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Abstract

The Measured Equation of Invariance (MEI) method has
received considerable attention recently. Unlike more
traditional numerical techniques, MEI solutions are ob-
tained by inversion of a relatively small and sparse matrix.
Therefore, the MEI method can potentially provide a so-
lution much more quickly than other techniques. To date,
the MEI method has been applied primarily to discrete
objects. In this paper, bistatic radar cross sections for
one-dimensional, perfectly conducting, randomly rough
surfaces are obtained using the MEI method. The imple-
mentation suitable for this problem requires some mod-
ification and enhancement of the original algorithm to
achieve the desired accuracy. These algorithmic changes
can be applied to the discrete scattering problem as well.
Monte Carlo results for the bistatic scattering cross sec-
tion for surfaces with Gaussian statistics and satisfying a
Gaussian roughness spectrum are compared to those from
another technique and excellent agreement is obtained,

I. Introduction

The Measured Equation of Invariance (MEI) method
was recently introduced [1, 2, 3, 4] as a way to deter-
mine the electromagnetic fields scattered from discrete
objects. Initially, results were reported mostly for con-
ducting two-dimensional objects, but the method can be
applied much more broadly. Hybrid techniques have been
used in conjunction with the MEI method to obtain scat-
tering from penetrable objects [5, 6, 7, 8]; however, many
of these scatterers can be analyzed using a simpler scheme
if the metrons are selected carefully {2]. Additionally, the
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MEI method can be used to provide solutions to Laplace’s
equation [3, 9].

The principal attraction of the MEI method is that it
yields a solution via a sparse and relatively small ma-
trix, and hence requires much less time and memory than
more conventional techniques. The computational mesh
is terminated very close to the scaitering object. Interior
mesh points are related to each other using standard finite
difference techniques while boundary nodes are handled
using the Measured Equations of Invariance. The time
required to fill the matrix is roughly O(N?), where N is
the number of unknowns on the boundary. Because the
matrix is sparse, the time required to invert the matrix is
small (O(N)); thus, the total computation time is domi-
nated by the time required to fill the matrix. This is in
contrast to the traditional Method of Moments approach
which requires the inversion of a full matrix (an O(N3)
operation).

In this paper the MEI method is used to solve for the
bistatic radar cross sections for randomly rough surfaces.
Specifically, ensemble averaging over a number of surface
realizations is used to approximate the results for a sin-
gle, infinitely long surface. Surfaces with Gaussian statis-
tics and satisfying a Gaussian roughness spectrum are
assumed. However, it should be emphasized that this nu-
merical technique is not restricted to this class of surfaces.

In Section II a brief review of the MEI methed is pro-
vided. The pertinent aspects of the rough surface scatter-
ing problem are outlined in Section III. In Section IV our
implementation of a MEI-based solution to the problem
is described. Finally, results are presented in Section V.

II. Review of the MEI Method

Ultimately, our goal is to solve the wave equation sub-
ject to the appropriate boundary conditions. For the



sake of concreteness, we assume TM illumination of a
perfectly-conducting, two-dimensional scatterer {e.g., a
surface for which the height varies as a function of one
spatial coordinate) so that the governing differential equa-
tion is reduced to a scalar one:

(VP +K)E. =0 1)

where k is the wavenumber of the incident field. If spaceis
discretized into a uniform mesh and a local configuration
of nodes is as shown in Fig. 1, (1) can be approximated
using central differences to obtain

- (4 - szz)EzO +Ea+En+Es3+E,4=0 (2)

where A is the separation between mesh points. This can
be written more generally as

N
> aiB. =0, (3)
i=0
where N is the number of nodes “connected” to the ze-
roth (central) node and the o;’s represent appropriate
weights. For a Cartesian structure, such as in Fig. 1, all
weights for the surrounding nodes are equal. Had a po-
lar mesh been used, the weights would have to account
for the global location within the mesh, i.e., the weights
would be a function of the radial distance from the ori-
gin. If a higher-order differencing scheme had been used,
N would have to be increased. These difference equations
are invariant to the location and geometry of the scatterer
and to the field of excitation. The appeal of the finite dif-
ference formulation is the sparsity and ease of calculating
the non-zero elements in the resulting matrix. However,
the finite difference approach is problematic in that it
provides no simple way to terminate the computational
mesh for unbounded problems.

