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ABSTRACT. Measured radar cross-sectionfRCS) data as a
function of the angle of incidence and of the fregquency
over a wide range provide an excellent basis for code
validation. This paper examines the RCS of six targets
measured as a function of the angle of incidence of the
plane wave, and of the frequency, through and beyond the
resonance range of target size. The RCS is presented as a
function of frequency and incidence angle using a color
contour map in a polar format, with the radius
proportional to the frequency. Such polar contour maps
exhibit striking patterns. This paper relates such patierns
to the underlying scattering mechanisms and target
geometry. The RCS as a function of incidence angle and
Jfrequency is available from the authors for an extensive
collection of targets.

1. INTRODUCTION

Developers of new compuier codes in computational
electromagnetics carry out “code validation”, in which
computations are compared with reference data, both to
demonstrate how accurately the code can solve a given
problem, and 1o identify requirements of the code, such as
the minimum number of elements per wavelength distance.
In the literature, scattering codes are ofien validated by
comparing monostatic or bistatic scatter patterns with
measurements at a single frequency. A thorough
evaluation of a computer code includes comparisons over a
wide frequency range, to try to establish the limits of the
validity of the code[1].

The open literature makes available the RCS as a function
of frequency for only a few targets, such as a square plate
from 0.25A 10 1.1 4 in size[2], a metallic strip 0.53 4 tall
and from 0.5A to 1.3 A in length[3], a metallic cube from
0.1A4 to 3.7A in size[4], each for only one angle of
incidence. OQur initial RCS measurements extended this set
of “canonical” targets to include metallic strips and rods,
over a 9 10 1 frequency range, for one or two individual
angles of incidence such as broadside or end-on[5], for the
validation of computations by wire-grid modeling and by
the fnite-difference time-domain method[6]. We then
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undertook to build a data base of measured radar cross-
sections for over a hundred shapes, including discs, right-
circular cones, cone-spheres, ellipsoids, pyramids, and
simplified aircraft and ships[7]. For each target the RCS
has been measured over a 9 to 1 frequency range, at one
degree angle steps over 360 degrees when there is no axis
of symmetry, or 180 degrees when there is one symmetry
axis, and so forth. The measured RCS as a function of both
frequency and incidence angle permits both the comparison
of the measured RCS with the computed RCS as a function
of frequency at a given incidence angle, and the traditional
comparison as a function of incidence angle at a given
frequency, and so provides a comprehensive set of reference
data for code validation for that target for plane wave
incidence in one plane.

This paper presents the RCS of six of the targets in our data
base. By graphing the RCS vs. frequency and angle as a
color contour map in a polar format[8], intriguing patterns
of maxima and minima are seen. This paper lends insight
into these patterns by relating them to the scattering
mechanisms of the target. Our measured RCS data may
present a challenge to others to demonstrate that their
computer codes can accuraiely predict the scattering
mechanisms suggested by our simple analysis.

1.1 Measured RCS

The scattered field is measured at the David Florida
Laboratory in a 6 by 6 by 6 m anechoic chamber, using the
setup shown in Fig. 1. The target is mounted on a
styrofoam column on a rotator which can turn the target for
0<6<360 degrees. The target is illuminated by a
transmit horn and the scattered field measured by a receive
horn. Hence the bistatic scattered field at a fixed range
distance is measured. This section defines the bistatic,
finite-range “radar cross-section” as graphed in this paper,
and discusses its relationship to the true, monostatic RCS.

The transmit horn in Fig. 1 illuminates the target with a
spherical wave of amplitude E; evaluated at the centre of
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Fig. 1 The geometry of the measurement setup.

rotation. The target scatters field back to the receive horn,
which measures field strength E,, where the “t” subscript

stands for or “target”. The bistatic, finite range RCS,
which we will also call the “measured RCS™, is defined by
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in dB, and depends on the homn separation A, the
measurement range R, the angle of incidence, and the
frequency. The calibration procedure for the measurement
setup extracts E, from three voltages measured by the
network analyzer: V|, with the target on the support
column; V, with a reference sphere on the support column,
namely an 50.8 mm, highiy-polished steel ball-bearing; and
V, with nothing on the support column, representing the
scattered field of the support column plus the residual
scattered field of the anechoic chamber. Assuming that the
target does not interact with the support column, the
column-plus-room contribution can simply be subtracted.
The “target response” is the difference at each frequency
between the response with the target on the column, and
that with nothing on the column, V, =V, -V,. Similarly,
the “sphere response” is the difference between the
response with the sphere on the column, and that with
nothing on the column, V, =V, —V,. The scattered field at
the location of the receive horn is proportional to the
received voliage, hence for the target, E, =CV,, and for the
sphere, E,=CV,, where C is a complex-valued,
frequency-dependent constant accounting for the gains of
the horns, the losses and phase shifts in the cables, and so
forth. To find the value of C we evaluate the scattered field
of the sphere E, = E,;, using the Mie[9] series for plane
wave scattering from a perfectly-conducting sphere, with

RCS(R.,h,0,f)= IOIOg[ (D)
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the appropriate bistatic angle, Then C = E,;, /V; and the
scattered field of the target is

E, = (ZMey, e

¥

In using the Mie series for plane wave scattering from a
sphere we are assuming that the measurement setup
satisfies “far field” conditions, and we may be introducing a
systematic error. Also we assume that the sphere is
perfectly-conducting, which may not be appropriate for a
steel sphere. Equations (1) and (2) define the “measured
RCS” as graphed in this paper.

