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Abstract?

A characteristic-based, windward® numerical pro-
cedure for solving three-dimensional Maxwell equations
in the time domain has been successfully ported to the
Intel Touchstone Delta multicomputer. The numerical
results by concurrent computation duplicated the earlier
simulations of an oscillating electric dipole on a vector
processor and compared well with the exact solutions.
‘The parailelized code is scalable up to 512 nodes and
incurs only up to 7.6% performance degradation. The
sustained data processing rate is clocked at 6.551 Gi-
gaops. However, the data I/ process is unscalable on
the shared memory system.

Nomenclature
E Electric field intensity
H Magnetic field intensity
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Indices of discretized grids
Electric current vector
One-dimensional difference operator
Index of time level

Time

One-dimensional characteristic
Cartesian coordinates
Spherical coordinates

Electric permittivity

Magnetic permeability
Eigenvalue
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1 Introduction

The improvement of numerical efficiency is one
of the urgent needs of computational electromagnetics
{CEM) in aircraft signature technology. In this area of
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5The windward difference approximation is achieved by using
the one-sided stencil for computing the difference quotient accord-
ing to the sign of the coefficient.

applications, the CEM simulations are generally more
computationally intensive than computational fluid dy-
namics (CFD) probleras. A part of the reason is that
the numerical accuracy requirement for CEM tends to
be more stringent than for CFD. For instance, a desir-
able predictive dynamic range can be as high as 60 4B
over broad viewing ranges {1]. Typically for wave prop-
agation, a suitable numerical resolution requires each
wavelength to be supported by at least an order of ten
grid points or more. Thus, for a scatterer with high
refraction indices and material complexities, this more
than ten grid points per wavelength requirement trans-
lates into the need of a computing system with astro-
nomical computing speed and memory size.

The heavy demand on computer speed and mem-
ory for CEM simulations can be illustrated by the fol-
lowing example. For a fixed incident angle, the numer-
ically generated signature of a modern fighter config-
uration at 1 GHz requires approximately fifty million
grid points® to produce a ten grid points per wavelength
resolution. For each grid point, the values of at least
three coordinates, six field components, and nine direc-
tion cosines of a general curvilinear coordinate system
need to be stored [2,3,4,5]. This results in a total of
nearly one billion memory allocations. A typical CEM
code operating on a 100 Megaops (10° floating point
and integer operations) single vector processor can pro-
cess data at approximately a rate of three-tenths of a
microsecond per grid point per time step. At this rate,
a fighter configuration will require almost five hours of
computing just to advance the solution to a new time
level. In order to complete a signature simulation, usu-
ally multiple look angles and hundreds of time steps
are required. As a result, the large computer memory
requirement and solution time has rendered the use of
conventional data processors for solving CEM problems
impractical.

The goal of this paper is to provide an efficient
way of solving the 3D time domain Maxwell’s equations
in differential form by combining novel numerical algo-
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rithms and concurrent computing technology. In the
recent years, the CFD community has made significant
progress in the area of algorithm development [6,7,8].
Numerical algorithms for solving hyperbolic equations”
from the CFD discipline have been adopted for solving
three-dimensional Maxwell equations in the time do-
main [2,3,4,5]. Among these, the characteristic-based
algorithm is found to be most efficient and appropri-
ate to duplicate the wave motions that are governed by
the time-dependent Maxwell equations [1,2,3]. This nu-
merical scheme is derived from the eigenvalue and the
eigenvector structure of the hyperbolic equations sys-
tem. The procedure is to diagonalize the three- dimen-
sional governing equations into three one-dimensional
Riemann problems [3,4,5,6]. Although this new mumeri-
cal procedure has potential to reduce the required com-
puting resources by allowing larger time steps and fewer
discretized mesh points in CEM simulations, substantial
progress in CEM for practical applications can finally be
achieved by incorporating the massively parallel com-
puting technique to deliver the needed computing re-
sources,

Recently, through remarkable progress in mi-
crochip and interconnect data link technology, a host
of single address, shared memory, and multiple address
message-passing parallel computers becomes available
for data processing. These scalable multi-processors
or multi-computers, in theory, are capable of providing
essentially unlimited computing resources for scientific
simulations. However, the effective use of these mas-
sively parallel computers still rests squarely on balanc-
ing the work load and keeping the communication be-
tween computing nodes to an absolute minimum [9,10].
These requirernents are intrinsically related to the nu-
mertical algorithms and hardware architectures. In the
present research effort, attempts were made to map a
characteristic-based algorithm onto a message-passing
parallel computer for computational electromagnetics.

