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ABSTRACT: The application of the Biconjugate Gradient
FFT method fo the thin conducting plate problem is
investigated. Upon comparing with a Conjugate Gradient
FFT method, it is found that the Biconjugate Gradient
solution requires a relatively larger error tolerance to
achieve a comparatively well-behaved current
distribution. Coupled with the requirement of only one
matrix—vector product per iteration, the computational
cost of the Biconjugate Gradient method is, thus, much
smaller than those previously reported in the literature. Of
particular importance is the use of the incident electric
field as a starting estimate to alleviate the
non—convergence behaviour which is usually associated
with the application of a Biconjugate Gradient approach to
conducting plates at grazing angle. For other angles of
incidence, it is shown that this procedure also acceleraies
the resulting convergence rates as compared to those
obtained by simply using zero as an initial estimate.

1. INTRODUCTION

The application of FFT-based methods for the flat,
conducting plate problem has been receiving a lot of
attention in the com{)utational electromagnetics
community since the late 1980s. Most of these use the
Conjugate Gradient method (CGM) [1] as the iterative
algorithm in conjunction with the fast Fourier transform
(FFT) to solve for the discretized matrix equation [2]-[6].
This combination, commonly known as the CGFFT
method, is attractive both in the characteristics of
convergence associated with the CGM and the reduced
computational costs associated with using the FFIs to
approximate all occurring convolutions.

The finite—termination property of the CGM is, however,
only valid when the defining matrix (or operator) of the
linear system to be solved is Hermitian and
positive—definite (HPD). For other types of systems, it is
necessary to premultiply (implicitly) both sides of the
pertinent system by the Hermitian version A® of the matrix
A so that the resulting matrix is HPD. The latter system,
often referred to as the normal equation, is, however, more
ill—conditioned than the original system, which, in turn,
makes the convergence rate of the resulting algorithm
slower than that associated with the original system. For
this reason, it is worthwhile exploring iterative algorithms
that can be applied directly to the sysiem of equations in
mind.
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One such method is the Biconjugate Gradient (Bi-CGM)
method, first developed by Lanczos for finding the
eigenvalues of an unsymmeiric system [7] and later
extended by Fletcher [8] and Jacobs [9] to treat complex
indefinite systems. When applied to a symmetric system,
the Bi~CGM has one more advantage over the CGM in that
only one matrix—vector operation is needed within each
iteration step [10]. The combination of the Bi-CGM with
the FFT to solve a convolutional matrix equation is also
possible in exactly the same way as a conventional CGFFT
formulation. Despite this, there are only a few applications
of the Bi~CGFFT method to electromagnetic scattering
problems in the literature compared with the abundance of
solutions obtained by its CGFFT counterpart. Recent
works on the performance of the Bi-CGFFT for
conducting problems have, however, put the Bi-CGFFT
ina very favourable position compared with aconventional
CGFFT approach [11]1-[12].

In this paper, the performance of the Biconjugate
Gradient FFT method when applied to a thin conducting
plate under plane-wave incidence is investigated. The
non—convergence behaviour which usually happens when
the Bi-CGFFT is applied to a conducting plate at grazing
incidence is overcome by choosing the initial guess to be
the incident electric field E'. A systematic study is also
conducted of the dependence of the Bi-CGFFT method on
the use of this initial estimate procedure for other angles of
incidence. Greatly accelerated rates of convergence is

shown to result when E* is used as an estimate for the
initial unknown current distribution instead of simply
using zero as commonly adopited in most FFT-based
implementations. The layout of the paper is as follows,
Section 2 shows the functional form of the Bi—~CGM when
applied to a symmetric, indefinite system, This is followed
by Section 3 which deals with the numerical solutions
obtained by the Bi-CGFFT and the CGFFT methods for
a variety of incident configurations. Finally, Section 4
draws the conclusion on the applicability of the Bi-CGFFT
based on the results obtained in Section 3.

2. THE BICONJUGATE GRADIENT METHOD
FOR SYMMETRIC COMPLEX SYSTEMS

Table 1 shows the computationally compact form of the
Biconjugate Gradient method {10] when applied 0 a
symmeiric system of the form



Al = E, n

where J denotes the unknown current distributicon to be

solved for. The impedance matrix A onthe left-hand side
of (1) represents the couplings between the different cells
on the plate and is often formulated in
discrete—convolutional form to enable the FFT to be
efficiently applied whenever there is a matrix—vector to be
computed [6].