1.2 Geometric Error

The relationship between the “measured RCS™ of Eqn. (1),
based on the bistatic scattered fieid at finite range, and the
true monostatic RCS is a complex one. Part of the
difference between our measured RCS and the monostatic
RCS is due to the bistatic, finite-range geometry, and we
wilt call this the “geometric error”, and part due to other
sources of error[10]. True RCS measurement requires an
incident plane wave, for which the field amplitude does not
change with distance traveled, and for which the phase is
constant in planes perpendicular to the direction of ravel.
In the measurement setup, the incident wave is spherical
and so the illuminating field strength varies as inverse
distance. Hence the part of the target nearest the horns is
more strongly illuminated than that farthest from the homns.
Also, the phase of the illuminating field is not vniform in
plancs perpendicular to the direction of propagation. And,
the distances from various parts of the target to the receive
horn differ from those associated with backscatiered field,
which alters the phase relationship of the scattered fields at
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Fig. 2 The relative sizes of the six targets, and their orientations in the coordinate system.

Table 1
The dimensions of each target, and the range distance and bistatic angle of the measurement.
Target Dimensions Polarization Bistatic Range D f
mm angle m mm max
degrees GHz
thin strip 63.6x6.36x0.32 vertical 83 1.2 63.9 44.1
large rod 177.8x71.1x71.1 horizontal 3.0 3.35 243 120
large cone 80.5 min base diameter horizontal 7.7 1.295 153.0 83
147.6 mm length
cone-sphere 25.3 mm sphere diameter horizontal 82 1.217 501 72.7
50.1 mm overall length
thick disk 100.9 mm diameter horizontal and 7.7 1.295 1029 183
20.4 mm thickness vertical
small cone 20 8 mm base diameter vertical 8.3 1.2 23.3 202.7
17.85 mm length
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cirghe.
the bocatbom of the roecewer, All these differences
combribule Lo the goometic s,

If I¥ is the maximom disgooal dimension of the target, then
if R and R>=h, the measurcment sefup approaches
the conditions for moncstatic RCS measarement, wnd we
gapect that the peometric erroe will be “amall”.  The
commonly-accepted  “ruleof-thumb™  for  choosing o
sullickently large range ® to control the geomdotric crror
is[101]

20t
R . =

3}

where A is the wavelength. Maore elaborate minimum-
mange conditions are reviewed in [11]. Hence for a given
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targel qize [ and ranpe R, the maximum frequency at
which the rule-af-thumb is witisfied i

R
f =2

where ¢ is the frec-space speed of light, Boco the mole-ol-
thumb of Hgn, (3) does not provide an csimate of the
FerHpelnic error in the ROS at thal range.

LY

Bel, 112 discosscs the geomefric error as follows, At a
lrequency and anple of incidence where the RCS has 8
maximum, small differences in the soength of e
{umination and in the phase of the ilumination of varios
scaltering comters oo the wrgetl, and small path differences
back [rom (he scatiering conbers o the receive horn, can be
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Fig, 4 The RCS of the large rod of Fig. 2(b) over ooe quadrant of the xy plane, for horizontal polarization, with the eleciic

field vector parallel oo the xy planc,

onimpertant, and the eeror in the measured RCE compared
to the monostatic BRCS can be small. Howewer minima io
the RCS arize dee o cancellation of the scattered fHeld from
various parts of the targed, and then small differences in the
strength and phase of the illumination, and in the path
lengths back to the receive hom, can lead to very large
errors in the ROCS.  Hence the geometric error in the RS
maxima can be small bot that in the BCS mmima large.
Ref, [12] provides a tool for choosing the messurement
range & and horn separation & o limit the geometric errar
to @ prosct maximum over 4 chosen range of RCS values
below the maximum RCS.

The measured RCS contains other crrors as well, associated
with the signal-fo-noise ratio, with the Ume-gaLing
measurement method[10], with targed alignment, and 50
forth[10,12]. We do not have a guantitative estimate of
these errors in our measurements at this ime. Dybdal[10]
estimates the maximum achievable absolute accuracy in
RS measuresnent undes carefully-controlled conditions as
0.5 48,
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For eode validalion porposts, comparisons of compulations
ol the monostatic RCS against o meaqmed ECS are
approiimate.  Such comparisons will lead w0 good
apregoent in the KCS maximg, and differences in the
moinima. TTis is iliusteated in Kef, [3], which coooparas the
mensored BOCS of Eqn, (3) for the strip targes of Fig. 2{a)
with the computed monostatic KCS, from 2 to 18 GHz,
The range and angle are given for the strip in lable 1.
Excellent agreement is seen in Ref. [5] in the RCS maxima.
However, the sharp, deep minima ditfer between the
measurament and compatation.

To make the best use of our measored bistatic, Hnite-range
RCS data for code walidation, the measurement sstup of
Fig. 1 should be simolated in the compotanon,  This is
easily done by locating & point soorce a1 the positon of the
faed horn, and compating the scatlerad leld ar the location
of the receive hom, Then the measured and compated
seattepad felds correspond to the same gecnetry, preadly
increasing the valoe of the comparison.
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Fig. 5 The RCS of the large cone of Fig. 2(c) for horizontal polarization. outer circle.

1.3 Six Targets

Fig. 2 shows the set of six targets which will be discussed
in this paper. Table 1 lists the range R and bistatic angle &
used in the measurement of the scattered field for each
target. In all cases the horn separation is 17.46 cm, and the
bistatic angle is & =2tan™ (k/(2R)). The measured data
in this paper was taken from 2 to 18 GHz. Table 1 lists the
maximum frequency from Eqn. (4) at which the “rule-of-
thumb” of Eqn. (3) is satisfied. The measured data for the
strip, the cone-sphere, the thick disk and the small cone
targets satisfy Eqn. (3) to beyond 18 GHz, but for the large
rod and the large cone the range is too short.