2 Analysis

The characteristic-based fractional-step algo-
rithms have been demonstrated to be very efficient in
solving three-dimensional Maxwell equations in the time
domain [3,4,5]. In this method, the time-dependent
Maxwell equations can be written in the flux vector
form [11,12] given by
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matrices are real.
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The above partial differential equation system is
hyperbolic, and constitutes an initial vaiue problem.
Since the three coefficient matrices can only be di-
agonalized one at a time [6,7], the three-dimensional
equation is split into three one-dimensional formula-
tions. For each one-dimensional formulation, the solv-
ing procedure starts with solving the eigenvalues and
eigenfunctions of that particular spatial direction. The
eigenvalues for all three coefficient matrices turn out
to be {—c,—¢,0,0,c,c}, where ¢ is the wave propa-
gating speed. The signs of these eigenvalues actu-
ally contro!l the direction of the information flow as
the wave propagates through the computational domain
[3,4,5,6]. Based on the eigenvectors, the field compo-
nents are then expressed in terms of characteristic vari-
ables for that spatial direction. Once expressed in the
characteristic form, the one-dimensional formulation be-
comes that of the Riemann problem [5,6]. After apply-
ing the same procedure to the other two dimensions,
the characteristic-based fractional-step or time-splitting
method can now be summarized in the following formu-
las:

w't? = LgLyL;LzLnywn (2)
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where w,, wy, andw, are the one-dimensional character-
istic variables associated with the z,y, and z directions;
L is the one-dimensional difference operator; X; are the
eigenvalues of the partial differential equation system;
and n is the index of time level®.

2The fractional Step method sweeps all spatial derivatives
twice in a symmetric sequence, thus advances the time step
accordingly



The second-order accurate windward difference
approximation can be easily constructed by using a sin-
gle forward or backward difference approximation ac-
cording to the signs of the eigenvalues. The ability to
associate the sign of the eigenvalue with the direction
of wave propagation is a very important feature of the
present numerical procedure. The windward difference
approximation for L; is given by
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where * takes the values n + 1 and n respectively
for implicit and explicit procedures; ¢, j, k are the indices
of discretized grids. The windward difference approxi-
mations for L, and L, are similar to that for L. They
can be obtained by replacing x in Equations (10) and
(11) with y and z, and applying the windward difference
to the j and k indices, respectively.

1-D Parallelization

Wi

2-D Paraflelization

L=NP

IL*JL~-NP
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From Equation (5), the time-splitting solving pro-
cedure requires six one directional numerical sweeps to
update the solution to the next time level. Since the
formulation for each numerical sweep is identical, the
strategy to map each one directional sweep to a mas-
sively parallel computer is identical. Thus, a code based
on the time-splitting algorithm can be easily tuned for
maximum performance by counting and adjusting arith-
metic operations for each numerical sweep.

