Nevertheless, the global
field comparators still indicate excellent agreement be-
tween the two methods. The second point concerns the
effect of higher resolution on the numerical solution in
Run E and Table VI, The addition of 50% more voxels
along each axis leads to over 3 times as many unknowns
in the linear system. The global comparators are per-
haps only slightly better than for the other four runs.
The peak values are not generally better-matched, and
the effects of the staircasing approximation to the sphere
surface still dominate the peak errors. Further improve-
ment in the agreement would require the use of conformal
meshing [12], for example, at the cost of additional coding
complexity.

4 Closing Remarks

This paper has presented a rigorous comparison between
fully three-dimensional extremely low-frequency electro-
magnetic fields calculated by a scalar potential finite-
difference numerical code and an analytical solution. The
model, consisting of an equatorially stratified sphere im-
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Figure 3: Field cross sections in the plane

z=0 for Run E (where p = 2). Figure 4: Field cross sections in the plane

y = 0 for Run E.
Field : B, E, E, [E|
Cor. (% 99.752 99.972  98.911  99.977 -
- (%) Field : E. E, Ex {E|
Min. -51.27  -200.67  -27.34 0.0 Cor. (%) | 99.930 99964 98.726 99.973
Max. 51.27 250.67 27.34  250.68 Min 2 9'1 = 14'1 o8 1' -
A Avg. 0.00 0.00 0.00  35.78 Max. —91‘29 B 66.2 —15.88 0-00
Var. 14.28 65.65 5.10 57.09 A Av 0.00 17 gz 12 zi lzi gg
Min. 94,27 =278.01 -35.76 0.00 Vaf- 26'79 “39'15 3'60 39' o
Max. 94,27 277.86 35.76  283.32 Mi - 114‘65 174'31 21-53 =
mn. — . - . —21. K
N Ave. 0.00 —0.02 0.00 35.71 M 114.66 8134 0.00
Var, 14,28 65.54 5,12 57.01 N Aax. 0‘00 17‘89 2;':2 1;:'3
- vVE. . —17. B .
Min. —64.67 -73.66 —29.02 —61.05 Vaf 26.74 39.08 262 39,53
Max. 64.67 73.75 29.02 57.93 i - 39'88 45'33 - -
11T, —39. —45. —18. —38.
A Avg. ¢.00 0.02 0.00 0.06 Max 39.88 4 18.89 38.24
Var. 1.01 1.56 0.75 1.44 ) ’ 36.43 18.89 36.44
- A Avg. 0.00 —0.03 0.00 0.05
CF“*ld 9’ s Jy I Wi Var. 1.00 115 0.58 1.19
or. (% 99.889 99.924  99.043 99,948 -
: (%) Field : Jr J, Jy J|
Min, —lsz12  -63.58  -24.72 0.00 Cor. (%) 99.927 99.926  98.589  99.957
Max. 152.12 53.58 2472 152.13 Mi = 3'1 P 36 P ;; " G'JOO
1. -31, —30. —6. .
A Avg, 0.00 0.00 0.00 10.42 M 31.88 65.85 6.4 65.07
Var. 16.73 14.54 3.06 19.80
- A Avg, 0.00 0.60 0.00 7.54
Min. —160.95 —-61.12 —26.28 0.00 Var g.o7 16.39 13 10.98
Max. 160.94 61.11 26.27  164.85 M - 40'07 30'03 8'95 0'00
N Ave. 9.00 0.00 0.00 10.40 M::c' _40I07 _79-92 _8-95 81-55
Var. 16.65 14.54 3.05 19.74 ‘ . : : :
. N Avg. 0.00 0.00 0.00 7.53
Min. -46.60  —42.60 —1B.38 —37.58
Var. 8.26 10.36 1.14 10.96
Max. 46.62 42.61 18.37 35.82 Min 12 T on oo ey
A Ave. 0.00 0.00 0.00 0.02 Ma.x. _19‘12 _21'67 _8'78 _16'91
Var. 0.79 0.57 (.42 0.72 : : ’ : '
A Avg. 0.00 0.00 0.00 0.01
Var. 0.32 0.40 0.19 0.39

Table II: Electric field (top) and current

density (bottom) comparisons for Run A. Table TII: As Table II, but for Run B.
See the text for further information.
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Figure 5: Field cross sections in the plane

Figure 6: Field cross sections in the plane

z =0 for Run E. 2z =0 for Run B {where p = 1).