Fig. 2 shows the shapes and relative sizes of the targets
which will be studied in this paper. The figure shows two
views of each target, in an xy plane at the top, and in an xz
plane at the bottom. All six targets in Fig. 2 are metallic.
The targets are: (a) a thin strip, of length 10 times its
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height; (b) a large rod of square cross-section; (c) a large
right-circular cone; (d) a small cone-sphere; (e) a thick
disk; and (f) a small cone. Table 1 gives the dimensions of
each target. Fig. 2 shows the orientation of each target
relative to the xyz coordinate system corresponding to the
measurement setup in Fig. 1. In Table 1, “vertical
polarization” has the electric field vector parallel to the z
axis, and “horizontal polarization” has the electric field in
a plane parallel to the xy plane.

1.4 Polar Color Maps

Figs. 3 to 8 show “polar color maps” of the RCS of each
target in dB relative to the square metre. The angle axis
corresponds to the angle of incidence @ on the target, with
the x direction oriented toward the right and the y direction
pointing upward. Radial distance from the center of the
graph is proportional to the frequency f . To preserve the
geometric relationships discussed later in this paper, the
center of the polar axes must correspond to zero frequency.
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Fig. 6 The RCS of the cone-sphere of Fig. 2(d) for horizontal polarizat.ion'.

In the polar axes in Figs. 3 to 8, the inner circle
corresponds to 2 GHz, and the frequency increases linearly
with radius to 18 GHz on the outer circle. Each point
(f,6) between. the inner and outer circle represents a

unique frequency and incidence angle. The rectangular
coordinates of point (f,8) will be denoted using (u,v),

where u= fcos@ and v=fsin@ have the units of

frequency.

The RCS could be graphed as a conventional contour map
using solid lines to show RCS contours at specified levels,
say 3 dB apart. Contour lines can be drawn in color, with
colors corresponding systematically to levels of RCS
contours, making the regions of high and of low RCS easier
to distinguish. By filling the regions between contours with
color, we obtain a “color contour map”, which reveals
patterns in the RCS more boldly than do simple contour
lines. Such a map is constructed by assigning a color to
each range of RCS o ; thus color #k is used to plot RCS
values in a range 0,_; <0 <0, . Various color scales were
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discussed in Ref. [8]. The RCS at each pixel location is
interpolated from the measured data near that frequency
and incidence angle, then each pixel is assigned a color
according to the RCS value. If only 16 colors are used,
then the changes in color are clearly seen as curves of
constant RCS at levels ¢, . When the number of colors is

increased to about 200, the color appears to vary
continuously, as shown in Figs. 3 to 8. These figures were
made using program POLPLOT, which was written to
display RCS and other data in the polar color map format.
POLPLOT for Microsoft Windows is available from the
authors at no charge.

Figures 3 to 8 show some remarkable geometric patterns.
Figs. 3, 4, and 7 show distinct straight bands of maximum
and minimum RCS. Figs. 4 and 5 show sets of dark bands,
delineating a pattern of bright dots. Fig. 6 shows
hyperbolas. Figs. 7(b) and 8 show parts of ellipses. In the
following we will identify simple scattering mechanisms
that give rise to these features. To understand the patterns
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Fig. 7(a) The RCS of the thick disk of Fig. 2(e) for horizontal polarization.

seen in the figures, and associate them with target
scattering mechanisms, it will be sufficient to assess the
backscattered field due to an incident plane wave, rather
than analyze the more complex measurement geometry of
Fig. 1.

2. INTERFERENCE OF POINT SOURCES

Many of the targets of Fig. 2 scatter by diffraction from
points on edges or from tips. This section shows that
interference of the scattered fields from two point sources
leads to a set of parallel lines of maximum and minimum
RCS on a contour map in polar format.

Fig. 9 shows a plane wave traveling parallel to the xy plane
in direction @ to the x axis. The plane wave scatters from
two diffraction points, such as points on edges. In Fig. 9,
the diffraction points are located on the x axis, separated by
distance d. The observer is at a distant point in the xy
plane in the backscatter direction. The round trip path
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length from the observer to point #1 and back to the
observer is L, and that to and from point #2 is L,. The

difference between the path lengths is
L,—L, =2dcos@ ..(5)

Let o; and a, be the phase changes associated with the
diffraction process at source #1 and source #2, respectively.
Then if the plane wave has zero phase at the observer, the
phase of the diffracted field due to source #1 is a; — kL,
and to source #2, a, —kL,, where k =2nf /c is the wave

number and c¢ is the speed of light. There will be an RCS
maximum when the phase difference between the diffracted
fields at the observer is —2mm, where n is an integer,
positive, zero, or negative. Thus there will be an RCS
maximum when

~k(Ly ~ L) +(0, ) = ~2mn .(6)
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Fig. 7(b) The RCS of the thick disk of Fig. 2(e) for vertical polarization.

Equations. (5) and (6) can be rearranged to show that
contours of maximum RCS satisfy

=_c 0 —0
fcos&«-zd(n+ Y ] D

The results presented in the following indicate that the
phase changes associated with the diffraction process, o
and «,, are reasonably constant with frequency and

incidence angle. If (u,v) gives the location of a point on a
polar contour map, then u= fcos@, and Eqn. (7) states

that the curves of maximum RCS have constant u, that is,

are straight lines parallel to the v axis. The lines of
maximum RCS are at positions
¢ o —0
=— .8
=2 [” o J ®
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The spacing of these lines is given by

¢
Au=u,,+1-u,,:ﬁ .+-(9)

Note that curves of minimum RCS satisfy Eqn. (6) with the
right-hand side replaced by —2mn—m, hence lead to
vertical straight lines with the same spacing as the lines of
maximum RCS. The spacing of these lines of minimum or
maximum RCS provides a convenient comparison with the
measured data because it is independent of a; and ;.
The following demonstrates lines of maximum and
minimum RCS for the strip, the large rod, and the right
circular cone.