To address this shortcoming, Mei developed the Mea-
sured Equation of Invariance (MEI) method that com-
bines features of both differential and integral based
methods [4]. Basically, the MEI method provides a means
to select appropriate a;’s in (3) so that the mesh need not
be orthogonal. This allows the fields at the nodes on the
edge of the computational domain to be related simply to
points in the interior. Furthermore, Mei maintains that
the resulting set of equations {and hence the a;’s) is lo-
cation dependent, geornetry specific, and -invariant to the
field of excitation. The MEI method does not seek to find
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a strict discretization of the wave equation. Instead, the
discretization that is obtained is an approximation to an
unknown operator that satisfies both the wave equation
and the radiation condition. ‘This is discussed in more
detail in [2].

To illustrate the technique, consider the configuration
of nodes shown in Fig. 2. These nodes are typical of the
mesh at the edge of the computational domain. We seek
a;’s such that

.23: Ct,'Ez,' = 0. ’ (4)

Since (4} is a homogeneous equation, one of the weights
(e.g., ®g) may be chosen arbitrarily. The remaining three
weights are determined via three equations. These equa-
tions are obtained by assuming independent source distri-
butions, known as metrons, over the surface of the scat-
terer. Each metron gives rise to a field, known as the
measured field, which is easily calculated. The weights
are obtained by satisfying (4) for each of the measured
fields. Specifically, three metrons are assumed J!, J2,
and J2. From these the nth measured field E*(r) is ob-
tained via

Exw) = [ 750)Gke (5)

where r is the observation point, r’ is a point on the sur-
face, and G(r|r’) is the appropriate Green’s function (typ-
ically the free space Green’s function). Asswming oy = 1,
the remaining weights are obtained using

-1

@ E.li.l Eiz Eia Eio
oy | =-| B} EI, Ei | E% (6)
a3 Egl Egz Ega Ego
which can be written as
a=-M"1-M, (7)

where the matrix M contains the measured fields at the
neighboring nodes while the vector My contains the fields
sampled at the zeroth node.

Although the metrons are chosen to be independent,
the sampled values of the measured fields over a small
number of mesh points may not be independent. Hence,
the matrix M may be singular and a solution to (7) will
not exist. There are several ways to circumvent this prob-
lem. Perhaps the easiest is to use more metrons, and sub-
sequently more measured fields, than unknowns. In this
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Figure 2: Typical configuration of nodes at the edge of the computational mesh

case, the weights are obtained via least squares so that o
is the vector that minimizes ||[M - & + Mg||. This least
squares operation is performed on a small matrix {e.g.,
in the work presented here M is 5 x 3) and thus requires
neglible time relative to the calculation of the measured
fields.

In principle the MEI method can be used for all nodes
within the computational domain. However, this would
require careful treatment of the singularity in the inte-
grand of (5) for nodes adjacent to the surface (i.e., at
least one neighboring node would be on the surface and
the measured field for this node would require careful cal-
culation of (5)}. To obviate the consideration of this sin-
gularity, a layer of nodes that use standard finite differ-
ence coefficients is placed adjacent to the surface. If the
mesh is non-orthogonal, but relatively undistorted, Pous
has found that weights can be obtained using a local po-
lar approximation [2]. This layer of nodes insures that
the measured fields only need to be calculated at points
above the surface.

From this point, the MEI method is similar to the fi-
nite difference method. The weights found above are used
to construct a “connectivity matrix” A that specifies the
relationship between every node in the mesh. Each row
number corresponds to the global node number for a given
unknown (i.e., the field at that node). The non-zero ele-
ments in that row correspond to the o;’s associated with
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the neighboring nodes and the node itself. The connec-
tivity matrix is sparse, and it may have other structure
(such as bandedness} that can be exploited. For nodes
that are adjacent to the surface of the scatterer, one of
the neighboring values corresponds to the known surface
field which serves as the forcing function to the system of
equations. Symbolically, this is written as

A.-E=F (8)

where E contains the unknown field values at each node
in the computational mesh and F is the forcing function
determined by a combination of the known surface field
and the weights determined using the local polar approx-
imation. The solution is then obtained via .

E=A"'F. (9)

Once E has been determined, the actual surface currents
are deduced and far-field quantities are obtained as de-
scribed in Sec. IV.

