A Technique for Avoiding the EFIE “Interior Resonance” Problem
Applied to an MM Solution of Electromagnetic Radiation
from Bodies of Revolution

Pierre Steyn and David B. Davidson

Department of Electrical and Electronic Engineering

University of Stellenbosch, Stellenbosch 7600, South Africa

e-mail: davidson@firga.sun.ac.za

Abstract

Various surface integral equation formulations, including
the electric (EFIE) and magnetic {(MFIE) field integral
equations, suffer from what is commonly known as the
“interior resonance” problem. There are a number of
remedies to this problem of which many involve mod-
ifying the integral equation formulation and result in
increased computational effort and computer storage re-
quirements. In an attempt to avoid this the application
of a remedy, proposed in the literature, which requires no
modification to the formulation has been investigated.
This involves the detection of interior resonance frequen-
¢cies and correction of the current by removing the mode
responsible for the “interior resonance”. In the litera-
ture, the success of the remedy has been demonstrated
for two-dimensional scattering problems involving PEC
cylinders. In this work it is demonstrated that, while
the correction of the MM (moment method) solution
is successful when an “interior resonance” has been de-
tected, the detection of the interior resonance frequen-
cies can be extremely difficult in an MM soclution of ra-
diation from composite bodies of revolution. In fact, a
foolproof computational algorithm for detecting interior
resonance frequencies for this class of problems is yet to
be developed.

1 Introduction

The electric field integral equation (EFIE) and mag-
netic field integral equation (MFIE) suffer from what
is commonly known as the “interior resonance” prob-
lem. The reason for this is that some surface integral
equation (SIE) formulations, including the EFIE and
MFIE, can be used to represent both an interior and an
exterior electromagnetic problem for a closed geometry.
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The exterior problem involves fields produced by an ap-
plied source whereas the interior, or cavity, problem in-
volves source-free “resonant cavity modes”. The cavity
modes of the interior problem occur at discrete frequen-
cies known as eigenfrequencies. Thus, when solving the
exterior problem in the region of these eigenfrequencies,
the SIE’s solution is not unique because a nontrivial so-
lution exists to the interior problem.

The problem is widely reported in the literature, e.g.
11, 2, 3, 4, 5]. Recently, Peterson presented an excellent
review of the problem, along with a survey of various
remedies [6]. Numerous references to the literature are
included therein.

Many of the remedies to the problem involve modi-
fying the SIE formulation. For example, the combined
field integral equation (CFIE) [1], involving a linear com-
bination of the EFIE and MFIE, yields unique solutions
at all frequencies. These remedies require more com-
putational effort than the EFIE or MFIE and possibly
more computer storage as well.

A remedy proposed by Canning in [7] invelves solving
the EFIE or MFIE without modifications and correcting
the solution near eigenfrequencies. Algorithms that ex-
ecute this correction, which involves detecting the pres-
ence of a cavity mode superimposed on the desired solu-
tion and “discarding” it, can be added to existing MM
solutions of the EFIE and MFIE without major modifi-
cations.

The purpose of the study presented here is to in-
vestigate the application of this method to an existing
MM/BOR formulation for the solution of scattering [8]
and radiation [9] from composite bodies of revolution'.

1By composite it is meant here as made up of different homo-
geneous isotropic material regions, penetrable by electromagnetic
waves, and perfectly electrically conducting regions surrounded by
free space. The material regions can be lossy.



free space

Enu

incident
wave

Figure 1: A circular cylinder of infinite length, extending
from z = —o0 to co (the z-axis points out of the page),
illuminated by a TM plane wave.

For conducting regions the MM/BOR formulation uti-
lizes the EFIE, while for penetrable regions the CFIE is
used.

Following this introduction is a demonstration of the
“Interior resonance” problem in the application of the
EFIE to a two-dimensional problem. This is followed by
a numerical investigation of the problem, which follows
the work presented by Canning in [10] although from
a different perspective, wherein the singular value de-
composition (SVD) was used to demonsirate why the
“interior resonance” problem occurs. The application
of Canning’s remedy to the canonical problems is then
discussed. Finally, Canning’s remedy is applied to the
MM/BOR formulation and subtleties involved in its im-
plementation are demonstrated and discussed.

2 Demonstration of the “Interior
Resonance” problem

To illustrate the interior resonance problem it is useful
tc analyze a problem that can be solved analytically.
Such a problem, which has previously been investigated
by Peterson [6] and Canning [10], is scattering of a trans-
verse magnetic (TM) plane wave from a perfectly elec-
trically conducting (PEC) circular cylinder of infinite
length. It is presented here in a different manner in order
to highlight certain points. The problem is illustrated in
Figure 1. Here the incident plane wave is assumed to be
traveling in the negative z-direction with the incident
electric field given by

Einc = E,Eoejkaa': (1)
where Ej is a constant, Z is the unit vector in the z-
direction and kg is the wave number of free space. This
is a two-dimensional problem with the EFIE given by

ko aflo
4
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where unprimed coordinates indicate the field point,
primed coordinates the source point, e is the radius of
the cylinder, and ny is the intrinsic impedance of free
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space. The kernel of the integral, H®, is the Hankel
function of the second type and order zero, and J, is
the desired surface current.