2.1 The Thin Strip

The thin metallic strip of Fig. 2(a) has length 63.6 mm,
width 6.36 mm, and thickness 0.32 mm. The strip lies in
the xz plane with the long dimension parallel to the x axis.
The RCS was measured with the incident electric field
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Fig. 8 The RCS of the small cone of Fig. 2(f) for vertical polarization.

parallel to the z axis, that is, with “vertical polarization”.
The RCS was measured from 2 to 18 GHz, for angles of
incidence from 6=0 or “end-on” through =90 or
“broadside”, all the way around back to 8 =0, to obtain
the polar color map of Fig. 3. The maxima in the RCS
show a striking pattern of bright vertical bands, separated
by dark bands of minimum RCS. For end-on incidence, the
frequencies at which the maxima fall in Fig. 3 can be read
from their intersections with the horizontal axis, to obtain
34, 5.8, 8.2, 10.6, 13.0 and 15.4 GHz, spaced 2.4 GHz
apart. The largest maximum in Fig. 3 falls on the vertical
axis, for 8 =90 degrees or “broadside” incidence, and is
due to specular reflection from the face of the strip.

The bands in Fig. 3 are readily explained by ignoring the
thickness of the strip, and considering interference between
the fields diffracted from the two ends of the strip. For a
plane wave incident in the xy plane and an observer located
at any finite distance in the backscatter direction, there is
only one point on the leading edge of the strip and only one
point on the trailing edge that satisfy the law of
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diffraction[9]. The scattering geometry is that of Fig. 9
with d=63.6 mm, so we expect the maxima in the RCS to
fall along vertical lines spaced according to Eqn. (9) by
¢/(2d)=2.36 GHz, close to the 2.4 GHz spacing seen in Fig.
3.

We can estimate the phase change associated with
diffraction at the leading end and trailing end of the strip
using the wedge diffraction coefficients given in Ref. [9].
Thus considering the ends of the strip to be wedges of angle
zero degrees, we can evaluate the phase of the soft
diffraction coefficient D, , for backscatter with the angle of
incidence equal to the angle of diffraction. For the leading
end we obtain o; =37/4 and for the trailing end
o, =—x/4, and so a,—0; =—n. Evaluating Eqn. (8)
with d=63.6 mm obtains maxima at 1.2, 3.5, 5.9, 8.3, 10.6,
13.0, 15.3 and 17.7 GHz, quite close to the values of 3.4,
5.8,8.2, 10.6, 13.0 and 15.4 GHz, read from Fig. 3.
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Fig. 9 Two scattering points separated by distance 4, showing the path lengths L; and L.

If there were no specular reflection, we would expect to see
bands of maximum RCS in Fig. 3 intersecting the
horizontal axis at ¥ =+12 GHz, separated by a minimum
at u=0 on the vertical axis. Specular reflection merges
these two bands into a single wide band centered on the
vertical axis, It is interesting to note in Fig. 3 that this
bright band of specular reflection has a constant width as
distance from the center of the graph increases, that is, as
the frequency f increases. This is consistent with the fact
that the angular width A8 of a lobe due 1o specular
reflection is inversely proportional to the frequency{9],
ABoc1/ f . The arc width of the reflection on the polar
map, As= fA@, becomes constant when A8 is

proportional to 1/f, and this is clearly seen in Fig. 3.
2.2 The Large Rod

Fig. 2(b) shows a metallic rod of length 177.8 mm and
square cross-section of size 71.1 mm. The red is oriented
with its edges parallel to the coordinate axes, and the long
axis parallel to the x direction. The RCS was measured
with the incident electric field horizontally poiarized, that
is, with the electric field vector parallel to the xy plane in
Fig. 2. Fig. 4 shows the polar color map of the RCS of the
rod in the first quadrant. We see a pattern of vertical dark
bands of minimum RCS intersecting a pattern of horizontal
dark bands, with the vertical bands more closely spaced
than the horizontal. There is a third set of parallel dark
bands oriented obliquely. The three sets of dark bands
define a pattern of bright dots of maximam RCS. The
spacing of the bands can be read directly from the color
map with the aid of a ruler, dividers, and a calculator. The
vertical bands are spaced by 0.842 GHz, the horizontal
bands by 2.00 GHz, and the oblique bands by 0.776 GHz.,
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‘We can understand the scattered field of the rod as arising
from diffraction from the three z-directed edges exposed to
the plane wave for any direction of incidence. The
diffraction points on two adjacent edges spaced by the
length of the rod lead to a set of equally-spaced dark
vertical bands of minimum RCS on the polar color map,
with the expected spacing given by ¢f2d = 300/(2 x 177.8)=
0.844 GHz, close to the value of 0.842 GHz read from Fig,
4. The two adjacent edges spaced by the width of the rod
give rise to a set of dark bands of RCS parallel to the
horizontal axis, spaced by ¢/24=300/(2 x 71.1)=2.11 GHz.
The third pair of edges are diagonally opposite one another,
and are spaced by 191.5 mm. These produce the oblique
set of bands, spaced by ¢/2d=300/(2 x 191.5)=0.783 GHz,
close to the value of 0.776 GHz seen in Fig. 4. The tli of
this set of bands is expected to be at an angle of

tan~(1778/711)=68 degrees o the horizontal, and
agrees guite well with the color map. The bright dots in the
pattem have the same relative proportions as the target.