III. Rough Surface Scattering
Problem

Currently rough surface scattering is of interest to re-
searchers in a variety of disciplines. It has applications
in such diverse areas as ultrasonics, radar imaging, sonar
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where k is the wavenumber of the incident field, If spaceis
discretized into a uniform mesh and a local configuration
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where A is the separation between mesh points. This can
be written more generally as
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the finite difference approach is problematic in that it
provides no simple way to terminate the computational
mesh for unbounded problems.

To address this shortcoming, Mei developed the Mea-
sured Equation of Invariance (MEI) method that com-
bines features of both differential and integral based
methods [4]. Basically, the MEI method provides a means
to select appropriate a;'s in (3) so that the mesh need not
be orthogonal. This allows the fields at the nodes on the
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a strict discretization of the wave equation. Instead, the
discretization that is obtained is an approximation to an
unknown operator that satisfies both the wave equation
and the radiation condition. This is discussed in more
detail in [2].

To illustrate the technique, consider the configuration
of nodes shown in Fig. 2. These nodes are typical of the
mesh at the edge of the computational domain. We seek
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Since (4) is a homogeneous equation, one of the weights
(e.g., ap) may be chosen arbitrarily. The remaining three
weights are determined via three equations. These equa-
tions are obtained by assuming independent source distri-
butions, known as metrons, over the surface of the scat-
terer. Each metron gives rise to a field, known as the
measured field, which is easily calculated. The weights
are obtained by satisfying (4) for each of the measured
fields. Specifically, three metrons are assumed J!, JZ,
and J?. From these the nth measured field E?(r) is ob-
tained via

Er(r) = [ J)G(rlr)ds' )

where r is the observation point, r’ is a point on the sur-
face, and G'(r|r’) is the appropriate Green’s function (typ-
ically the free space Green’s function). Assuming ag = 1,
the remaining weights are obtained using
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where the matrix M contains the measured fields at the
neighboring nodes while the vector My contains the fietds
sampled at the zeroth node.

Although the metrons are chosen to be independent,
the sampled values of the measured fields over a small
number of mesh points may not be independent. Hence,
the matrix M may be singular and a solution to (7) will
not exist. There are several ways to circumvent this prob-
lem. Perhaps the easiest is to use more metrons, and sub-
sequently more measured fields, than unknowns. In this
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case, the weights are obtained via least squares so that o
is the vector that minimizes ||M - & + Mp||. This least
squares operation is performed on a small matrix (e.g.,
in the work presented here M is 5 x 3) and thus requires
neglible time relative to the calculation of the measured
fields.

In principle the MEI method can be used for all nodes
within the computational domain. However, this would
require careful treatment of the singularity in the inte-
grand of (5) for nodes adjacent to the surface (i.e., at
least one neighboring node would be on the surface and
the measured field for this node would require careful eal-
culation of (5)). To obviate the consideration of this sin-
gularity, a layer of nodes that use standard finite differ-
ence coefficients is placed adjacent to the surface. If the
mesh is non-orthogonal, but relatively undistorted, Pous
has found that weights can be obtained using a local po-
lar approximation {2]. This layer of nodes insures that
the measured fields only need to be calculated at points
above the surface.

From this point, the MEI method is similar to the fi-
nite difference method. The weights found above are used
to construct a “connectivity matrix” A that specifies the
relationship between every node in the mesh. Each row
number corresponds to the global node number for a given
unknown (i.e., the field at that node). The non-zero ele-
ments in that row correspond to the a;’s associated with
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the neighboring nodes and the node itself. The connec-
tivity matrix is sparse, and it may have other structure
(such as bandedness) that can be exploited. For nodes
that are adjacent to the surface of the scatterer, one of
the neighboring values corresponds to the known surface
field which serves as the forcing function to the system of
equations. Symbolically, this is written as

A-E=F (8)

where E contains the unknown field values at each node
in the computational mesh and F is the forcing function
determined by a combination of the known surface field
and the weights determined using the local polar approx-
imation. The solution is then obtained via

E = A"'F. (9)

Once E has been determined, the actual surface currents
are deduced and far-field quantities are obtained as de-
scribed in Sec. IV.