An MM solution to this problem will be compared
with an analytical solution.

An analytical sclution for the problem can be obtained
by following the MM solution procedure [11, pages 5-6)
as follows. The surface current is expanded as a Fourier
series that is appropriate to the geometry of the problem,
1.€.

J.(¢) = a_;* + ;(an cosng + b, sinng) (3)
where a, and b, are unknown coefficients. The ex-

pansion functions are {i, cosng,sinné} with n
1,...,00, and the testing functions are chosen as
{l,cosm¢,sinm¢} with m = 1,...,00. By substitut-
ing equation (3) into {2) and forming the inner product
with each testing function, equation (2} is transformed
into the infinite order matrix equation
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[} o Ay [ o o 0 by
o 0 o Am a o 0 an
0 0 [ 0 Am [ 0 b
o 0 o a a Aoo o ax
| o o [ 0 ¢ o Ase ] L beo
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= [ Vg WV, o Vm 0 Ve O (4)

where V, = 2Eg" Ju(koa), with J, being the Bessel
function of order »n, and Ap, Ay, ..., Ay are the eigen-
values of equation (2) which are given by

_ momkea

Am = T (koa) H P (koa) (5)
where HSY is the m-th order Hankel function of the
second type.

Since the matrix of equation {4) is diagonal, the un-
known coefficients can easily be obtained and are, for

n= 0: 1: "":m)
4Eo5"
(2) '
qorkoaHn (koa)

0.

(6)

A

br (7)

The surface current can then be determined using equa-
tion (3) with these coefficients.

For a given koa value the magnitude of the coefficients
of equation (6) decreases with increasing n and beyond
about n = koa + 27 their magnitudes are less than one
percent of ag. Thus, J.(¢) can be computed reasonably
accurately using Npaz > koa + 27 terms in the summa-
tion in equation (3).
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Figure 2: Behavior of the first few eigenvalues versus
koa for a circular cylinder of infinite length.

The interior problem, i.e. the circular cavity of infi-
nite length formed by the outer boundary of the cylin-
der, described by equation (2) with the left hand side
set to zero, has nontrivial solutions at frequencies where
the eigenvalues of equation (5) are zero. These coincide
with the zeros of Jn{kea) with m = 0,1,...,00. The
behaviour of the first few eigenvalues from kga = 1.5
to 6.5, computed using equation (5), are plotted in Fig-
ure 2. The first few resonances are seen to occur at
koo = 2.405, 3.832, 5.136, 5.520 and 6.380 with the
responsible eigenvalues being Aqg, Aj, As, Ag, and Aj
respectively.

An approximate, but more general, MM solution to
equation (2) was obtained using pulse basis functions
and impulse testing functions as described in [11, pages
42-45}. The circle that generates the circular cylinder
was approximated by a regular N-sided polygon, cir-
cumscribed by the circle. The pulses coincided with the
sides of this polygon and the testing was done at the
centres of these sides. The non-diagonal elements of the
impedance matrix were found by approximating each
integral by the value of the integrand at the middle of
the pulse multiplied by the pulse width [11, equation
(3-12)]. To avoid the singularity in the self terms, the
diagonal elements were obtained by replacing the Hankel
functions by their small argument form and integrating
analytically [11, equation (3-14)}. The result is a matrix
equation

ZJ = E; (8)

where the vector J contains the unknown current co-
efficients, the elements of E; are given, with Ey = 1,
by

Eim = ACpei*omm (9)
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Figure 3: Electric current error A¢ in the MM solution
and backscatter RCS, exact and MM solutions, versus
koa for scattering by a PEC circular cylinder of infinite
length excited by an incident TM plane wave.

and the elements of Z given by

kemaCmbCo gk, Mz, — 2m)? + (¥n — ¥ )]

m # n,
Zmn = komoACmACS {1 _ 2 1kgACy
4 [1 = 108 ( de )]
m=n

(10)
where AC,, is the width of pulse m, =, and y., are the
coordinates of the centre of pulse m, ¥ = 1.7810724 ...
such that log+ is Euler’s constant and e = 2.7182818 . ..
is the natural base of logarithms. Here the widths of all
the pulses are equal which results in Z for this problem
being complex symmetric (it is, in fact, Toeplitz).

The current, Jarar, obtained using the formulas of
equations (10) and (9) can be compared with the “ex-
act” current, j;mc,, computed using equation (3) by de-
termining the current error, A¢, given by {1, equation

(30)]

A = ffs |fMM - l)T-;:::::I.ctlzd-‘»"
< tﬁincIZ ffs ds ’

where S is the surface of the PEC cylinder and Hin¢
is the incident magnetic field. A plot of A¢ for this
problem, from kpa = 1.5 to 6.5, is given in Figure 3.
The number of unknowns Nasas in the MM computation
varied with koa according to the formula

(11)

Nagar 7 106kpe (12)

which ensures that there are 10 unknowns per wave-
length. It is observed that A¢ is small except in the
vicinity of those values of kpa that coincide with the
Interior resonances observed in Figure 2.