2.3 The Cone for Horizontal Polarization

The cone of Fig. 2(c) has a half angle of 15.26 degrees and
the diameter of the base is 80.5 mm. The long axis of the
cone lies along the x axis, with the tip pointing in the +x
direction. The cone length from the tip to the ceater of the
base is 147.6 mm, and the “side length” from the tip to the
edge of the base is 153.0 mm, The RCS was measured with
horizontal polarization from 2 to 18 GHz over a full 360
degrees and is plotted as a polar color map in Fig, 5. The
figure shows a maximum return for @ =180 degrees, due
to specular reflection when the plane wave is normally
incident on the flat base of the cone. The RCS is also large
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Fig. 10 The cone-sphere, showing the path lengths L, and L, for an incidence angle in the

second quadrant.

along the bands oriented at +7.5 degrees 1o the positive x
axis, looking perpendicular to the surface of the cone.

For incidence angles near zero degrees, the color map of
Fig. 5 shows a pattern of horizontal bands of maximum and
minimum RCS, This arises from the interference of the
edge-diffracted fieids from two diametrically-opposite
points on the edge of the base. The two diffraction points
lie in the xy plane ir the coordinates of Fig. 2, and are
separated by 80.5 mm, hence we expect the maxima or the
minima to be spaced by ¢/24=300/(2 x 80.5)=1.86 GHz.
The spacing of the minima near 0 degrees in Fig. 5 can be
read from the color map as roughly 1.7 GHz, reasonably
consistent with the expected value. For incidence angles
greater than 15 degrees, the incident plane wave no longer
“sees” the point on the cone base in the -y half-space, and
the set of bands fades away.

At 75 degrees incidence, the direction of travel of the plane
wave is normal to the surface of the cone and there is a
strong specular return. For angles between about 50 and 90
degrees, Fig. 5 shows a set of parallel bands of maximum
RCS, parallel to the strong return at 75 degrees. From
these incidence angles there is interference in the
backscatter direction between the diffracted field from the
nearest point on the edge of the base and the diffracted field
from the tip. These points are separated by the cone's side
length of 153 mm and so we expect the minima to be
spaced by ¢/2d = 300/(2 x 153)=0.98 GHz. A ruler and
dividers can be used to estimate the spacing of these
minima in Fig. 5 as about 1.03 GHz, consistent with our
expectations.
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For incidence angles between 90 and 165 degrees, the
incident plane wave sees the tip plus the two diffraction
points on the edge of the base. These three scattering
points lead to three sets of intersecting dark bands of
minimum RCS. Diffraction from the two points on the
edge gives rise to a continuation of the set of horizontal
bands spaced by 1.86 GHz that is seen between 0 and 15
degrees incidence. There are two pairs consisting of the tip
plus one of the two diffraction points on the edge.
Diffraction from the tip plus the scattering point on the
edge in the +y half-space gives rise to a set of parallel
bands tilted at an angle of about 15 degrees from the
vertical direction toward the positive horizontal axis in the
color map. This set of dark bands is paraliel to the
direction of the large return at about 75 degrees and is
clearly seen in the 90 to 165 degree angular sector. The tip
plus the diffraction point on the base in the -y half-space
produces a set of parallel bands inclined at 15 degrees from
the vertical direction toward the negative horizontal axis,
and is also clearly seen in the color map. The spacing of
the oblique bands can be read from Fig. 5 as about 1 GHz,
close to the expected value of 0.98 GHz. The three sets of
intersecting dark bands in Fig. 5 define a pattern of bright
dots of maximum RCS similar to that of the rod in Fig. 4.
For incidence angles between 165 and 195 degrees, the Gp
is not seen, as it lies in the shadow of the base. The dot
pattern is replaced by the pattern of horizontal bands
associated with scattering from the two diffraction points
on the edge.
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Fig. 11 Hyperbolas of minimum RCS for the cone-sphere.

3. INTERFERENCE OF A SPHERE
REFLECTION AND A TIP DIFFRACTION

The cone-sphere of Fig. 10 illustrates interference between
reflection from the spherical endcap and diffraciion from
the tip. The cone-sphere is oriented with its axis along the
x-axis. There is no edge at the junction of the cone and the
spherical endcap, that is, the unit-normal to the surface is
continuous in passing from the surface of the cone 1o the
surface of the sphere. In Fig. 10, a plane wave incident on
the cone-sphere in the angular range (90-7)<@
< (180—-7) sees both the surface of the sphere and the tip

of the cone. The difference between the round-trip distance
L, from the observer to the sphere back to the observer,

and L, from the observer to the tip and back, is
Ly— L =2(R—dcos8) (10}

The curves of minimum RCS satisfy
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—k(L, - L)+ (0 — ) = 7t —27m. (11)

hence the RCS is a minimum when

f c ( i1r+a2—a1) (12)

= n+
2(R—dcosd)\ Py

where ¢, is the phase change associated with the reflection
from the surface of the sphere, and @z, with the diffraction

process at the tip of the cone. Egn. (12) defines a set of
hyperbolas[13] having their major axes aligned with the
horizontal axis, such as those shown in Fig. 11. It may be
shown that the crossing points of the hyperbolas with the
negative horizontal axis are given by

+1t+a2—a1]

_ c
u, = 2(d+R)(n oy ...(13)



Hence the crossings of the negative u axis are evenly spaced
with the spacing given by

C

Au= 2d R -..(14)

The spacing of the crossing points provides a convenient
comparison with the measured RCS.

3.1 The Cone-Sphere

The metailic cone-sphere of Fig. 2(d) has a half-angle of
¥ =19.7 degrees, and an overall length of L=50.1 mm. The

diameter of the sphere is 25.3 mm. The distance from the
center of the sphere to the tip of the cone is d=37.45 mm.
The RCS was measured with horizontal polarization from 2
to 18 GHz over an angular range from -30 to 210 degrees
as shown in Fig. 6. The map shows a strong reflection at
an incidence angle of 70 degrees, looking normal to the
cone surface. Also there is strong reflection from about 160
to 200 degrees, looking normal to the surface of the sphere,
over the angular range where the tip of the cone is not
visible. In the left-hand plane in Fig. 6 there is a set of five
sharp bands of minimam RCS, scparated by broad regions
of large RCS.

