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ABSTRACT

In many antenna applications, it is a
requirement to have knowledge of the antenna phase
center properties. Many interpretations of antenna phase
center and its apparent location exist. This paper will
present a formulation for determination of antenna phase
center location derived using the antenna phase response.
A fortran program, developed from the formulations, is
used to calculate phase center location for several
examples which include both computed and simulated
measured phase data. A simple numerical technigue is
presented that processes measured phase data allowing
accurate phase center determination.

1. INTRODUCTION
The purpose of this paper is to present a
numerical technique that will allow accurate

determination of antenna phase center location for any far
field observation angle. This numerical technique allows
for phase center determination from both computed and
measured phase response data.

Knowledge of antenna phase center is most
useful in applications such as reflector antenna feed
positioning and RF position determination systems such
as GPS (Global Positioning System). In these
applications, it is sometimes necessary to assign a
reference point to the system antenna from which
radiation may be said to emanate and to which
positioning mformation can be referenced.

For these systems, this reference point is defined
as the phase center of the antenna. When referenced to
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the phase center, the fields radiated by an antenna are
spherical waves with identical spherical wavefronts or
equiphase surfaces [1].

The following sections of this paper will present
the two most common approaches for determination of
antenna phase center. It will be shown that these
approaches agree only if the antenna has the radiating
phase properties of an ideal point source.

Additionally, later sections of this paper will
expand on the phase center definition to provide a
numerical technique for determination of antenna phase
center location for any far field observation angle.

THE CENTER OF MINIMUM PHASE
VARIATION

In previous works, it is generally agreed that the
antenna phase center is the location from which radiation
may be said to emanate and that this location can be
found from the center of curvature of the radiated phase
contours of the antenna [1-14]. Since the radiated phase
contours of an antenna are angular dependent, it follows
that the antenna phase center location is also angular
dependent.

One of the most common approaches used in
previous works to determine the so called "antenna phase
center” is to locate a single point on the antenna boresight
axis that, when used as the far field reference coordinate
origin, results in minimum variation in the antenna’s far
field phase response as a function of observation angle.
This approach produces a single point weighted average



location for all observation angles, restricted to lie along
the antenna boresight axis [4-6, 9-12). Since antenna
phase center is angular dependent, this single point
location cannot be defined as the true antenna phase
center. More appropriately, this single point location can
be defined as the center of minimum phase variation.

Given that the antenna phase center is the center
of phase curvature, this point will only correspond to the
true antenna phase center (for all observation angles), if
the antenna radiates a true equi-spherical wavefront. For
practical antennas, the phase front curvature will
generally project an antenna phase center that is not
located on the boresight axis.

Since the center of minimum phase variation
cannot be measured or calculated implicitly, it must be
determined once the phase response of the antenna is
known. One method used to determine this point is to
rotate the antenna about various points along the
boresight axis until a rotation point is found which
produces minimum variation in the observed phase
response. A similar numerical technique is to perform a
least mean square error curve fit of the phase response to
that of a point source located along the boresight axis.
The point source location that results in a "best fit" is then
taken as the solution. In either method, this point, the
center of minimum phase variation, is then taken as the
phase center with the understanding that it is only an
approximation to the phase center location for a narrow
beamwidth of observation in the main pattern lobe [14].
In some applications, it may be necessary to have a more
accurate knowledge of the antenna phase center location
for all observation angles.

The next section of this paper will present a
more complete derivation of antenna phase center that is
accurate for all observation angles and that does not
resirict the antenna phase center to lie along the boresight
axis.

3. ANTENNA PHASE CENTER

This section of the paper presents an approach
for determination of antenna phase center [1] that is valid
for all observation angles in any given far field sweep
plane.

Each of the far field components radiated by an
antenna can be written (assuming the usual &®“/r
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dependence) as:

E =E(8,$)e"®¥ 2 (N
where a is a unit vector, E(8,¢) and F(0,¢) represent,
respectively, the (8,9) variations of the amplitude and
phase, where 8 and ¢ are the usual angular co-ordinates
in spherical geometry as shown in Figure 1.