Also plotted in Figure 3 is the backscatter radar cross
section (RCS) computed by the exact solution and the
MM which demonstrates that the anomalies in the cur-
rent couple to the far field.

3 Investigation of the “Interior
Resonance” problem using the
SVD

Canning introduced the application of the SVD to the
study of MM matrices in [10]. The SVD is discussed
in numerous texts related to linear algebra, for example
[12]. An SVD of an N-by-N matrix A is any factoriza-
tion of the form

(13)

where the superscript h indicates the Hermitian conju-
gate, U is an N-by-N unitary matrix, V is an N-by-N
unitary matrix and S is an N-by-N diagonal matrix with
elements smn = 0 if m # n. The diagonal elements of
S, S, = Snn, are known as the singular values. These
are real, nonnegative and arranged in order of decreas-
ing magnitude. The columns of U are the left singular
vectors and the columns of V are the right singular vec-
tors.

By following the MM procedure, the EFIE is trans-
formed to a matrix equation of the form given by equa-
tion (8). Decomposition of Z to its SVD reduces equa-
tion {8) to the diagonal equation

A =USV?

ST =E; (14)
where J = V*J and E; = U*E;. Thus, the SVD diago-
nalizes the MM equation and J and E; are the currents
and fields expressed in the bases that diagonalize the
problem — the columns of V and U respectively. The el-
ements of J, the coefficients of the diagonalizing current
bases, are easily obtained by

Em

(15)

Jm =
Sm

where &., is the m-th element of E:.

The SVD can be used to reach an understanding of
how the interior resonance problem occurs for the prob-
lem of scattering of a TM plane wave from a PEC circu-
lar cylinder of infinite length. For this particular prob-
lem, the singular values of Z are numerically equal to the
magnitude of the eigenvalues of Z (this may be because
the eigenvalues are approximately orthogonal). Thus,
the singular values of the approximate MM matrix of
order Nprpyr are approximations of the magnitudes of
the first ﬂ*‘gﬂ- + 1 eigenvalues of equation (5} if Nasps
is even, or the first j—v—i“-g‘—‘"—l if Npar is odd. This is
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Singulor values | Magnitudes of eigenvalues
of MM solution of exact solution

1 = 367.698 |Ao| = 348.796

sz = 219.017 |Azl = 233.490

s3 = 219.017 JA1] = 233.490

ss = 102.139 |A2| = 112,513

ss = 102,139 |Az| = 112,513

sg = 65.500 |As| = 67.396

sy = 65.500 |Az| = 67.396

5 = 57.423 |As| = 48.773

Table 1: The singular values of Z and the magnitudes
of the exact eigenvalues for the circular cavity of infinite
length with kez =1 and Nyrar = 8.

demonstrated in Table 1 where the singular values are
compared with the magnitudes of the exact eigenvalues
for kpa = 1 and Npspr = 8.

Further, the columns of U and V are approxima-
tions of the basis functions of the exact solution, i.e.
{1, cosng,sinng}. This is demonstrated in Table I of
[10] for koa = 1 and Naspar = 8.

Thus, the resonance problem should occur whenever
the smallest singular value sx,,,, approaches zero. This
is verified in Figure 4 where §x,,,, is plotted for koa =
1.5 to 6.5. In the vicinity of a value of kea which cor-
responds to an interior resonance, sy, 1S observed to
tend rapidly to zero since it corresponds to the eigen-
value responsible for the resonance. Otherwise, away
from interior resonances where it corresponds to the
eigenvalue with largest index (away from a resonance, for
a given value of koa, the eigenvalues decrease in magni-
tude with increasing index), §p,, Iemains almost con-
stant with increasing kga .

Equations (4) to (6) provide a clue as to how the in-
terior resonance problem occurs. In computing the co-
efficient @, in the exact solution, the Bessel function,
Jn(koa), that is present in the eigenvalue A, cancels out
as it also occurs in the excitation. It is this factor that
becormes zero at an interior resonance making the corre-
sponding eigenvalue zero. Thus it is not present in the
exact solution for the exterior problem. However, the
discretization error perturbs the MM matrix eigenvalue
from the exact eigenvalue [6] and in the vicinity of an
interior resonance numerical instability can be expected
if the factor in the eigenvalue does not cancel properly
with the factor in the excitation.

Using the SVD, the MM matrix equation is diagonal-
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Figure 4: Smallest singular value sy,,,,, versus koa, of
the MM impedance matrix for a PEC circular cylinder
of infinite length.

ized to the form of equation (14). In this form, the co-
efficients in the diagonalized current vector J are easily
obtained using equation (15). However, in the vicinity
of a resonance, sn,,, tends toward zero and one can
expect problems in computing the corresponding coeffi-
clent, i.e.

: ENnnr
INmar =

SN
since S, appears as the denominator. Theoretically,
the near-zero term in sp,,,, should cancel with the cor-
responding term in the numerator.