3 Data Partition Schemes and Fine Tuning for
Maximum Parallel Performance

The partition of data structure plays a key role in
achieving high parallel efficiency. On a message pass-
ing or distributed memory multicomputer system, the
performance of concurrent computing is closely tied to
memory bandwidth and memory latency. Thus, the ba-
sic strategy in achieving high parallel efficiency of any
numerical procedure is to minimize data movements be-
tween nodes. In this effort, a computer code based on
the characteristic-based fractional-step algorithm was
mapped onto the Intel Touchstone Delta at Caltech us-
ing different data partition schemes to explore the par-
allel performance of the code.
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Figure 1: Hierarchy of data partition
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The Delta multicomputer consists of a total of
576 heterogeneous nodes [13]. They are designated as
numeric, service, gateway, and disk nodes to perform
the computation, frame buffer, network link, and disk
string functions respectively. A total of 512 numeric
nodes are available for parallel computing. Each of
the numeric nodes has a peak rate of 80 MFlops for
single-precision and 60 MFlops for double-precision, and
is interconnected by a two-dimensional mesh network.
On this ensemble nodal architecture, the data flow and
data management lead to four different approaches for
the controlling of data movements between nodes. The
most elementary approach to data partition is the one-
dimensional parallelization in which the outermost do
loop of the numerical sweeps is assigned to a number
of numeric nodes. The other data partition schemes in-
clude the two-dimensional page struclure by partition-
ing three dimensional space into cross-sectional planes,
the pencil grouping, and finally, the three-dimensional
block parallelization. A graphic depiction of these data
partition schemes is given in Figure 1. The computa-
tional domain is assumed to consist of IL, JL, and KL
discretized mesh points in each direction of the three
dimensional space; the computation is assigned to NP
numeric nodes.

As mentioned in the beginning of this section, min-
imizing the number of message passings is by far most
important in achieving high parallel efficiency. In addi-
tion, load balancing is also very important in reducing
the performance disparity among nodes since the per-
formance of the slowest node actually determines the
completion of a numerical simulation. Last, but not
least, an ultimate data assigning sequence which takes
advantage of the nearest neighbor message-passing pri-
ority is essential in reducing the unnecessary message
routing length and, therefore, improve the over all par-
allel performance. In the following discussion, the num-
ber of message passings, load balancing, and sequence
assigning issues will be addressed.

Although four data partition schemes are identi-
fied in mapping the characteristic-based code onto the
Delta, only the one-dimensional parallelization and the
pencil grouping scheme were investigated in this effort.
The one-dimensional scheme is the most straightforward
data partition for the time-splitting, windward proce-
dure [5]. In this scheme, the computational domain of
IL x JL x KL mesh points is divided into either IL, JL,
or KL prid planes. Without loss of generality, the com-
putational domain 1s assumed to be divided into IL grid
planes. Thus, each grid plane contains JL x KL mesh
points. The computation associated with the JL x KL
mesh points of each grid plane is assigned to a numeric
node. At each time level, each node performs eight mes-
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sage passings, which include messages sent to and re-
ceived from its nearest four neighboring nodes. In all,
the total number of message passings is given by the
value of 2 x (4 x IL — 6). With four bytes per mes-
sage, the message length associated with each message
passing 1s determined by JL x KL x 4. For example, a
(node x 48 x 48) mesh system will have a message length
of 9,216 bytes.

Since each node performs the same amount of
artthmetic operations in the one-dimensional partition,
load balance is automatically achieved. This type of
data partition can be viewed as a form of task parti-
ttoning.

In one-dimensional parallelization scheme, the
number of numeric nodes required is equal to the num-
ber of grid planes, 'II.’. To locate the desired number
of numeric nodes, a Delta partition (m, n) with m rows
and n columns should contain 'IL’ nodes. Every node in
this partition has a logic number assigned to it which a
programmer can access through the function call " myn-
ode()”. The returned value of "mynode()” ranges from
0 to nm — 1 for the (m,n) partition. Since IL equals
am — 1, an easy way of mapping the grid planes to the
nodes 1s to assign grid plane number one to node 0, grid
plane number two to node 1, and etc. In other word, for
the ith grid plane, the computation associated with that
grid plane is performed by numeric node ¢ — 1. Unfor-
tunately, this logical sequence assignment does not take
advantage of the nearest neighbor message-passing pri-
ority and incurs unnecessary delay in data movement.
Particularly, the message passing in Delta is row biased.
If a grid plane is located at or next to a boundary of
the Delta partition, the messages of this grid plane will
have to be routed through ‘n’ or ‘n — 1’ nodes before
reaching its destination grid plane located in a different
row of the Delta partition.