The amplitude pattern of the far field is
independent of the co-ordinate system in which the
antenna is located. The phase function, F(8,¢), however,
is sensitive to the location of the co-ordinate origin (since
it is implicitly referenced to the origin} and if there exists
an origin which reduces F(0,$) to a constant, then this
origin is said to be the phase center of the antenna {1,13].
Since this definition of phase center depends upon the
polarization of the field and the planes which contain the
angular variables © and ¢, these quantities must be
specified whenever the concept of phase center is used.

Considering a sweep in only the ¢ plane, 8 = 90
degrees, the phase is function of ¢ whatever the origin
chosen but over a small range of ¢ there may exist a point
PC such that F(i) is practically constant. If PC is chosen
as the phase center for a given aspect angle ¢,, then the
range of ¢ for which the fixed point PC can be used as the
phase center will depend on the allowable tolerance on
F($). To find the point PC, use is made of the evolute of
aplane equiphase contour. The evolute is the locus of the
center of curvature of the contour, and the center of
curvature corresponds to the location of an origin which
leads to no change in the phase function over an
increment Aj. Knowiedge of F as a function of ¢ for any
origin near the antenna is sufficient to determine the
evolute of a far field equiphase contour.

In the co-ordinate system of Figure 2, OP =r is
the distance from the origin to a point on an equiphase
contour S. The ray DP is normat to the tangent line of S
at P, therefore DP, or an extension of DP, must pass
through the center of curvature.

In the following development [1], point D at x =
-d is found, then r is made very large so that y is
approximated by ¢. Knowing d and y for each point on
the curve, a pencil of lines such as DP can be determined.

The locus of the phase center, or equivalently,
the evolute of S, is traced by the envelope curve of the
rays.



Let an equiphase contour in the x-y plane be
given by

F(¢)- pr=C @
where C is an arbitrary constant. Then,

r = f($) = (F(¢) - CY/p = (F - C)/p €)
and

dr/d$ = F'/p @)

where the prime denotes differentiation with respect to ¢.

From Figure 2 we also have,

x =r cos(d) %)

y =1 sin(¢) (6)

tan(y) tan(s) = -1 M

tan(y) = y/(x + d) @&

¢ = tan"'(y/x) ®
then

d = (y/tan(y)) - X (10)
Substituting for tan(y) gives

d=-y tan(s) - x (1)

If we let r be represented as a function of ¢ as in
(3), r = f($), we may substitute (9) to give

r = f(tan(y/x)) a2)
then

X2 +y? = = {f(tan’ ()} (3)
s0

X2+ y? - {fltan ()} = 0 (14)

which is a function containing both the spatial terms and
the phase front properties.
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We seek an expression for tan(s) in (11) which

may be obtained by noting that
tan(3) = tan(y + n/2) (15)
and
tan(y) = -dx/dy (16)
thus
tan(s) = dy/dx 7
Carrying out the implicit differentiation on (14)
yields
E(0) £/(0) (-—5—)
X4y
tan (d)- p
y-£(0) £ (d) { 3 2)
X5y
(18)
_ %sin {¢)+rcos (D)
) E-cos {®)-rsin (@)
dop
Substituting (3) and (4) gives
Esin (0)+2Ccos ()
tan (8)- B (19)

F! F-C
—cos (p)-—sin ()
B B

which relates the angular variable & to the observation
variable ¢ and the field phase properties through F.
Substituting into (11) to include the phase center
geometry yields

d=—£( F{F-C) )

20 (F-C)sin (§)-F'cos (¢)

20)



where, as noted earlier, the prime denotes differentiation
with respect to . Changing to a new variable u = 2n
cos(¢) and writing d in terms of A, we obtain

-dF/du
1. udfF/du
Br

4q, @n
A

where the d on the right hand side of (21) denotes
differentiation, not to be confused with the distance
parameter d. Since pr>> | we may approximate (21) as

d/x = -dF/du 22)