Choose an initial guess J@; p = 0
FO = E - AJO ; p(O) = F©®
while [[F®|/|F®| > € do

o = <F®' g0 >
< p®™ 4p™ >

J(.Fl"'l) = J(ﬂ) + a(n)p(n)
Firtl) = F@ _ gmap

ﬁ(n) < Fi+ 1)‘, Fr+ 1) -
T <™ FM >
petD = Fe+D) 4 ghipm

n=n+l

end while

Table 1: The generalized Biconjugate Gradient algorithm
Jor a complex, symmetric indefinite system.

Apart from the definition of the inner product {0
calculate @™ and B®), the form of the Biconjugate
Gradient method presented in Table 1 is almostidentical to
a classical Conjugate Gradient formulation for a real and
symmetric positive-definite (SPD) system [1]. In both
methods, only one matrix—vector product in the form of
Ap® s required at each iteration step. For complex
indefinite systems, however, the CGM has to be modified
to avoid the possible division by zero and substantial error
growth when this situation is nearly reached [8]. The main
resulting cost is an extra matrix—vector product in the form
of A'F™_ where A* denotes the complex conjugate of the
matrix A [1], [10]. Thus, the computational cost
associated with a symmetric indefinite Bi-CGM approach
is expected to be half of those required in a CGM
formulation when applied to the same problem!.

The convergence criteria for a Biconjugate Gradient
FFT method is specified in the same way as for its

Conjugate Gradient counterpart. Let F® denotes the

1. For non—symmeltric systems, the application of a Biconjugate
Gradient method still requires two matrix—vector 1S per
iteration step. However, as most EM scattering tormulations
are symmetric in nature, the algorithm with reduced costs is
applicable.
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residual field at the a* step, then the stopping criteria is
defined in terms of the normalized residual norm,

R |
ol ?

where F® denotes the initial field residual and || - |
denotes the norm of a complex vecior. At ¢ach siep, (2) is

compared toanerror tolerance € whichisspecified by the
user, The usual stopping criteria for a well-behaved
CGFFT solution is 0.01 [5]-[6], but as will be
demonstrated in the next section, the corresponding value
for aBi-CGFET solution can be much larger, thus reducing
congiderably the required number of itcrations, and thus
computational costs.

An important parameter which is often neglected in
other Biconjugate Gradient formulations is the form of the

initial guess J©. Itis often assumed that this is taken 10
be zero. In Section 3, we demonstrate that choosing the
initial guess to be the incident electric field E, not only
alleviates the non—convergence problem that is usually
associated with the application of the Bi-CGFFT at grazing
incidence, but also helps to accelerate the convergence
rates associated with other angles of incidence.

3. A COMPARATIVE STUDY OF
COMPUTATIONAL EFFICIENCIES OF THE
BI-CGFFT AND CGFFT METHODS FOR THE
THIN CONDUCTING PLATE

In this section, the performance of the Bi-CGFFT
method when applied to the pulse-basis formulation
recently proposed by Tran and McCowen [6] is
investigated. = For each incidemt configuration, a
comparison is made with a con'fsgonding CGFFT
formulation. The fact that the Bi-CGFFT generally
requires half the computational workload compared to its
CGFFT counterpart when applied to a symmetric system is
well-known and has been investigated elsewhere [11],
[12]. The aim of this section is to show that the efficiency
of the Bi-CGFFT can be enhanced further by virtue of the
fact that it needs a relatively larger tolerance to achieve a
well-behaved current distribution as that generated by the
CGFFT. The importance of the use of the incident electric
field as a starting estimate in a Bi-CGFFT formulation will
also be investigated. All numerical results are performed
on a VAX 8820 computer.

A. Broadside incidence

Fig.1 shows the broadside current distributions obtained
by the two FFT-based methodsona 14, * 14, square plate

using mesh sizes Ax = Ay = 0.03034, with different
error tolerances. It can be seen from this figure that the
Bi-CGFFT requires a very coarse tolerance to yield a
well-behaved solution, as compared with a much finer
tolerance as required by the CGEFT to achieve essentially
the same results. When applied with the same tolerance as

the Bi-CGFFT, ie. € = 0.1, the CGFFT results are
hardly recognizable. For the x — component, only a vague