One way to avoid this delay is to use the serpentine
sequence in assigning the grid pianes to the numeric
nodes, such that any message need not travel more than
two nodes to reach its destination grid plane [11]. The
serpentine arrangement can be easily achieved by the
following program instruction:

-

where the row number z = 0,1,2,.....m — 1. The ex-
ample of a (4, 5) Delta partition with its physical layout
and logical node numbers given by mynode() is shown
in Table 1 {a). The indices of the grid planes mapped to
the (4, 5) partition using logical sequence and serpentine
sequence are shown in table 1 (b) and (c), respectively.

T = even number
2 = odd number

mynode{) + 1
(2*z + 1)+ n — mynode()

In the pencil grouping scheme employed here, the
calculations associated with two dimensions of the com-
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Table 1: (a) Logical node numbers of a (4,5) Delta partition given by mynode(). (b) The grid planes mapped to the
(4,5) partition using Logical sequence. (¢) The grid planes mapped to the (4,5) partition using Serpentine sequence.

putational domain, for instance IL x JL, is assigned
to an (m,n) partition on the Delta. In other words,
each numeric node performs the calculations associated
with (IL x JL x KL)/mn grid points. If the value
of (IL x JL x KL)/mn turns out to be an integer,
each node will perform the same amount of arithmetical
operations and load balance is automatically achieved.
If the value is non-integer, some nodes will have more
grid points to calculate than some others. In this case,
an optimum assignment must be sought to balance the

load. Although in some cases load balance is not auto-

matically achieved, a pencil grouping scheme provides
greater flexibility than the one-dimensional scheme in
assigning grid points to the numeric nodes.

Since in the pencil grouping scheme, only the data
near the surface of the pencil must be transferred to the
adjacent pencils, the data flow is reduced compared with
the one-dimensional partition scheme. Thus, a larget
pencil size will reduce the overall data flow and enhance
the concurrent performance. The number of message
passings depends on the size of each pencil partition.

4 Scope of Numerical Experiments

All numerical solutions reported in this paper were
processed on the Delta system. The numerical simu-
lations were focused on a three-dimensional oscillating
electric dipole. Although the physics of the oscillating
dipole is well known, it is chosen because its theoretical
solution {11,12]} can be used for validation. Besides, the
exact solution contains a singular behavior at the cen-
ter of the dipole. The leading term of this singularity
appears as the inverse cubic power of the radial dis-
tance from the dipole [12]. Therefore, it offers a serious
challenge to the accuracy of the numerical simulation
and the robustness of the solving procedure. To deter-
mine the suitable mesh spacing to capture the singular
behavior of the dipole, a three-level mesh spacing refine-
ment study was conducted. The numerical results were
compared with the theoretical solutions to assess the ac-
curacy of the simulations. Details comparisons will be
reported in the next section.

In addition to the validation with the exact solu-
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tions, the results generated by the parallel codes for the
one-dimensional parallelization and the pencil grouping
schemes on a (48 x 48 x 48) mesh system were compared
with the previous numerical results generated on a single
vector processor [5]. The parallel results are identical to
the serial results.

As wentioned before, the three keys to improve
parallel performance is to balance the load, shorten mes-
sage routine path lengths, and minimize the number of
message passings between nodes. Since for 1D paral-
lelization, the load balance is already achieved, perfor-
mance evaluation was concentrated on the latter two.
In the next section, parallel performance of the logical
and serpentine sequence mapping schemes will be com-
pared using mesh systems of (node x 48 x 48), where
node equals 4, 8, 16, 32, 64, 256, 384, and 512; per-
formance comparison for different number of message
passings will be carried out using (node x 48 x 48) and
(rode x 96 x 96) mesh systems. For the pencil group-
ing parallelization scheme, the three keys to improve
parallel performance still apply. The pencil grouping
performance will be reported as well.

All the parallel performances were evaluated based
on the timing data obtained from the execution phase
and data output phase of the codes. The execution
phase includes updating the fields at all grid points from
the first time level up to the last time level of the simu-
lation; the data output phase includes writing the calcu-
lated field results and the coordinates of the grid system
to the disk for post processing. The program initializa-
tion time of the present code is negligible compared to
the program execution and data output time; therefore,
it will not be reported here. {In the following text, data
output is sometime referred to as data I/O since the
output performance is tied into the I/O performance of
the computer system.)