We may approximate (22) by computing the
change in F for an incremental change in u, ie.

di F(¢_£*'A¢)'F(¢J_)

A 2m(cos (&0} -cos (0,))

(23)

where ¢ is a given value of ¢ and Ad is 2 small angular
increment. As A¢ becomes small, equation (23)
approximates the derivative of F(4) with respect to the
variable 2 cos{d). Once d is found as a function of ¢,
rays such as DP can be drawn by setting y = ¢. The
evolute of the equiphase contour is then the envelope
curve of the rays. Once the rays such as DP are
constructed for all observation angles, the phase center
location on the evolute can be determined. From (23) it
can be seen that, for an antenna to exhibit minimal phase
center movement, it must have a near constant phase
response. It should also be noted that, regardiess of the
location of the co-ordinate origin chosen, the formulation
will always calculate the same phase center location in
relation to the antenna position.

The phase center location on the evolute is
calculated by finding the point of intersection of
successive rays as shown in Figure 3 [15]. The rays are
shown for two successive observation angles, ¢, and ..
The values of d; and d, are calculated using (23). The
phase center location for an observation angle ¢, is
located at a point PC(x,,y.) which is defined by a length
L from the co-ordinate origin and an angle ¥, defined
from the ¢ = 0 degrees axis.

49

From the geometry defined in Figure 3,

L=(x+y)"” 24
x,=k+d, (25)
Y. =k tan(Q,) 26)
and
tan (Qz)
PR 1'd2)
X tan (Ql)
) tan (Qz) @7
“tan (Q;)
where
0, ==n-¢ (28)
and
Q=n-d @9

The value of ¥ can be found from tan'(y,/x,)
and by locating PC(x,,y,) in the proper quadrant. It
should also be noted that the positive x direction is to the
left of the origin, which is consistent with a positive vaiue
of d.

In order to calculate the antenna phase center
location L, and the corresponding angle ¥, a fortran
program was written which performs the calculations of
equations (23) through (29} for any given phase response
as a fimction of observation angle. This fortran program
allows calculation of antenna phase center location for all
observation angles in a given angular sweep plane.
Successful use of this formulation and fortran program
has been previously demonstrated in the literature |2, 15-
19].

The following sections of this paper will provide
example phase center calculations and some details
regarding special considerations for use of the above
formulations with measured phase data.



4. EXAMPLE CALCULATIONS USING

COMPUTED PHASE DATA

This section of the paper presents two examples
of antenna phase center calculation using the formulations
developed in section 3 and the resulting fortran program.
These example calculations are based upon the use of
computed antenna phase response data. The next section
of the paper will demonstrate the use of the formulations
with simulated measured phase response data where some
special considerations must be taken into account. For
the following phase center determinations, a ! degree
angular increment was used in the generation of the phase
response and all resulting formula calculations.

The first case to be considered is that of an ideal
point source where the phase center is located at the point
source for all observation angles. To demonstrate that the
formulations are independent of the co-ordinate origin
selected, the point source is arbitrarily located 1.654 away
from the co-ordinate origin along the +y-axis. The co-
ordinate system reference is taken from Figure 1.

The far field phase response for the point source
in a & sweep (8 = 90 degrees) is shown in Figure 4. The
phase center location, calculated using the formulations
of section 3, is presented by L, the radial distance from
the coordinate origin, and 2, the angular location, where
¥ and ¢ bave the same 0 degree reference axis. Land ¥
are presented in Figures 5 and 6, respectively. As
expected, the phase center location is calculated to be at
the point source for all observations angles.

The next example is that of a 10 element log-
periodic dipole antenna with the following parameters:

t =092

¢=0.172

Element radius = 1.4 mm
Longest dipole length = 0.395 m
Longest element half-wavelength
frequency = 380 MHz

Shortest element half-wavelength
frequency = 805 MHz

The antenna boresight axis was oriented along
the y-axis with the dipole elements paralle] with the z-
axis. The co-ordinate origin was located at the front
antenna element. All antenna characteristics were
calculated at a frequency of 432 MHz. The radiation
characteristics of the log-periodic antenna were computed
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using a fortran program previously deveioped by the
authors.