Following [10], the guantities s;,LM and En,,,, ate
plotted in Figure 5, as well as the current Jy, which is
on the segment nearest the incoming plane wave, and
the backscatter RCS, o, in the vicinity of the lowest
interior resonance, kpa &~ 2.405, with Nprar = 32. As
expected, €n,,,, tends to zero very close to koa = 2.405.
However, the peak in s;\,LM is shifted up in frequency.
Thus, the cancellation that should occur in the product
s;;LME Nasrae 16 0Ot realized. The anomalies in J; and o
are seen to occur at the same value of kpa as the peak
in s;;LM.

The desired current vector can be written as

J = VI

(16)

= VS~IE, (17)

and since V is orthogonal equation (17) can be rewritten
as

Nt

_1...
E Vs, 'Ex
n=1

where V, is the n-th column of V. With sy,,,, cor-
responding to the eigenvalue responsible for the reso-
nance, Vy,,,, is the basis that supports the resonant

J = (18)
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Figure 5: Behavior, in the vicinity of the lowest inte-
rior resonance, of the inverse of the smallest singular
value SKTLW the measure of the cavity mode excitation
€ Naear » the current on the near side of the incoming plane
wave J; and the backscatter RCS ¢ versus kpa in the
MM solution of scattering by a circular cylinder of infi-
nite length excited by an incident TM plane wave with
Narar = 32. The curves are vertically shifted from each
other for clarity and 0 dB is arbitrary.

mode?. Thus, in the MM sclution, since sy,,,, is shifted
up in frequency with respect to €n,,,,, the coefficient
Snhens ENaepe Of the cavity mode Vi, in equation (18)
is inaccurate in the vicinity of resonance.

For this particular problem, scattering by an infinitely
long circular cylinder, more accurate MM matrix el-
ements can be computed with relative ease by mod-
elling the pulse basis functions on segments of the ac-
tual, curved, circular cylinder and performing a care-
ful numerical integration. Canning did this in [10] and
demonstrated that the shift in frequency of the smallest
singular value can be reduced quite substantially. This
resulted in a much narrower, in terms of kpa, anomaly
in the current and the disappearance of the anomaly in
the RCS. Canning also showed that the condition num-
ber increased with the more accurate matrix elements
which emphasized that the problem is not due solely to
the ill-conditioned matrix since the more ill-conditioned
matrix gave more accurate results. Further, since Can-
ning used the same number of unknowns in the compu-
tation with more accurate matrix elements as with the
less accurate elements, it can be concluded, at least for
the circular cylinder considered, that the problem is not
entirely due to “truncation error” — the error due to in-

2This is easily verified by comparing Vy,,,, to combinations
of the +n and —n terms of the summation in equation (5-109) of
[13]. When Jn(koa) = 0, these terms are cavity mode currents
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troducing a finite number of basis and testing functions
and thereby reducing the integral equation to a matnx
equation [10] — but at least in part due to “numerical
error” — approximations made in calculating the matrix
elements in terms of the basis and testing functions {10].

4 Protecting the EFIE using the
SVD

In the previous section the amount of the resonant cur-
rent was not computed accurately in the vicinity of an
internal resonance. Furthertnore, the computed reso-
nant current should in theory not contribute to the
scattered field at the resonance frequency. The cavity
mode current is represented by the column of V of the
SVD which corresponds to the smallest singular value,
i.e. V.- As suggested by Canning in [10}, the scat-
tered field could be calculated accurately by discarding
the resonant current in the vicinity of its resonant fre-
quency. If the MM equation is being solved via the SVD,
the mode is easily discarded by setting 51-\,1“‘ to zero in
equation (18).

Unfortunately the SVD is computationally expensive
and operates on a fully square matrix — thus any advan-
tage is lost if the impedance matrix Z is syminetric. In
[7], Canning proposed a method of performing the cor-
rection to the current in which the vector Vy,,,, and the
smallest singular value sy,,,, are approximated by an
iterative technique known as the power method (PM).
The desired current J is approximated by orthogonal-
izing Jo, the current computed directly by the MM, to
the resonant mode Vy,,,, using the formula

< Ve Jo >

J=Jy—Vx
MM < VNMM’VNMM >

(19)

where < P,Q > is a vector inner product in which
one takes the complex conjugate of the first vector. In
the vicinity of an interior resonance the PM converges
rapidly [7].

For the infinitely long circular PEC cylinder, the
smallest singular value approximated by the PM is com-
pared with the smallest singular value computed directly
by the SVD in Figure 6. The current Jq was used as the
starting vector in the PM and at each frequency the PM
was terminated once either the difference between con-
secutive approximations of the smallest singular value
was less than 10~28 or 21 iterations had been completed.
The approximated value were found to converge quickly,
i.e. within 5 iterations, to the exact value in the vicin-
ity of an interior resonance, that is when the smallest
singular value corresponds to the eigenvalue responsi-
ble for the rescnance. Away from resonances, however,
the convergence is generally poor and the approximated
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Figure 6: Smallest singular value sy,,,,, exact and ap-
proximated, of the MM impedance matrix versus koa
for a PEC circular cylinder of infinite length. The curve
“MM/SVD” is sn,,, computed by the SVD while the
curve “MM/LU” is sy, approximated via the power
method. The number of unknowns Npsps satisfied equa-
tion (12},

value is larger — this does not necessarily have a negative
consequence since it is still clear from the approximated
values where the rescnances occur.