The execution times were collected at the 480th
time level. The duration of 480 time steps was selected
for all calculations such that the wave traversed more
than ten times the distance across the entire computa-
tional domain. This time duration is deemed sufficient
for the numerical procedure to yield meaningful results



and repeatable timing data. From the execution time,
the data processing rate and scale factor are derived.
At each time level and grid point, both one-dimensional
and the pencil grouping approach must perform at least
492 mixed integer and real number arithmetic opera-
tions. The data processing rate is computed by the total
nuinber of arithmetic operations performed during the
480 time steps divided by the maximum and the mini-
mum time elapsed of all nodes in use. These minimum
and maximum values bracket the range of performance
among nodes. In other word, the data processing rate
in Gigaop (10° arithmetic operations per second) is cal-
culated by multiplying the nambers of iterations, arith-
metic operations, and total grid points, then dividing
by the executing time (480 x 492 x (/L x JL x KL)/
(execution time x10%)). This calculated data rate is a
conservative estimate because the number 492 does not
include 47 basic library function calls and nine system
message passing calls at every time step. These library
function calls include mostly trigonometry and square
root calculations. Together with the system message
passing calls, they may account for a significant amount
of the execution time. The scale factor of the code is
defined by the time elapsed for each array of nodes used
then normalized by the execution time required for four
nodes. The execution time for the four-node calculation
was used as timing basis because in the present code, at
least four grid points are required to specify the bound-
ary conditions at the dipole and at the far field.

The data output phase of the one-dimensional
parallelization scheme requires 78 arithmetic operations
and 38 system message passing calls. Most of the 38 sys-
tem calls are either synchronous or asynchronous mes-
sage passing instructions to generate one unformatted
field data file and three unformatted grid files. The
field data file contains all six components of the elec-
tromagnetic field at every grid point; and the grid files
contain the three coordinates of the grid system. The
longest and the shortest time periods required to out-
put those unformatted files for 4-node up to 512-node
simulations were recorded. From these timing data, the
seale factor for cach simulation was again normalized by
the 4-node result to determine the possible performance
degradation of data management.

5 Discussion of Results
5.1 Mesh refinement study

The originally planned mesh refinement included
mesh systems of (48 x 48 x 48), (96 x 96 x 96), and a
finest mesh system of (192 x 192 x 192). However, as the
number of processors increased beyond 96, the disparity
in execution times among processors grew to a factor of
11.6 for 108 nodes, and 14.43 for 144 nodes. In other
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words, the observed scalable performance of the present
computer program for the cases of (48 x 48 x 48) and
{96 x 96 x 96) was not sustainable for the mesh system
of (192 x 192 x 192). Therefore, the mesh refinement
study was forced to reduce the scope.

Three mesh systems of (24 x 24 x 24), (48 x 48 x 48),
and (96 x 96 x 96) were used for the numerical resolu-
tion study instead. For this reduced scope of numerical
experiment, the coarse mesh system has only 24 grid
points in each coordinate. The mesh point density is
sufficient to resolve the wave motion {1,2] away from the
dipole, but it may be deficient in simulating the singular
field behavior near the dipole [11,12].

The mesh refinement results for the radial com-
ponent of the electric field are presented in Figure 2.
The calculation from the {24 x 24 x 24) mesh system
revealed significant numerical oscillations in an attempt
to overcome the large truncation error near the dipole.
As shown in Figure 2, the results exhibits a steady im-
provement as the mesh systems becomes finer. How-
ever, the finest mesh is still not fine enough to overcome
the stringent demand for accurate simulation near the
dipole. Nevertheless, the present numerical procedure
has demonstrated the robustness in treating the prob-
lem containing a singular behavior.
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Figure 2: Comparison of computed radial components
of the electric fields with theory