II1. Rough Surface Scattering
Problem

Currently rough surface scattering is of interest to re-
searchers in a variety of disciplines. It has applications
in such diverse areas as ultrasonics, radar imaging, senar



detection, solid-state physics, optics, astronomy, and mi-
crowave remote sensing.

In the past three decades, much work has been done
in the development of approximate analytic models to
predict wave scattering from rough surfaces. These in-
clude the small slope approximation [10, 11, 12], the
phase perturbation technique [13, 14], the operator ex-
pansion method [15, 16], the Dashen-Wurmser approx-
imation [17], the unified perturbation method [18, 19],
and the quasi-slope approximation [20]. In addition, some
work has been done in the development of Monte Carlo
numerical techniques that are exact in the sense that no
physical approximations are made in the underlying equa-
tions. These include techniques based on integral equa-
tions (21, 22), the finite element method [23], and finite
difference methods [24, 25, 26]. In this work we consider
the MEI method. We restrict our consideration to per-
fectly conducting, one-dimensional, randomly rough sur-
faces with Gaussian statistics and satisfying a Gaussian
surface roughness spectrum [27). Surfaces with Gaussian
statistics have been studied extensively [11, 21, 28, 29].

The problem geometry is shown in Fig. 3. TM illumi-
nation is assumed so the total electric field at the surface
vanishes (Dirichlet boundary condition). The surface pro-
file is given by f(x). The mean height of the surface is
zero, i.e., {f), = 0, where {-), indicates averaging over the
entire surface. The standard deviation, or RMS surface
height, is given by h = \/ﬁ Both surface heights and
slopes are Gaussian distributed.

The normalized correlation function is defined by

CO= Wi, (10)
which for Gaussian surfaces is given by

, _e
co=ew (7). (1)

The correlation length ! is the length at which the cor-
relation function decreases by a factor of 1/e. The sur-
face roughness spectrum is obtained by taking the Fourier
transform of h2C((). For Gaussian surfaces, the statis-
tics are completely specified by just two parameters, the
correlation length and the RMS surface height, and gen-
eration of surface realizations is relatively simple [21, 27].
In numerical simulations of rough surface scattering,
finite-length surfaces must be used to model scattering
from infinite surfaces. When a single plane wave strikes
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a finite-length surface, edge diffraction occurs. One way
of minimizing diffraction effects is to construct an inci-
dent wave that tapers to very small values at the surface
edges. Diffraction still occurs, but it makes negligible con-
tributions to the scattered field. Tapered incident waves
have been introduced by Thorsos [21] and Chan and Fung
[22]. The tapered incident field used by Thorsos is an ap-
proximation to an incident field, consisting of an angular
spectrum of plane waves, that satisfies the wave equation
exactly. This approximate field is given by

Ei(r) = exp {—jk; -r[1+ w(r)] — (z — ytans;)/g°}
(12)
where

w(r) = [2(z — ytan8;)?/g* — 1] /(kgcos;)?,  (13)

r = (z,y) is a point above the surface, §; is the in-
cident angle measured from the vertical, and k; =
ko(sin 8;, cos #;) is the free-space incident wave vector in
the zy plane. Equation (12) satisfies the wave equation
to order 1/(kogcos®;)? for kogcosé; >» 1. The parame-
ter g controls the tapering, and care must be taken in its
choice. Angular resolution, edge effects, and accuracy in
satisfying the wave equation all depend on g [21]. In ad-
dition, the tapering must be accomplished in such a way
that differences between the finite surface, tapered plane
wave results and infinite surface, single plane wave results
are negligible. For the numerical examples presented in
this paper, g = L/4 is used, where L is the horizontal
extent of each surface.

For each numerical study, 50 finite-length surfaces are
generated using the method proposed by Thorsos [21].
Monte Carlo results are then obtained by taking the en-
semble average of the cross sections of the 50 surfaces.
The general procedure is to randomly generate a surface
spectrum that has Gaussian statistics and then inverse
transform the spectrum to obtain a surface profile. Each
surface consists of N discrete points horizontally sepa-
rated by Az over a surface length L'. The r component
of each point along the surface is specified by the location
Tn = nAz for 1 € n € N. The surfaces are generated
using

Nj2—1

1 .
flzn) = T Z F(K;) exp[—jKezn]
é=—N/2

(14)
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where, for 0 < £ < N/2,
1 ,
F(Ke) = VzﬂL’W(Ke)ﬁlN(Oal) —JN(0,1)]  {15)
and for £ = 0 or N2

F(Ke) = VERDW(KN(0,1) (16)
In (14)-(16)
% 2,2
W(Ke) = oW exp[—K¢l" /4] (17)

is the Gaussian surface roughness spectrum, K
ome/L', h is the RMS surface height, { is the correlation
length, and N(0,1) is a number sampled from a Gaus-
sian distribution with zero mean and unity variance. For
<0, F(K_¢) = F(K¢)".