Oddly, as a rescnance is approached, the power
method converges, within at most 20 iterations, prema-
turely to the mode responsible for that resonance , 1.e.
before the singular value corresponding with this mode
is the smallest one®. This accounts for the sudden in-
crease in the approximated smallest singular value as a
resonance is approached.

The wavy nature of the curves away from resonance
is probably due to the variation in number of unknowns
Narayr with frequency.

The interior rescnances coincide with frequencies
where the smallest singular value becomes small, so this
could be used as an indication of the occurrence of prob-
lems. But, the question is how small should this singu-
lar value be in order to know whether to discard the
offending current mode? For the problem involving TM
scattering by a PEC circular cylinder of infinite length,
this question is easily answered if a frequency sweep is
carried out. Then, by observing where the anomalies
begin and end, with increasing koa, in the current or
RCS (for example Figure 3), one can determine the value
of the smallest singular value at these frequency points
from, for example, Figure 6. A threshold can then be
derived and the resonant current mode discarded at all
frequencies where the smallest singular value is below
this threshold. It is also easy to know beforehand where

3This may be due to the choice of starting vector
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Figure 7: Electric current error Ac, without and with
current correction versus koa in the region of the low-
est resonance in the MM solution, computed via the
LU decomposition, of a PEC circular cylinder of infinite
length excited by an incident TM plane wave. The curve
“MM/LU” is with no correction, the curve “MM/LUx"
is with equation (19) applied for all kga and the curves
“MM/LUx1” and “MM/LUx4” are with equation (19)
applied where sy, < 1 and sn,,, < 4 respectively.
The number of unknowns Njsps satisfied equation (12).
(Maximum in the curve “MM/LU” is approximately 36,
off the scale of this figure.)

to expect the interior resonances to occur as analytical
formulas exist for the circular cylinder. However, for a
more general problem for which analytical solutions do
not exist, it may be extremely difficult or impossible to
determine where interior resonances may occur before
carrying out the MM solution. Also, if the solution is
only desired at a specific frequency and it is computa-
tionally expensive to compute a frequency sweep, how
does one know what the threshold in smallest singular
value should be? How dependent is this threshold on
the geometry of the problem being solved?

Three possibilities were investigated and their effect
on the current error is compared in Figure 7 and on the
backscatter RCS in Figure 8.

The first was to discard V n,,,, at all frequencies. This
seems feasible since away from resonance this vector cor-
responds to a higher order term in the series expansion,
equation (3), of the exact solution which does not make
a significant contribution. The anomaly in A¢ has been
suppressed but the error is now increased over the whole
range of koa where sy,,,, corresponds to Ap. The lat-
ter situation is because the mode represented by Vy,,,,
has been completely removed while part of it should be

4.5 ‘
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Figure 8: Backscatter RCS, without and with current
correction, versus kpa in the region of the lowest reso-
nance for a PEC circular cylinder of infinite length ex-
cited by an incident TM plane wave. The curve “exact”
was computed by the Fourier series of equation (3) with
equation (6). The remaining curves correspond with
those of Figure 7.

contributing to the desired solution for the current even
at the precise resonance point and for the scattered field
except at the precise resonance point. The current error
Ag remains constant over the whole range of koa where
SNy Corresponds to Ap. It is constant here because
the exact current contains a constant amount of Vi, .
There is also a large improvement in the backscatter
RCS where the anomaly occurred. However, the devi-
ation becomes larger with decreasing or increasing koo
away from this point, emphasizing that it is inappro-
priate to carry out the orthogonalization away from the
resonance point and that it is thus important that the
resonances be detected.

It is evident from Figures 7 and 8 that one cannot
expect to completely solve the problem by suppressing
V Nyar» however, the anomalies can be drastically re-
duced. Ideally, away from the anomalies one would like
to retain the solution without Vy,,,, discarded. This
was attempted by setting 2 threshold in sn,,,, and only
discarding Vn,,,, When sn,,,, is beneath it. The effect
on Ac for two thresholds, sy, <1 and sy, <4,1is
also plotted in Figure 7. These values were arrived at by
observing $n,,, it the vicinity of the anomalies using
Figures 3 to 4. A threshold of 4 brings the error down
to almost the best that can be achieved while a thresh-
old of 1 is a bit low, although the anomaly is drastically
suppressed.

The backscatter RCS for Sy,,,, with these thresholds
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Figure 9: A PEC sphere with a rotationally symmetric
equatorial aperture.

is plotted in Figure 8. With the threshold of 1 the max-
imum deviation in the RCS from the exact solution is
about 10% while with a threshold of 4 it is about 4%.