Figure 3 depicts the numerical results of the cir-
cumferential component of electric intensity on the three
mesh systems. The numerical result obtained on the
finest mesh attained the best agreement with the ana-
lytical result. The maximum deviation from the theoret-
ical results is merely a fraction of one percent. Another
desired feature of the characteristic-based formulation
also stands out. At a non-dimensionalized radial dis-



tance of 0.14 and beyond, all three solutions agree well
with the theory and show no wave reflection from the
truncated numerical boundary.
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Figure 3: Comparison of computed circumferential com-
ponents of the electric fields with theory

The comparison of magnetic azimuthal component
of the three mesh systems is given in Figure 4. Although
the leading term singularity of the magnetic field has a
lower order asymptote than that of the electric field, the
numerical solutions of the magnetic field generated on
the three mesh systems behave similarly to those of the
circurnferential electric field component. The numerical
resolution produced by the finest mesh system, however,
is able to suppress the numerical oscillation near the
dipole. Finally, the reflected wave from the truncated
numerical boundary is completely absent.
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Figure 4: Comparison of computed azimuthal compo-
nents of the magnetic fields with theory
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5.2 Serpentine sequence vs. logical sequence

In this experiment, the one-dimensional paral-
lelization scheme and the grid system (node x 48 x 48)
were used so that every node performs exactly the
gsame amount of computations and writes out the same
amount of cutputs.

Table 2 shows the data processing rates in Gi-
gaops. The performance difference between the logical
sequence and the serpentine message path arrangements
begins to appear for the number of nodes beyond 128.
Since the serpentine arrangement took advantage of the
nearest neighbor priority in message passing hierarchy,
the performance degradation is less than that of the log-
ical sequence. In fact, to complete a 512-node compu-
tation using serpentine procedure, the slowest node re-
quired only 3.1 percent more execution time than the
fastest node; whereas, in the logical sequence arrange-
ment, the slowest node is 10.4 percent slower compared
with the fastest node. For the same 512-node simula-
tion, the fastest node operating on the serpentine ar-
rangement atiained a data processing rate of 5.966 Gi-
gaops; while the fastest node on the logical sequence
arrangement only attained 5.412 Gigaops.
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Figure 5: Data processing rates on the Delta

The data processing rates of the serpentine and
logical sequences are plotted in Figure 5. The improved
data processing rate of the serpentine sequence over that
of the logical sequence is clearly demonstrated. As can
be seen from the figure, the performance of the logical
gequence, which did not honor the data passing priority
of the nearest neighbor hierarchy, started to lag behind
that of the serpentine sequence when more than 128
numeric nodes were used. From this experiment, the
serpentine procedure appears to be more effective for
the distributed memory system. However, for both se-
quences, an increasing disparity of the data processing



Serpentine
Maximum Minimum Maximum Minimum

Number of nodes

Logical Sequence

4 0.046
8 0.092
16 0.184
32 0.368
64 0.738
128 1.472
246 2.967
384 4.490
512 5.966

0.046 0.046 0.046
0.092 0.092 0.092
0.184 0.184 0.169
0.368 0.369 (.369
0.738 0.736 0.707
1.472 1.443 1.430
2.952 2.829 2.798
4.413 4.105 4.028
5.704 5.412 5.274

Table 2: Compatison of data rates between serpentine and logical sequences of an (node x 48 x 48) mesh system

rate among nodes was noted as the number of nodes
increased beyond 64.

The scale factors of the two mapping schemes are
demonstrated in Figure 6. All data processing rates are
normalized by the valne of the 4-node simulation. The
superior scalable property of the serpentine sequence
over that of the logical sequence is obvious. The scala-
bility of the present code up to 512 nodes is perceived
within a performance degradation of less than 3.1 per-
cent. In fact, the significant degradation only appeared

when all 512 numeric nodes were employed.
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Figure 6: Scalability of executing time on the Delta