The nature of the discrete spectrum causes correlation
of the ends of each surface. To circumvent this, an ex-
tended surface, several times longer than the N required
points, is generated. Each surface used in the numeri-
cal simulation is then cut from the longer surface and,
hence, the correlation of the ends is negligible. For the
numerical studies presented here, surfaces with a length of
L' = 256 were generated but segments of length L = 80A
were used in the calculations (A is the wavelength of the
illumination).

IV. MEI Method for Rough
Surfaces

In order to use the MEI method, a computational mesh
enclosing the scattering object must be specified. Figure 4

shows a segment of a typical surface with a two-layer com-
putational mesh. To generate the mesh, two mesh points
are specified for each surface point. Both points are along
the surface normal and are separated by a distance Av.
To obtain the surface normal, the surface slope is needed.

The z and y components of the surface unit normal vector
are
1
—f'(z
. = ..__f(_)__2 (18)
1+[f'(=)]

1

ny = (19)

Vi+(r@r

where f'(z) = df/dz. The surface derivative could be
obtained approximately using finite differences; however,
the surface spectrum is needed to generate the surface

realizations and is available to obtain surface slopes (see
(14)). Thus, we find f'(z) via

f'(e) = FTU(iKF(K)) (20)

where F~! denotes the inverse Fourier transform.

Note that the surface generation scheme creates points
that are horizontally offset from neighboring points by
Az. However, since neighboring points do not necessarily
have the same vertical components, the distance between
points is nonuniform.

Figure 5 shows an expanded view of one corner of the
computational mesh. The global node numbers are shown
together with some of the node interconnections. Odd-
numbered nodes correspond to nodes in the interior while
even-numbered nodes are on the outer boundary. The
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first and last two nodes are exceptional and must be
given special consideration. In our implementation, all
odd nodes (except 1 and N — 1) are connected to neigh-
boring nodes in a manner similar to node 13 shown in
Fig. 5. Since neighbors are available above, below, to the
left, and to the right, the local polar scheme proposed by
Pous can be employed [2]. As mentioned before, this sim-
plifies calculation of the connectivity weights and makes
consideration of the singularity in the Green’s function at
the surface unnecessary. All even nodes between 2 and
N are handled using the MEI method. These nodes are
connected to one neighbor in the interior and to the neigh-
bors to the left and right as shown for node 8. Nodes 2
and N are both connected to only two neighbors and are
handled using the MEI method. Nodes 1 and IV — 1 are
treated using the local polar approximation. For these
nodes, an additional node is assumed to exist to the left
of node 1 or to the right of node N —1 so that the proper
weights can be determined. However, the field is assumed
to be zero at the fictitious neighbor and it does not enter
into the calculation. Note that the tapered incident field
is small near nodes 1 and N —1 so setting the field to zero
should introduce negligible error. With this connectivity
scheme, the connectivity matrix A is not only sparse, but
is also tightly banded—there are a total of five diagonals
(including the main diagonal) that contain non-zero ele-
ments. A number of public domain routines exist, such
as those in LINPACK [30], that can be used to efficiently
invert such a matrix.