5 Protecting the MM/BOR for-
mulation from interior reso-
nances

In this section the application of Canning’s method, pre-
sented in [7], to the MM/BOR formulation for the so-
lution of scattering [8] and radiation [9] from composite
bodies of revolution is discussed. For penetrable regions
the MM/BOR formulation uses the CFIE. However, for
conducting regions the EFIE is used which results in a
complex symmetric impedance matrix (this would not
be the case if the CFIE was used for conducting regions
as well). Thus, for problems involving conducting re-
gions, the MM/BOR formulation can suffer from the
interior resonance problem.

The method’s application is demonstrated here for
two problems that can also be solved analytically: firstly,
radiation from a rotationally symmetric aperture in a
PEC sphere, and secondly, the same problem with the
PEC sphere covered by a spherical dielectric shell.

5.1 Radiation from a rotationally sym-
metric equatorial aperture in a PEC
sphere

The problem is illustrated in Figure 9. The PEC sphere
has a of radius 100 mm and has a rotationally symmetric
aperture at its equator. The aperture subtends an angle
of 5° in # and it is assumed that only a #-directed electric
field exists in the aperture. This excitation will produce
fields TM to the radial direction. The electric field is
constant across the aperture, i.e. a pulse distribution in
8.

An analytical solution for this problem, in terms of a
spherical wave function expansion (SWFE), is presented
by Harrington in [13, pages 301-303] for the case where
the aperture has a small width so that the aperture field
is an impulse function in #. This solution can easily be
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Figure 10: Electric current error Ac and the far field,
at @ = 90°, in the MM solution of radiation from a rota-
tionally symmetric equatorial aperture in a PEC sphere
of radins 100 mm. The number of unknowns provided
ten basis functions per wavelength at 3.4 GHz.

modified to solve problems involving an aperture sub-
tending an arbitrary angle in 6 [9, Appendix D].

For the radiation problems presented here, the current
error is defined as

A= \/ffs |Tvm = Jswre|?ds
[fs ds

where Jara is the current computed by the MM, 5 is
the outer surface of the PEC sphere and Jswrg 1s the
current computed by the SWFE using the relationship
Jswrg = F X H where 7 is the unit vector in the 7-
direction and H is the exterior magnetic field.

In Figure 10 the current error in the MM/BOR solu-
tion and the radiated far field are plotted from 0.2 to
3.4 GHz. Anomalies occur in the vicinity of resonance
frequencies of a spherical cavity [13, pages 269-273].

The smallest singular value approximated using the
PM is compared with that computed directly by the
SVD in Figure 11. The behaviour of the approximated
smallest singular value is similar to that in the prob-
lem involving the PEC cylinder (see Figure 6) in that
it also converges to the singular value corresponding to
the rescnant mode away from the resonance as well as
at the resonance. As was the case in the PEC cylinder
problem, the PM converges to the singular value corre-
sponding to the resonant mode prematurely, i.e. before
it is actually the smallest singular value, which results
in a sudden increase in the approximated value.

A further observation is that the smallest singular
value computed directly by the SVD increases gradu-
ally with frequency outside of the resonance region and
does not remain approximately constant as was the case

(20)
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Figure 11: Smallest singular value sy, of the MM
impedance matrix for 8 PEC sphere of radius 100 mm.
The curve “MM/BOR/SVD” is sn,,,, computed by the
SVD while the curve “MM/BOR” is sy, approxi-
mated via the power method. The number of unknowns
provided ten basis functions per wavelength at 3.4 GHz.

in the results for the problem involving a PEC circular
cylinder (see Figure 4 or 6). The difference here is that
the number of unknowns is kept constant, providing ten
basts functions per wavelength at 3.4 GHz, whereas in
the PEC cylinder computations the number of unknowns
was varied with frequency.

It is difficult to determine a suitable smallest singu-
lar value threshold from Figure 11 for carrying out the
current correction. If one is to carry out the correc-
tion across the entire frequency range displayed then the
threshold must always be beneath the smallest singular
value away from resonance. However, if this is satisfied
at the lower frequencies, the resonances at the higher fre-
quencies will not be detected. This problem can possibly
be avoided by varying the discretization with frequency,
so that there are just ten unknowns per wavelength at
each frequency, as was done in Figure 6. Then, away
from resonances, the smallest singular value should be
larger in magnitude and remain more constant with fre-
quency. Unfortunately, the computer implementation of
the MM/BOR method was not at a point where this
could readily be done at the time of writing this paper.

In Figure 12 the smallest singular value is plotted in
the vicinity of the first interior resonance using two dis-
cretizations. The first is as above, which provided ten
unknowns per wavelength at 3.4 GHz, and the second
pravided ten unknowns per wavelength at 1.35 GHz. In-
deed, for the coarser discretization, which is sufficient at
the resonance, both the exact and approximated singu-
lar values are larger. The resonance frequency is also
shifted up in frequency due to the increased truncation
error.
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Figure 12: Smallest singular value sy, of the

MM impedance matrix for a PEC sphere of ra-
dius 100 mm in the vicinity of the lowest inte-
rior resonance. The curves “MM/BOR/SVD3.4” and
“MM/BOR/SVD1.35” are sny,,, computed by the SVD
while the curves “MM/BOR3.4” and “MM/BOR1.35”
are sy, approximated via the power method. The
numbers in the labels, i.e. 3.4 and 1.35, refer to the fre-
quency in GHz at which the discretization used to com-
pute the curves provided ten basis functions per wave-
length.