Figure 7 presents the data cutput time in seconds.
The data output time varied widely from 0.24 to 32.20
seconds for the serpentine sequence, and from (.28 to
162.80 seconds for the logical sequence. The shortest
waiting time over the entire range of nodes used was
only 0.24 seconds. Unfortunately, the aggregated time
required by the slowest node in computation and data
output actually determines the completion of a numeri-
cal simulation. From Figure 7, the data output time in-
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creases almost linearly with the number of nodes in use.
For the 512-node calculations, the serpentine sequence
used 32.2 seconds while the logical sequence needed
162.8 seconds to output the same amount of data.
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Figure 7: Data I/O time on the Delta

Figure 8 depicts the widely varying data [/O per-
formance among nodes for the entire range of available
nodes. Again the performance degrades rapidly as the
number of nodes in use increases. The logical sequence
yields the maximum parallel performance discrepancy
among nodes. The ratio between the most and least
efficient nodes is as high as 580.4. The serpentine se-
quence reduces the disparity to a value about 134.2. If
this behavior is a common trend for all distributed mem-
ory computer systems, this deficiency shall be a pacing
item for research in concurrent computing.

Concurrent performance, similar to those dis-
cussed above, were also observed for (96 x 96 x 96) and
(96 x 192 x 192) computations. The data processing
rate per node was maintained in the range of 12.89 to
11.65 Megaops. These data processing rates are far be-



low the nominal 60 to 80 Megaops performance level of
the 1860 microprocessor [13]. Additional performance
improvement of the present numerical procedure using
the Delta system is still possible.
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Figure 8: Non-scalability of data I/O on the Delta

5.3 Comparison between (node x 48 x 48) and
{node x 96 x 96) mesh systems

For the one-dimensional parallelization scheme,
the vector length is doubled and the message passing
length is quadrupled from the coarse grid of {node x
48 x 48) to the refined grid of (nede x 96 x 96). Since
the serpentine mapping scheme was proven to give bet-
ter parallel performance, it was used for the experiment
repotted in this subsection.

For the (node x 48 x 48) systems, the execution
time for each node varied from 45.61 to 52.90 seconds
regardless of whether the computations were conducted
on 4 or 512 numeric nodes. For the (node x 96 x 96)
case, the execution time ranges from 158.37 to 173.16
seconds. The data processing rates based on the above
execution time is given in Table 3. The maximum data
processing rate of the refined mesh system is 9.8 per-
cent greater than the coarser mesh computation; and
the highest achieved value was 6.551 Gigaops. Appar-
ently at a message passing length of 36,864 bytes and
8 message passings per node per time slep, the higher
data processing rate by a greater vector length has not
been hampered by the limiting memory bandwidth. As
a result, the deviation between the fastest and the slow-
est execution rates is less than one percent.

The execution times expressed in scale factors for
the {(node x 96 x 96) and (node x 48 x 48) systems are
shown in Figure 9. Small variations of data process-
ing rates for both grid systems were observed-aver the
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entire range of nodes used. The results of the coarse
grid computations exhibited a wider performance de-
viation among nodes than the finer grid calculations.
The latter, however, also degraded noticeably from the
4-node to the 8-node result. The difference is about
4.6 percent. As the number of nodes increases to 512,
the degradation of scalability of the present procedure
reached the maximum value of 7.6 percent. But the
major portion of the performance deficiency is incurred
at the 4-node to 8-node transition. In all, the present
algorithms mapped to Delta system has demonstrated
an acceptable scalability of data processing rate up to a
grid system consisting of 512 x 96 x 96 grid points.
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Figure 9: Execution time scale factors for
the coarse and fine mesh systems

The data output time varies from 0.2369 to 32.20
for the coarse grid system and from 0.1324 seconds for
the 16-node calculation to 30.02 seconds for the 512-
node simulation for the finer grid system. Figure 10
shows the scale factors of the ocutput timing results for
the coarse and refined mesh systems. Clearly, the 1I/0O
performance degrades neatly linearly as the number of
nodes in use increases. The worst 1/O performance oc-
curred when all 512 nodes were engaged. In this case,
the fastest and the slowest nodes used 11.51 and 226.8
times, respectively, the time required to output the same
amount of data as the fastest node of the 16-node com-
putation. This observation further asserts that the scal-
able I/O performance shall be a pacing item for research
in concurrent computing.