In many rough surface scattering problems bistatic
results span a range of over G0 dB. For instance, for
slightly rough surfaces the ccherent specular reflection
contains significant energy relative to the incoherent en-
ergy found at grazing angles. This dynamic range re-
quires an extremely accurate numerical solution. In pre-
viously published results the accuracy of MEI-based so-
lutions was, at most, weakly dependent on the selection
of metrons. However, we found that using an initial se-
lection of metrons that are physically unrealizable leads
to poor results. Because of the accuracy required and the
difficulty in making a “good” initial selection of metrons,
an iterative scheme was used. The initial set of metrons
was

Ja(ri)
J2(rs)

H

exp(—z;/g°)
cos(ko&;)

Jo(r:) = sin(ke&:)
Jix)) = exp(—z}/g®)cos(koys)
Ji(r) = exp(—zi/g*)sin(koy:)

where g is the taper factor commensurate with the inci-
dent field, r; = (z;, y;) corresponds to the ith point along
the surface, £; is the path length along the surface from
the first point to the ith point, and ko is the free-space
wavenumber. Using the following Green’s function

' k
G(rlt') = = H? (kolr - '), (21)

where 7y is the characteristic impedance of free space, the
measured fields are obtained (see (5)) using

N
Er(r) = Y Jr(r)G(rlr) AL

i=1

(22)

where Ag; is the distance from the ith to the (i 4+ 1)th
point (Aéy is set equal to Afn—1).

The iterative scheme proceeds as follows. The metrons
shown above are employed in the MEI method to obtain
the fields above the surface. From these flelds a surface
current is obtained. The calculated current is used to re-
place one of the metrons. The calculation of fields and
currents is repeated except now a different metron is re-
placed with the calculated current. This is repeated un-
til sufficient accuracy is obtained or there are no more
metrons to update. For each iteration, it was found that
there is virtually no change in the scattered field in regions
where there is significant energy. The iterative scheme is
only necessary to obtain improved accuracy where the
fields are significantly less than the maximum. There are
a myriad of other iterative schemes that could be devel-
oped; the one presented here is not necessarily the opti-
mum one. A better initial selection of metrons may have
eliminated the need for iteration. However, this scheme
does illustrate that an iterative technique can be used
when there is little or no a priori knowledge of the actual
source distribution.

It is worth mentioning that, in principle, an iterative
scheme can be done with little additional computational
overhead. The majority of CPU time is spent calcu-
lating the terms G(r|r;} for pairs of surface and mesh
points. In principle, these terms just need to be calcu-
lated once (since they depend only on the geometry of
the grid) and then multiplied later by the appropriate
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metrons. However, in practice this requires the storage
of 2N? terms, which represents a prohibitive amount of
memory for large problems. The code developed for this
study was not optimized, and the Green’s functions were
recalculated for each iteration.

To calculate far-field quantities or to update the
metrons in the iterative scheme, it is necessary to obtain
the surface currents from the MEIl-derived electric field.
The currents are found using

_ =1 9k
*7 jkomo On

(23)

where n is normal to the surface. Given the mesh struc-
ture and the fact that the total field is zero at the surface,

the current can be found at a point on the surface using

~1 E.(Av) _ -1 (EM(Ay)+ EN(Av))
" kem Av ke Av

(24)
where EM®(Av) is the MEI-derived scattered field at
the first mesh point above the surface (i.e., the first point
above the surface normal and on the surface normal}) and
Ei'“C(Av) is the known incident field at the same point.
However, this is only accurate to order O{Av). Since
the scattered field is available at two mesh points above
the surface, the surface current is obtained using second-
order forward-differencing. Thus, the normal derivative
is found using

1

OE.
an  2Av

(4E.(Av) - E.(2av))  (25)
where E, = EM€l ¢ FINC g the total field.

Qur goal is to calculate the bistatic radar cross section
per unit length for a plane wave incident on a 1-D surface.
This is found using [31]

I.p

a(0,,0;) = ZWI_L

(26)

where p is the distance to the far-field observation point,
L is the length of the surface, I, is the scattered inten-
sity, I; is the incident intensity, #; is the angle of obser-
vation measured from the vertical, and §; is the angle of
incidence measured from the vertical. In order to find
the bistatic radar cross section, it is necessary to convert
the surface current to the electric field in the far field.
Equation {22} could be used; however, given the distant
location of the observation point, the large argument ap-
proximation of the Hankel function is used. Thus, for an
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incident field with unit magnitude, we obtain the cross

section using

0'(33, 9!) =
ko |
T Z Js(ri)A&iexp(jko(z; cos 8, + y; sind,))