Fig. 11 shows the set of hyperbolas of minimum RCS
specified by Eqn. (12) for the cone-sphere dimensions of
R=12.65 mm and 4=37.45 mm. In Fig. 11 the radial axis
corresponds to Fig. 6, with zero frequency at the center, 2
GHz at the inner circle, and 18 GHz at the outer. We
expect the reflection from the sphere surface to have a
phase change of a; =n. The phase change associated
with the tip diffraction is more difficult to estimate, and
was simply made equal to zero, o, =0. Comparing Figs.
6 and 11 we see that the dark bands of minimum RCS in
Fig. 6 have the same shape as the hyperbolas of Fig. 11.
There are five hyperbolas in Fig. 6, and five in Fig. 11, in
the negative-u half-space. In Fig. 6, only segments of the
hyperbolas are seen. For 6 <70 degrees the surface of the
cone hides the surface of the sphere, and so there is no
reflection and the hyperbolas are not formed. From 8 =160
to 200 degrees, the tip of the cone is not visible and so the
segments of the hyperbolas that cross the horizontal axis
are not seen. By smoothly joining the portions of the
hyperbolas in the negative half-space with those in the
positive, we can estimate the spacing of the zero crossings
as about 2.9 GHz, in reasonable agreement with the spacing
of 3.0 GHz predicted by Eqn. (14).

Anocther comparison of the position of the hyperbolas in
Figs. 6 and 11 can be made by reading the angles at which
they cross the 18 GHz circle. Thus in Fig. 6, the minima in
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the RCS at 18 GHz occur at about 82, 93, 106, 120 and 138
degrees. In Fig. 11, these crossings fall at 83, 96, 109, 124
and 141 degrees. The alignment of the hyperbolas
predicted by our simple interference theory with those in
the measured RCS is quite good, especially considering that
the phase change o, associated with diffraction at the tip
of the cone was simply set to zero. If we use ¢, = 45

degrees, then the minima at 18 GHz fall at 82, 95, 108, 122
and 138 degrees, in better agreement with the
measurement, and so the phase change associated with tip
diffraction must be closer to 45 degrees than to 0 degrees.

4. INTERFERENCE OF AN EDGE WAVE AND

AN EDGE DIFFRACTION

To analyze the polar color maps of scattering from the thick
disk and the small cone of Fig. 2 parts (¢) and (f), it is
useful to consider a wave which travels around the edge of
the target, called an “edge wave™[14]. Fig. 12 shows a thin
disk in the yz plane, with a plane wave incident nearly
edge-on to the disk. The wave diffracts from the nearest
point on the disk edge, with path length I,. The wave also
diffracts from the disk edge at a point diametrically
opposite, but the path is not shown in Fig. 12. In addition,
the wave couples to the edge of the disk and becomes an
“edge wave”, which travels around the edge, shedding
energy tangentially as it goes. After traveling a distance of
ARk around the edge, the edge wave launches some of its
energy in the backscatter direction. We will show that
interference between the two scattered fields shown in Fig.
12 creates a pattern of ellipses.

4.1 Interference Analysis

Fig. 12 compares the path lengths L, traveled by the wave
diffracted from the edge of the disk, and L, traveled by the

wave that couples to the edge and follows it around a
semicircie. For 0<8 <180 degrees, the difference in path

length is

L,—L =mR+2Rsinf ...(15)
Assuming the wave travels around the edge with the same
phase constant as in free space, these waves will be 180
degrees out of phase in the backscatter direction when Eqn.
(15) is satisfied, leading to curves of minimum RCS which

TG

_ T+0;—a
(r+2sin6)R

- ..(16)
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Fig. 12 A thin disk, showing diffraction from the edge with path length L, , and scattering
by an edge wave which travels around the edge of the disk, with path length L, .

where n=0, +-1, +-2, .... Angles a; and , are phase
changes associated with the scattering process for the edge-
diffracted wave and for the wave that travels around the
edge. For 180<8<360 degrees, we must use the
diffraction point diametrically opposite on the edge, hence
Ly—~L, =nR—-2Rsin8, and the curves of minimum RCS

satisfy

1 ’”"2‘“1] (1D

c
f-(x-ZsinB)R[ T 2g

Equations (16) and (17) can generate both positive and
negative frequencies, depending on the values of n, «; and
a,, but only the positive frequencies are physically
meaningful.

Each of Equations (16) and (17) represents a family of
ellipses, with the major axis aligned along the vertical axis
and one focus at the origin[13]. To illustrate interference
ellipses that arise due to the edge wave, these equations
were graphed using the radius of the base of the small cone
of Fg. 2(f), R=29.8/2=14.9 mm, and using a, =135
degrees, and @, =—136 degrees as explained below. The
set of ellipses so obtained is shown in Fig. 13. Eqgn. (16)
leads to positive and negative frequencies depending on »
and on a,-o; only those ellipses having positive
frequencies are graphed in Fig. 13. The ellipses of Eqn.
(16) were drawn using solid corves in the upper half-space
where Eqn. (15) holds; dashed curves were used in the
lower half-space to show the orientation of the major axis.
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Eqn. (17) leads to the set of ellipses shown with solid
curves in the lower half-space in Fig. 13.

In Fig. 13, the points at which the ellipses cross the vertical
axis have been labeled v;, v,, and so forth. Eqn. (16) is

easily evaluated with 8=90 degrees (o show that if
and ¢, are independent of the frequency, then the spacing
of the crossing points is uniform and is given by

c
(m+2)R

AV=Vyy =V =

...(18)

The thick disk of Fig. 2(e) and the cone of Fig. 2(f), with its
circular-disk base, will be used to illustrate ellipses in RCS
polar color maps.