Using the curves of the coarser discretization a thresh-
old of 4 in the approximated smallest singular value
was chosen to carry out the correction on the current.
The current error obtained using equation (19) with
the PM at all frequencies as well as with the threshold
of SNy = 4 are plotted in Figure 13, as the curves
“MM/BORx” and “MM/BORx4” respectively, along
with the original current error, the curve “MM/BOR”,
in the vicinity of the lowest resonance. The anomaly is
completely suppressed for the correction at all frequen-
cies (“MM/BORx”) and in contrast to the results for
scattering by the PEC circular cylinder, see Figure 7,
the error is now small at all frequencies. The result is
also good with the threshold of 4 (“MM/BORx4").

Far field results at # = 90° achieved with the cor-
rection at all frequencies, the curve “MM/BORx”, with
the threshold of 4, the curve “MM/BORx4”, and with
a threshold of 15, the curve “MM/BORx15”, are com-
pared in Figure 14 to the far field computed by the
MM/BOR method without correction as well as the
SWFE solution. The result obtained with the correction
at all frequencies (MM/BORx) is excellent at frequen-
cies below resonance and at the resonance the anomaly
is completely suppressed. However, above the resonance
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Figure 13: Electric current error A¢ in the region of
the lowest resonance in the MM solution of radiation
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Figure 14: Far field, at § = 90°, in the region of the
lowest resonance of the rotationally symmetric equa-
torial aperture in a PEC sphere of radius 100 mm
computed by the SWFE and the MM. The curve
“SWFE” is the SWFE solution, curves “MM/BORx”
and “MM/BORx4” correspond to those of Figure 13
and “MM/BORx15" is with a threshold of 15.

125

this result increasingly deviates with frequency until
1.475 GHz where it jumps to the correct solution. This
is the frequency at which the approximated smallest sin-
gular value converges to the exact smallest singular value
(see Figure 12). With a threshold of 4 the anomaly is
reduced drastically in close proximity to the resonance
but slightly away the deviation is still relatively large. A
far better result is achieved with a threshold of 15 which
also does not alter the solution above 1.475 GHz.

From the above results it appears that the current
correction procedure using the PM can safely be used at
all frequencies where the approximated smallest singu-
lar value has converged to the actual smallest singular
value — this can be at and in close proximity to the res-
onant frequency as well as away from resonances. The
reason for this is that at a resonance the smallest singu-
lar value corresponds to the undesired mode that must
be thrown away and away from resonance the smallest
singular value corresponds to a mode whose contribu-
tion is small if the discretization is sufficiently fine. It
is not safe, however, to carry out the current correction
at those frequencies at which the approximated smallest
singular value is not the actual smallest singular value
as the approximated value then corresponds to a mode
that makes a desired and necessary contribution.

The problem remains as to how to determine at a dis-
crete frequency, without having done a frequency sweep,
whether a resonance occurs especially for a complex ge-
ometry. It is evident from the above results that the
problem is made a bit easier if the number of unknowns
in the solution is just sufficient at that frequency. How-
ever, a knowledge of the magnitude of the smallest sin-
gular value away from resonance still appears to be nec-
essary.

Radiation from a rotationally sym-
metric equatorial aperture in a PEC
sphere with a spherical dielectric
shell.

This problem is illustrated in Figure 15. An analytical
solution, in terms of a spherical wave function expan-
sion {SWFE) [9, Appendix D], can be derived using the
methods presented in [13, Chapter 6].

The radius of the PEC sphere is 100 mm and the outer
radius of the dielectric shell is 150 mm. The dielectric
shell has a relative permittivity ¢, = 3 and relative per-
meability g, = 1. As for the problem without the shell,
the aperture subtends an angle of 5° in ¢ and it is as-
sumed that only a 8 directed electric field exists in the
aperture.

The current error in the MM solution for this problem
and the radiated far field are plotted in Figure 16. The
interior resonances of the sphere have shifted down in

5.2
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Figure 15: A PEC sphere, coated by a spherical dielec-
tric shell, containing a rotationally symmetric equatorial
aperture.
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Figure 16: Electric current error Ac and the far field, at
# = 90°, in the MM soluticn of radiation from a rotation-
ally symmetric equatorial aperture in a PEC sphere of
radius 100 mm with a spherical dielectric shell of radius
150 mm and relative permittivity ¢, = 3. The number of
unknowns provided ten basis functions per wavelength
at 3.4 GHz.
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Figure 17: Smallest singular value sy, in the fre-
quency range 0.6 to 1 GHz, of the MM impedance ma-
trix for a PEC sphere of radius 100 mm with a spherical
dielectric shell of radius 130 mm and relative permittiv-
ity €. = 3. The curve “MM/BOR/SVD” is sny,,, com-
puted by the SVD while the curve “MM/BOR” is sy,
approximated via the power method. The number of un-
knowns provided ten basis functions per wavelength at
0.9 GHz.

frequency, as is evident in the positions of the anoma-
lies in the current error, due to the presence of the shell.
This is a result of the application of the equivalence prin-
ciple in the formulation of the EFIE which replaces the
interior region with the same material as the surround-
ings. This also means that there are now more interior
resonances in the frequency range shown as some of the
higher resonances have shifted down.