=l

(27)
2

V. Results

To illustrate the results of the method, consider a sur-
face with kgh = 0.33 and kol = 2.83. This surface has an
RMS slope angle of v = 9.46°. Fifty surface realizations
of length L = 80X were generated and enclosed in a mesh
with Ax = Av = A/16. (This mesh spacing is typical of
that reported in other applications of the MEI method.
It was found that using a finer spacing did not improve
the results, while a coarser mesh yielded slightly worse
results.) Figure 6 shows the bistatic radar cross section
obtained using the MEI method and an FDTD technique
[32] that is known to be accurate for this type of sur-
face. Since normal incidence was used, coherent specular
return is at 0°. The small oscillations in the curve are
due to the use of a finite number of surface realizations.
Since two different sets of surface realizations were used,
the oscillations do not coincide. These two methods show
excellent agreement throughout the 60 dB range of the re-
sults. The MEI method results were obtained after three
iterations of the metrons.

Figure 7 shows the cross section when the same surface
as used for the results in Fig. 6 is illuminated by a wave
incident at 45°. All aspects of the calculation (e.g., mesh
structure, taper factor, and surface realizations) are the
same as before except five iterations were used. As ex-
pected, the coherent specular peak is at 45°. The two
results show excellent agreement everywhere except to-
ward backward grazing angles.

Figure 8 shows the results for a surface with k¢h = 1.72
and kol = 7.31 that is illuminated with a normally inci-
dent wave. Five iterations were used. Compared to the
previous surface, the correlation length has increased by
a factor of 2% and the RMS surface height has increased
by twice this same factor. This change in parameters ap-
proximately doubles the RMS slope angle so that it is
now 18.43°. Because this surface is fairly rough, it pro-
duces no clear specular return; instead incoherent energy
is broadly distributed over a range of scattering angles.
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Figure 6: Radar cross section as a function of scattered angle for normal illumination of a

surface with koh = 0.33 and kel = 2.83.

Again, there is good agreement between the two meth-
ods except at low grazing angles where the MEI method
overpredicts the cross section.

The three results presented here were done in a consis-
tent manmer, i.e., all were solved using the same approach.
The only difference between runs was the number of
iterations—no other modifications were attempted to try
to optimize the results for a particular geometry. In fact,
there is every reason to believe that the results presented
here are not optimum. For example, a better metron
for use in the initial set might be one cbtained from the
physical optics equivalent, namely, J, = 2n x HINC, This
could be used instead of the constant metron J} given
in (21) and probably would be appropriate for surfaces
with relatively long correlation lengths. Additionally, by
incorporating the z and y components of the wavenum-
ber rather than just using ky, the metrons could contain
more knowledge of the incident field. There may alsc be
better mesh structures than the one presented here.

V. Conclusions

Although the limits of the MEI method have not been
completely explored, the work presented in this paper il-
lustrates that the method has the potential to provide
accurate solutions to rough surface scattering problems.
The problem examined in this study required a large dy-
namic range. Accuracy was achieved using an iterative
scheme. Additional accuracy was ebtained by calculating
the surface currents using second-order forward differenc-
ng.

Since the MEI method provides a solution via a sparse
and relatively small matrix, it can potentially solve rough
surface scattering problems in three dimensions. In that
case the metrons would be a function of two variables,
rather than one, and it may be much harder to select
“good” metrons. Therefore, the use of an iterative scheme
in three dimensions may be critical for successful imple-
mentation.

The TE problem has not been discussed but is solved in
a manner very similar to that presented here. The solu-
tion for penetrable objects involves enclosing the material
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Figure 7: Radar cross section as a function of scattered angle when 6; = 45° for a surface

with kgh = 0.33 and kol = 2.83.

interface in a mesh—with mesh points on both sides of
the interface. This mesh can be terminated close to the
interface, but the solution is complicated by the fact that
metrons must be specified in terms of both their value at
the surface and their normal derivative at the surface.

Several other problems remain to be investigated. For
example, if a surface is extremely rough, the computa-
tional mesh may cross itself. In other words, as mesh
points are placed along the surface normal, some points
will no longer have monotonically increasing values in the
z direction if the normal directions change too abruptly
(such as in a narrow valley). This type of highly distorted
mesh does not permit use of the local polar approxima-
tion but may yield to analysis by using the MEI method
for nodes in the vicinity of the mesh overlap. Other re-
maining topics include determination of optimum mesh
structure (both in terms of spacing and number of layers)
and best selection of metrons.
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