4.2 The Thick Disk

The disk of Fig. 2(¢) demonstrates the edge wave for
vertical polarization, and its absence for horizontal
polarization. The disk is metallic, of radius R=50.45 mm
and thickness 20.4 mm. The disk was oriented so that its
flat faces lie parallel to the yz plane. The RCS was
measured for both horizontal polarization, Fig. 7(a), and
vertical polarization, Fig. 7(b), from 2 to 18§ GHz. There
are strong similarities between the two cases. In both cases
specular reflection from the face of the disk obtains a very
strong RCS at 8=0 degrees. In both parts of Fig. 7 there
is a set of bands of maximum and of minimum RCS
parallel to the horizontal axis near @=0 degrees. But
near 8 =-90 degrees, which is edge-on incidence to the
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Fig. 13 Ellipses of minimum RCS for the small cone.

disk, the two cases are significantly different. For
horizontal polarization the pattern of parallel straight bands
continues from 8=0 to 6 =-90 degrees. However, for
vertical polarization, part (b), the set of maxima and
minima near 8 =—90 degrees have substantial curvature.
These appear to be segments of ellipses.

The set of horizontal bands near 8=0 degrees for both
polarizations arise due to diffraction from two
diametrically-opposite points on the edge of the disk, where
the disk intersects the xy plane. These points are spaced by
the disk diameter of 4=2R=100.9 mm, and Eqn. (9)
predicts the band spacing to be c/(2d)=300/2 x 100.9)=
1.49 GHz. For horizontal polarization in Fig. 7(a), the
spacing can be read from the figure as 1.46 GHz, close to
the expected value. For horizontal polarization, this
pattern of horizontal bands continues with the same
spacing throughout the whole color map. The pattern is
clearly seen along the 6 =-90 degrees direction from 2 to
about 9 GHz, but the RCS tends to become flat for 8 =90
above 9 GHz. Note that there are two vertically-oriented
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dark bands, at 7.5 and 15 GHz. These arise due to the
thickness of the disk. In addition to the two diffraction
points on the front edge of the disk, there is a third
diffraction point on the back edge. For the pair of points
separated by the disk thickness, we expect an interference
pattern of vertical bands spaced by ¢/2d=300/{(2x 204 )=
7.35 GHz, carresponding to the vertical dark bands seen at
about 7.5 and 15 GHz in Fig. 7(a).

For vertical polarization in Fig. 7(b), we see the parallel
horizontal bands expected near @=0. Near 8=-90
degrees, the edge wave mechanism dominates, and we se¢ 2
family of ellipses. We can read the spacing of the ellipses
from Fig. 7(b) to be about 1.14 GHz, closer than the 1.46
GHz spacing of the pattern of horizontal bands in part (a)
of the figure, The edge wave model predicts ellipses that
cross the vertical axis with a spacing given by Eqn. (18) of
¢/ ((m+2)Ry=300/({x +2)x5045) =116 GHz, about
equal to the value read from Fig. 7(b).



The pattern of ellipses is of greater angular extent at the
low end of the frequency band, being visible from 8 =-90
degrees to angles of -30 or even -20 degrees. As the
frequency increases, the angular extent of the pattern
diminishes, so that near 18 GHz the pattern is clearly seen
only for —-105<8<-75 degrees, 15 degrees away from
edge-on incidence. The pattern of eilipses has an almost
constant arc-length, and is reminiscent of the constant
width of the bright band associated with specular reflection,
discussed above in conjunction with scattering from the
strip.

The pattern of ellipses is sharp along 8 = —90degrees from
2 to about 6 GHz, but becomes increasingly blurred as the
frequency approaches 18 GHz. The edge wave mechanism
is quite frequency dependent, with the wave shedding more
of its energy as it travels around the edge at higher
frequencies. Hence at higher frequencies the wave has less
energy to scatter back in the direction of the incident wave,
and the interference pattesn is iess distinct.

4.3 The Cone for Vertical Polarization

The small metallic cone in Fig. 2(f) has half-angle 39.85
degrees, base diameter 29.8 mm, and length 17.85 mm.
The cone was positioned with its main axis on the x axis.
In this orientation the base of the cone lies in a yz plane,
The RCS was measured with the incident wave vertically
polarized, from 2 to 18 GHz, and is shown in Fig. 8. There
is a strong specular reflection around 8 =180 degrees,
when the wave is normally incident on the cone's base.
There is also a weaker specular reflection from the curved
surface of the cone, near 8 =50 degrees. The pattern of
light and dark bands between 8 =70 degrees and 8 =130
degrees have the elliptical shape characteristic of edge wave
scattering. |

We might expect to see a pattern of horizontal bands near
6 =180 degrees, due to interference of the fields diffracted
from two diametrically opposite points on the cone’s edge.
The expected spacing would be ¢/(2d)=300/(2x29.8) =
5.0 GHz. There is a hint of dark horizontal bands of
minimum RCS intersecting the 18 GHz outer circle at
about 140 degrees and at about 160 degrees and 200
degrees, but the target is too small to produce a clear
pattern. The spacing is about 5 GHz as expected.