resemblance of the expected lobes along the front and back
edges can be assumed (see [3]-[6] for a discussion of these
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results with respect to different discretization procedures);
the ripples in the centre of the scattering plate are too high
in comparison with the edge lobes. The behaviour of the
y — component at the same error tolerance is even more out
of shape: the lobes along the four edges are nearly of the
same amplitudes, as are the ripples in the centre of the
scattering plate.  Although these anomalies are
self-corrected at the finer tolerance of € = 0.1* 107, the
resulting computational costis much higher compared with
the corresponding Bi-CGFFT: the CPU times required by

the CGFFT on a VAX 8820 is 08:40 minutes (172
iterations) as compared with only 01:17 minutes (27
iterations) for the Bi-CGFFT—an increase of 676%. Yet
there is little difference between the two numerical
solutions; the only noticeable discrepancy is in the
co-polarized y— component, where the CGFFT current
density is slightty smoother along the four edges. The
icted current distribution from the Bi-CGFFT method
or the dominant x—component is virtually
indistinguishable from its CGFFT counterpatt.

Bi-CGFFT, € = 10"

CGFFT, € = 10!

CGFFT, € = 102
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Fig. 1: Comparison of the current distributions by the CGFFT and Bi-CGFFT methods with different error tolerances
on a square PEC plate of size 14y * 13g. Normal incidence.
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B. Grazing incidence

An important incident configuration of the plate
scattering problem is the grazing incidence case. When
applied to a geometric shape that possesses edges and
comers such as a rectangular plate, the rapidly changing
behaviour of the current density near the edge and the
comer diffraction effects makes its computation a
particularly difficult one [13]. The Bi-CGFFT that gives
the solution for the broadside incidence in Fig. 1 fails to give
a convergent result when the plate is subject o the grazing
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angle. This undesirable behavicur, commonly known as
the stagnation problem, arises when the constant a™
becomesclose to machine—zero and causes both the current
density J®*D and field residual F®*1 1o be
non—incremental as the iteration step is increased (see
Table 1). Furthermore, since F®*1 is then of

approximately the same value as F, the inner product

<F®+1 F+1D>  §s then also  approaching



machine—~zero and thus, no new direction vector can be
created for the advancement of the unknown current vector.
The algorithm then becomes stagnated and ne meaningful
solution can be cbtained no matter how many more steps
are added.

A simple remedy which involves restarting the iterative
solution with a small perturbation of the zero initial
estimate — commonly adopted in most FFT-based
implementations— has been suggested by Smith, Peterson
and Mittra [12]. However, tests performed by the authors
using their ad—-hoc ure indicated that an errorenous
solution may result if insufficient care is taken in choosin
the amount of the required perturbation, althou
convergence is usually alleviated whenever the zero
starting vector is slightly perturbed. The extent of
perturbation, thus, plays an important role in ensuring both
a convergent and correct solution, and since this eter
is not known in advance, general use of Smith et. al.’s
procedure for scatterers other than a simple conducting
slrig is franght with difficulties. For higher~dimensional
problems, the perturbations in the different coordinate
componenisat each discretization cell of the computational

domain would best be related to some known quantity of
the problem under consideration., At the start of the plaie
scattering simulation, the only known quantity is the
incident field distribution E* over the plate. Thus, it is

logical that the initial estimate J© should betakenas Ef,

Fig. 2 shows the current distributions from a
H-polarized grazing incidence achieved with this initial
estimate procedure. Alsoincluded are the CGFFT solution
at two different error tolerances. Itis clear from this figure
that the same behaviour is observed for this configuration
as for the broadside case of Fig. 1, i.e. the Bi-CGFFT
method requires a much larger error tolerances than its
CGFFT counterpart when applied to the same problem.
The numerical resolts associated with the CGFFT method
at the tolerance sufficiently required by the Bi-CGFFT are,
again, mnot recognizable particularly in the
¥y — component, where the spikes at the back comers are
certainly non-physical. The final results for the
Bi-CGFFT at € =03 and the CGFFT at

€ = 0.5+ 10" are virtually the same.