Field : E. E, fol (E| Field : E. E, E, |E|

Cor. (%) | 99.735 99.968  08.624  99.974 Cor. (%) | 99.926  90.0953 84.008  99.066

Min. —26.76 —98.59 —10.27 0.00 Min. —80.04 —109.42 —4.09 0.00

Max 26.76 98.59 10.27 98.60 Max. 80.04 109.42 4.09  109.43

A Avg 0.00 0.00 0.00 16.39 A Avg, 0.00 0.00 0.00 27.62
Var. 6.68 28.49 2.00 24.32 Var. 24.75 34.90 0.84 32.69

Min —38.84 —115.43 —14.43 0.00 Min. —99.07 —134.93 —15.33 0.00

Max 38.84 115.42 14.43  117.65 Max. 99.08 134.93 15.33  137.58

N Avg 0.00 0.00 0.00 16.36 N Avg. 0.00 0.00 0.00 27.57
Var. 6.68 28.44 2.02 24.28 Var. 24.70 34.83 0.99 32.62

Min. ~26.63 -30.49 ~12.15 -25.31 Min. -31.19 -35.74 ~14.63 -20.75

Max 26.63 30.50 12.15 23.97 Max. 31.20 35.75 14.63 28.36

A Avg 0.00 0.00 .00 0.03 A Avg. 0.00 0.00 0.00 0.05
Var. 0.47 0.71 0.33 0.66 Var. 0.95 1.07 0.52 1.12

Field : Jo J, J, [J Field : Je Iy Je [J

Cor. (%) | 99.891 99.927 98.902  99.948 Cor. (%) | 99.935 99.947  B5.148  99.964
Min. —22.49 ~7.18 ~3.11 0.00 Min. —79.54  —54.89 -3.01 0.00

Max 22.49 7.18 . 22.50 Max. 79.54 54.89 3.01 79.78

A Avg 0.00 0.00 0.00 2.12 A Avg. 0.00 0.00 0.00 19.17
Var. 2.91 2.48 0.46 3.22 Var. 20.85 20.81 0.60 22.38

Min. —25.21 —9.23 —3.46 0.00 Min —97.48 —68.56 —10.08 0.00

Max 25.21 9.23 3.46 25.78 Max. 97.49 68.57 10.08 99.45

N Avg 0.00 0.00 0.00 2.11 N Avg. 0.00 0.00 0.00 19.14
Var. 2.90 2.48 0.46 3.21 Var. 20.81 20.77 0.70 22.34

Min. —7.12 —6.41 —-2.83 —5.79 Min —26.16 —22.95 ~10.69 —21.69

Max 7.12 6.41 2.83 5.50 Max. 26.15 22.95 10.69 20.63

fay Avg 0.00 0.00 0.00 0.00 A Avg. 0.00 0.00 0.00 0.03
Var. 0.14 0.09 0.07 0.12 Var. 0.75 0.68 0.37 0.79

Table IV: As Table II, but for Run C.
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Table V: As Table II, but for Run D.
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Figure 7: Field cross sections in the plane

y = 0 for Run B.

Field : E. B, E, (B

Cor. (%) | 99.863  99.978 98.853  90.081

Min. -55.12 —176.58 —17.37 0.00

Max. 55.12 176.58 17.37  176.59

A Avg. 0.00 0.00 0.00 32.00
Var. 14.31 53.19 3.45 44.97

Min —-72.51 —214.41 ~26.73 0.00

Max. 72.51 214.39 26.73  218.18

N Avg, 0.00 0.00 0.00 31.97
Var. 14.29 53.14 3.47 44.93

Min —50.21 -54.69 —24.24 —47.80

Max. 50.21 54.70 24.24 45.31

A Avg, 0.00 0.00 0.00 0.03
Var. 0.75 1.12 0.52 1.07

Field : Ja J, Ja [J]

Cor. {%) [ 920.930  99.957 99.124 _ 99.066
Min. —49.91 -15.45 —6.12 0.00

Max 49.91 15.45 6.12 49.91

A Avg. 0.00 0.00 0.00 5.69
Var. 7.16 6.31 0.98 7.72

Min —59.22 —20.13 -7.79 0.00

Max. 59,22 20.13 .79 60.34

N Avg. 0.00 0.00 0.00 5.68
Var. 7.14 6.31 0.98 7.71

Min. ~15.43 —14.60 —-6.96 —13.54

Max. 15.43 14.60 6.97 12.69

A Avg. 0.00 0.00 0.00 0.01
Var. 0.27 0.19 0.13 0.25

Table VI: As Table II, but for Run E.

80

1 Y
10

Vm-1

IEl (ana) IEl (ana - num) V"

0.5

z (m)

-0.5

I} (ana} Am-2

0.5
z (m) 0
0 {15
10
5
-0.5 0 e
-0.5 0 0.5 -05 0 0.5
. y {m) ¥ (m) )

Figure 8: Field cross sections in the plane
z =0 for Run B.

mersed in an axial quasi-uniform magnetic field, has a
complex field pattern with a curved vortex system as-
sociated with each conductivity maximum. In particular,
significant vertical fields can occur, in contrast to the uni-
formly conducting case. It has been shown that the nu-
merical solution generally provides excellent global agree-
ment, apart from significant discrepancies at the sphere
boundary. Here the staircasing approximation inherent in
the Cartesian-coordinate-based numerical code provides a
poor representation to the true tangential current paths,
and so leads to the observed errors.
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