5.4 Pencil grouping scheme

Owing to similar peculiarities of the Delta com-
piler observed for the one-dimensional parallelization,
only a limited number of timing data from the pencil
partition is obtained at present time. In short, the ser-
pentine sequence did improve the performance over that




Number of nodes

node x 96 x 96
Maximum Minimum Maximum  Minimum

node X 48 x 48

4 0.055
3 0.105
16 0.207
32 0.413
64 0.823
128 1.616
246 3.305
384 4.915
512 6.551

0.055
0.105
0.207
0.413
0.822
1.609
3.278
4.884
6.506

0.046
0.092
0.184
0.368
0.738
1.472
2.967
4.490
5.966

0.046
0.092
0.184
0.368
0.738
1.472
2.952
4.413
5.704

Table 3: Comparison of data rates between node x 96 x 96 and node x 48 x 48 mesh systems

Delta IL x JL (Pencil Dimension)

(ma) 192x1  96x2 64x3 48x4  32x6 24x8 16x12 12x16 B8x24 6x32 4x48 3x64 2x96 1x192
(6,32) 13.4 9.73 106 107 121 131 14.2 15.7 168 168 167 143 132 8.94
(8,24) 126 106 116 121 13.0 139 15.7 168 173 16 16.9 140 13.2 9.55
(12,16) 125 106 12.0 13.1 140 157 17.0 182 173 168 165 142 133 9.75
(16,12) 131 11.3 13.1 13.9 154 16.2 134 175 17.1 162 143 132 13.2 10.1

Table 4: Execution rates (Megaops) for a (192 x 192 x 192} grid system by pencil grouping scheme

of the logical sequence as the one-dimensional case. The
timing information for a (192 x 192 x 192) mesh system
mapped to the Delta using pencil grouping scheme with
various combinations of pencil dimension (1L x JL) and
Delta partition (rn, n) is tabulated in Table 4. The vari-
ation of data processing rates among the different pencil
partitions for a fixed Delta partition is significant. In
general, slower performance is observed when the pencil
dimension and Delta partition are at the extreme sit-
uations when the pencil grouping scheme degenerates
into one-dimensional parallelization. For example, the
pencil dimensions of (192 x 1) or (1 x 192) on a Delta
partition of (6,32) has a slower data processing rate of
13.2 or 8.94 Megaops, respectively.

A general performance improvement for an (IL x
J L) pencil dimension is noted when IL nearly equals
J L. The best performance for a given Delta partition is
observed when IL equals m and JL equals n, as under-
lined in Table 4. The timing data of the pencil partition
has revealed a parallel efficiency gain of 37% over that
of the one-dimensional partition.

6 Conclusions

A fractional-step, upwind numerical procedure for
solving the three-dimensional, time-domain Maxwell
equations has been ported to the Intel Touchstone Delta
multicomputer. The concurrent computations dupli-
cated the results from earlier numerical results and
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compared well with theory. For the mesh systems of
(node x 48 x 48) and (node x 96 x 96), the numerical
procedure is scalable up to 512 numeric nodes with only
up to 7.6 percent performance degradation. The fastest
data processing rate is 6.551 Gigaops and the sustained
overall performance is clocked at 5.704 Gigaops. Further
increased data processing rate is still possible.
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Figure 10: I/O scale factors for the coarse
and fine mesh systems

The scalability of concurrent computing is sus-
tained up to a simulation eight times the size of the
baseline case. The scalable performance failed at the



fourth level of grid point enrichment (192 x 192 x 192).
Although the architecture of the Touchstone Delta mul-
ticomputer and its usefulness are impressive, consistent
performance in scaling up for massive data bases re-
mains as a necessary research emphasis. The scalable
data I/O is also identified as a pacing item for intense
research for attaining high performance computation.

The one-dimension parallelization has been
shown as a suitable data partition procedure for a
characteristic-based, windward difference algorithm in
solving the time dependent, three dimensional Maxwell
equations. Further parallel efficiency improvement by
pencil structure shows developable potential.
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