To compare the location of the measured ellipses of
minimum RCS in Fig. 8 with those predicted by our simpie
interference theory and Eqn. (18), Fig. 13 was drawn using
the small cone’s base radius of 14.9 mm. The phase change
associated with diffraction from the edge was estimated
using the “soft” diffraction coefficient[9], D, , for a straight
edge with a wedge of angle 50 degrees, and incidence at
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0=90 degrees, to obtain ¢ =135 degrees. The phase
change associated with the edge wave was estimated using
the thin disk expression given by Eqn. (14) in Ref. [14].
This equation includes the phase change of —knR
associated with the distance traveled by the edge wave. In
addition 0 some phase terms that are constant with
frequency, there is a phase change associated with —o;aR ,
where[14]

0 =a, + jo; = 05k(kR) ™3¢~ i*¢ o(19)
Thus the phase change associated with the edge wave, @, ,
is not constant with frequency, but instead includes a term
proportional to 2. Eqn. (14) in Ref. [14] was evaluated
for the cone's base radius of 14.9 mm. It was found that
a, varies from -154 degrees at 2 GHz 10 -112 degrees at

18 GHz:; a representative value of -136 degrees was chosen
to plot Fig. 13,

Fig. 13 shows the curves of minimum RCS expected for the
small cone, plotted from 2 GHz at the inner circle to 18
GHz at the outer. The curves in Fig. 13 are quite similar to
the dark bands of minimum RCS seen in Fig. 8, from about
70 to about 130 degrees. The expected curves in Fig. 13
cross the vertical axis at 2.9, 6.9, 10.8 and 14.7 GHz. This
corresponds quite well to the frequencies where the dark

" bands cross the vertical axis in Fig. 8, of about 6.3, 10.5

and 14.4 GHz. The curve expected at 2.9 GHz is not seen
in Fig. 8.

Another example of edge wave scattering can be seen in
Fig. 5(a) of Ref. [8]. The figure shows a polar color map
for the RCS with vertical polarization of a large righi-
circular cone of base diameter 83.6 mm, length 50.0 mm,
and half angle 40 degrees. The base diameter is much
larger than that of the 29.8 mm cone used for Fig. 8, and
comparable in size to the thick disk discussed above. The
polar color map in Ref. [8] Fig. 5(a) shows a stiking
pattern of ellipses between & = 60 degrees and 140 degress.
There are 11 maxima along the verticai axis, spaced about
1.45 GHz apart. This agrees reasonably well with Egn.
{18), which predicts a spacing of 1.40 GHz.

5. CONCLUSION

This paper presented the measured RCS of six simple
targets as a color map in polar coordinates. Such “polar
color maps” show striking patterns of bright and dark
bands. In each angular range, these patterns arise due to
interference between two or three scattered waves: two or
three edge diffractions; two edge diffractions plus a tip



diffraction; a reflection plus a tip diffraction; or an edge
diffraction plus an edge wave. The identification of
primary scattering mechanisms by recognizing patterns on
polar color maps provides the RCS specialist with an
effective diagnostic and educational tool.

Not discussed in this paper is the effect of target
resonance{15] in a polar color map. The resonant
frequencies of a structure are independent of the angle of
incidence of the plane wave, hence give risc 0 RCS
maxima and minima at constant radivs on a polar color
map. However, the degree to which the resonance is
excited does depend on the angle of incidence. Hence,
resonance on a polar color map leads to circles whose
intensity varies with incidence angle. Fig. 8 in Ref, [8]
shows the RCS of a rod with an attached wire; the wire is
resonant when its length is approximately equal to odd
multiples of the quarter-wavelength. The color map clearly
shows resonance circles.

RCS data as a function of frequency and of incidence angle
are often used with two-dimensional signal processing
techniques to draw a rectangular-format color contour map
of the intensity of the return as a function of distance,
down-range and cross-range[16]. Such maps show strong
returns from localized scattering sources such as the wing-
tips of an aircraft, and the resulting images bear a shadowy
resemblance to the target. The techniques presented here
may be complementary in that specific scattering
mechanisims not associated with point-source scattering are
readily identified.

Methods and computer codes in computational
electromagnetics become established as useful analysis
tools by “code validation™: the building of an “experience
base” of problems solved and compared with reference
data. The conclusions drawn from code validation should
be stated as “modeling guidelines”[17] which provide rules-
of-thumb for constructing a model for solution by that
computational method, and specify geometrical resirictions
on the input geometry which respect the limitations on the
validity of the CEM code. The usefulness of a CEM code
for solving a new problem, perhaps by an inexpert user, is
closely related to the quality and explicitness of the
associated modeling guidelines.

Modeling guidelines are best developed by comparing
computations with measurements as a function of frequency
over a wide range, as well as by examining individual
radiation or scattering patterns at single frequencies.
Although calculating the RCS as a function of both
frequency and incidence angle is a massive computation,
comparing measured and computed polar color maps of the
RCS provides a comprehensive evaluation of the
performance of a computer code for a given problem, and
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may be useful for formulating modeling guidelines. This
paper has related features on a polar color map, such as
lines, hyperbolas, and ellipses, to the scattering
mechanisms of the target, and may provide insight into the
cause of features seen or missing from computed RCS maps
compared to the measured RCS.

Qur own code validation swmdies have compared
computations of the monostatic RCS with our
measurements[5,6,15,18]. It was noted above that the
differences in the computed and measured RCS are largest
in the sharp, deep minima, and that this is expected due o
the measurement geometry. Because our scaitered field
measurements are bistatic, and are made at a finite range
from the horns, our data is most valuable for code
validation when the scattered ficld due to a point source is
computed at the location of the receive hom in Fig. 1.
Simulating the measurement setup explicitly in the

‘computation, rather than computing backscattered field due

to plane wave incidence, removes the geometry error as a
source of difference in comparing the measurement and the
computation.

Our data base contains the measured RCS and the phase of
the scattered field for a wide variety of metallic and
dielectric targets{7]. Some targets are small enough to be
studied by moment methods, by the multiple multipole
method, or by the finite-difference time-domain method.
Others are so large that ray-tracing would be the natural
approach. This extensive data presents a challenge to the
computational electromagnetics community for code
validation. Our measured data, and the associated plotting
sofiware, POLPLOT and other programs, are freely
available to the community and can be fetched by fip from
“lucas.incen.doc.ca”, or by referring to our world-wide-web
page “http://lucas.incen.doc.ca/rcs.html”.
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