Bi-CGFFT, € =03

CGFFT, € =03

CGFFT, € = 0.5+ 107
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Fig. 2: H-polarized grazing incidence results by the CGFFT and Bi-CGFFT methods with different error tolerances.
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C. Oblique incidences

Next, the use of EX asaninitial estimate for other angles
of incidence is investigated. Fig. 3 shows the convergence
rates of the Bi-CGFFT method when subject to two
arbitrary obliqgue angles of incidence. e erratic
behaviours of the two convergence curves are the
consequences of the fact that successive residual norms in
a Biconjugate Gradient formulation need not satisfy the
inequality || F® | < || F®~D| at all iteration steps as
would be expected in a CGFFT formulation.
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Fig.3: Comparison of convergence rates between the two
methods of estimating the initial unknown from a
Bi-CGFFT solution.

It is worth emphasizing, however, that, barring the case of
non—convergence for certain grazing incidences, the
theoretical finite—termination property of a Biconjugate
Gradient approach is still obtainable as with a Conjugate
Gradient formulation, albeit with infinite—precision
arithmetics [9]. However, asFig. 3 {a) clearly shows, using
E' as an initial estimate can substantially reduced the
computational cost required to achieve convergence as
compared with simply using zero. The increase in iteration

count by using J@ = 0 in thiscase isa staggering 1680%.
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A similar increase rate has also been recorded for the
near—grazing angle of 89°, where although convergenceis
achieved, the huge computational cost makes it necessary
touse E' asaninitial estimate instead of zero. On the other
hand, the detrimental effect of using J© = E' at
8; = 45° in Fig, 3 (b) is minimal.

The convergence behaviours of the two angles in Fig. 3
are typical of a Bi-CGFFT solution when used with two

different initial estimate procedures for other angles of
incidence in both polarizations: either the convergence

rates are considerably accelerated when J©@ =0 is
replaced by JO = E, or only neglible decrease in

convergence rate is observed [14]. In most cases, the
significant speedup ratios indicate that the incident electric

field B should be used as an initial estimate for the

- unknown current distribution in a Bi-CGFFT method.

D. The effect of using the incident electric
field as an initial estimate in a CGFFT
formulation

Using E¥ as an initial estimate in a CGFFT formulation
is, however, not beneficial to its resulting convergence rate
as compared 10 the usual procedure of simply using
J© = 0. Fig. 4 shows the convergence rates associated
with three arbitrary angles of incidence in a CGFFT
solution. The differences in convergence rates agsociated
with the two starting procedures appear to be smaller as the
angle of incidence increases. At grazing incidence, where
8; = 90°, the discrepancy is minimal, whereas at

broadside incidence (8; = 0°), itisbesttouse zeroasa
starting estimate. The study in this section shows clearly
that no advantages can be gained by using E' as an initial
estimate for the unknown current distribution in a CGFFT
application and zero distribution should be adopted as a
starting estimate whenever a CGFFT approach is used o
solve the plate scattering problem.
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Fig. 4: Comparison of convergence rates of the two methods

of estimating the initial unknown with a CGFFT
approachona 1dp* Uy plate.



I. CONCLUSIONS

In this paper, the applicability of the Biconjugate
Gradient FFT applied to a pulse-basis formulation gorthe
conducting plate problem has been demonstrated. The
computational costassociated with the Bi-CGFFT is much
less than a conventional CGFFT approach due to the
reduction of a matrix—vector product per itcration step and
a much larger error tolerance to achieve a similar
well-behaved result as com to that obtained by its
CGFFT counterpart. The diflicuity withnon-convergence
of the Bi~CGFFT at grazing incidence was alleviated by
using the incident electric field E' as an initial estimate,
Furthermore, it was also demonstrated that using this
starting guess procecure also accelerates the convergence
rates associated with other angles of incidence.

The use of E* as an initial estimate is recently shown to
overcome the non—convergence problem associated with
the application of the Bi~-CGFFT method to 2- and 3-D
dielectric bodies [15).  Although the cause of
non—convergence is different from that associated with a
thin conducting plate, the fact that using J©@ = E* can
induce convergence is a particularly pleasing aspect.
Although no justification is available to explain for the
improvement in convergence rates, this non ad—hoc initial
starting procedure g to be mandatory in the
successful implementation of a Biconjugate Gradient FFT
method.

The Biconjugaie Gradient FFT has been increasingly
used as an efficient algorithm to solve for the
discrete—convolutional system which arises either from a
FFT-based formulation similar to that considered in this
paper [16], or as part of a hybrid method [17]. The
incorporation of the starting guess edure by
the authors in this paper may well help to alleviate any
NON—CONV problem associated with the application
of the Bi-CGFFT to other problems of interest and allay the
doubt concerning its consistent performance for
computational electromagnetics.
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