It is clear that not all the apparent anomalies in
the far field are due to interior resonances as they
are also present in the result computed by the SWFE.
Some of the anomalies due to interior resonances have
merged with actual anomalies in the result computed
via the MM/BOR formulation. Thus, the presence of
an anomaly in the frequency sweep of a quantity such
as the far field is not necessarily an indication of an in-
terior resonance.

The smallest singular value for this problem in fre-
quency subrange 0.6 to 1 GHz is plotted in Figure 17.

Inspection of Figure 17 led to a threshold of 8 being
applied to the current orthogonalization procedure in
the frequency range 0.6 to 1 GHz. The resultant change
in current error is shown in Figure 18 and the change in
the field in Figure 19. From these figures it is seen that
the method does work; however the problems regarding
the detection of interior resonances remain.
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Figure 18: Electric current error Ac In the frequency
range 0.6 to 0.9 GHz in the MM solution of radiation
from a rotationally symmetric equatorial aperture in a
PEC sphere of radius 100 mm with a spherical dielectric
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provided ten basis functions per wavelength at 0.9 GHz.
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Figure 19: Far field in the frequency range 0.6 to
0.9 GHz, at 8 = 90°, of the rotationally symmetric equa-
torial aperture in a PEC sphere of radius 100 mm with
a spherical dielectric shell of radius 150 mm and rel-
ative permittivity ¢, = 3 computed by the SWFE and
the MM. The curve “SWFE” is computed via the SWFE
while the remaining curves correspond with those of Fig-
ure 18.
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6 Conclusions

The electric field integral equation, which is a surface in-
tegral equation, is valid for both the exterior and interior
problems as defined in section 1. Although the interior
solution should not couple to the exterior solution and
vice versa in theory, when solving numerically, anomalies
are observed at discrete frequencies that coincide with
the eigenfrequencies of the interior solution. This is a
well-known result in the literature and is demonstrated
here.

A comparison between an analytical solution and a
moment method solution for a canonical problem shows
how the interior resonance problem arises. In the ana-
lytical solution for the electric current, the eigenvector
corresponding to the zero eigenvalue is generally present
but does not radiate any external field. However, with
the aid of the singular value decomposition (SVD), it is
seen that in the approximate moment method solution
the zero in the eigenvalue, or smallest singular value,
shifts in frequency with respect to the zero in the exci-
tation thus the quotient in equation (16), which is the
coefficient of the eigenvector corresponding to the zero
eigenvalue, is inaccurate. Canning has demonstrated
that the problem may be more due to approximations
made in calculating the matrix elements in terms of the
basis and testing functions, than due to introducing a
finite number of basis and testing functions.

The anomalies in the computed results for the ex-
terior field can be suppressed by discarding the eigen-
vector corresponding to the smallest singular value in
the vicinity of an interior resonance. This was demon-
strated using the singular value decomposition to solve
the moment method matrix equation directly as well as
by using the power method to approximate the smallest
singular value and the corresponding eigenvector. It was
found that the eigenvector corresponding to the smallest
singular value can safely be discarded at all frequencies,
provided a sufficient number of unknowns is used, as at
an interior resonance it makes an undesired contribution
and away from resonance its contribution is small. How-
ever, the power method does not always converge to the
smallest singular value but converges to the eigenvector
responsible for a resonance prematurely.

The question still remains on how to detect the oc-
currence of such resonances in a foolproof manner. The
detection is easy for canonical problems as analytical
formulas exist for the eigenvalues. However, for gen-
eral problems the size of the smallest singular value de-
pends on the geometry of the problem. A possible way
around this is to do a frequency sweep if it is suspected
that an interior resonance is present. However, this
could prove computationally very expensive and, it was
demonstrated that anomalies in the computed results do



not necessarily indicate interior resonances. More work
needs to be done to find a reliable method, if possible,
of detecting interior resonances that takes the geometry
of the problem into account.

The major contribution of the work presented in this
paper is the demonstration that whilst the method used
to avoid the interior resonances can work, applying it
automatically in a MM code is not as straightforward
as was implied by Canning [7}. The major obstacle is
that the power method only converges to the smallest
singular value in the region of resonance. This has been
illustrated in this paper using a number of examples, in-
cluding rotationally symmetric radiators. The full SVD
is unfortunately very expensive computationally, mak-
ing the direct use thereof most unattractive. A further
contribution is the specific investigation of the method
with regard to the MM /BOR solution of radiation prob-
lems.
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