The amplitude and phase characteristics of this
antenma are presented in Figures 7 and 8, respectively.
The phase center location parameters, L and ¥, are
presented in Figures 9 and 10, respectively. It can be
seen that the phase center location about boresight (¢ =
90 degrees) is relatively stable at approximately 0.664
away from the co-ordinate origin at an angle of 270
degrees. This is consistent with the active region of the
log-periodic antenna at a frequency of 432 MHz. This
phase center location is essentially fixed for some +43
degrees about the boresight axis which is consistent with
the 3 dB beamwidth of the antenna.

As a far field observer moves outside of the
main lobe of the antenna, the phase center properties
change significantly. This is most noticeable in regions
of amplitude nulls which exhibit rapid phase changes. In
the null regions behind the antenna, the phase center
exhibits a large displacement away from the antenna
(approximately 8 wavelengths) and it reverses location
about the antenna as the observer moves from one side of
the null to the other. This behavior is typical for all
antennas exhibiting similar null characteristics.

In general, the phase center of an antenna
exhibits small displacements in regions within the main
lobe of the antenna. The broader the antenna pattern
lobe, the more constant or fixed the phase center location
becomes. In regions of rapid amplitude changes or nulls,
the phase center tends to exhibit rapid and large
displacement about the antenna.

EXAMPLE CALCULATIONS USING
MEASURED PHASE DATA

5.

The formulations of section 3 can be applied to
measured phase response data as easily as they are to
computed phase response data. However, in many cases,
the measured phase response can be contaminated with
slight variations in the phase contour due the presence of
noise or inaccuracies within the measurement equipment
or test setup. This section will present a discussion of
how these measurement variations affect phase center
location determination. A simple numerical correction
technique will be presented that, when applied to
measured phase response, will reduce the affects of phase
measurement noise and variations.



In previous sections, it was shown that the
antenna phase center location is a function of the
antenna's radiated phase contour. From equations (23)
and (27), it is also evident that the phase center location
is a function of the first and second derivatives of the
phase contour. This indicates that the phase center
location is very sensitive to small variations in the phase
contour. Phase center calculations made using measured
phase response data may have large etrors since the data
may be contaminated with measurement noise. This
measurement noise would appear as rapid variations in
the phase contour over small angnlar segments which
would cause discontinuities in the derivatives of the phase
contour. These phase derivative discontinuities in the
measured phase response data must be removed through
a filtering process. The technique wsed here to
numerically filter the measured phase response data is a
cubic spline interpolation [20].

As an example of this numerical filtering
process, consider the computed phase response of the log-
periodic antenna as presented in the previous section. For
this example calculation, the log-periodic's computed
phase response was corrupted with a +1 degree random
noise to simulate a noisy measured phase response.
Using the noise corrupted phase response, the phase
center location of this antenna was calculated and
compared to the results obtained in the previous section.
This comparison is graphically presented in Figure 11.
For this comparison, the phase center parameter L is only
considered since the same discussion applies for the
parameter F. Also, information is only presented for
observation angles of ¢ = 0 to 180 degrees.

From Figure 11, it can be seen that no
correlation exists between the two calculated phase center
locations. Using the noisy phase response data results in
a calculated phase center location that has no meaning.
The noisy phase response has a contour that exhibits rapid
changes over small angular segments. This drastically
affects the phase center calculations since they are a
function of the phase contour derivatives. In order to
improve the phase center caiculations for the noisy phase
response data, a filtering process must be applied to
smooth the phase response contour. This smoothing will
improve the first and second derivatives of the phase
contour which will allow more accurate calculation of
antenna phase center location.

In this example, the filtering process used is a
cubic spline interpolation which is applied directly to the
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noisy phase response. The noisy phase response is
interpolated over the 0 to 180 degree angular sweep using
10 degree sample points. To ensure more accuracy at the
ends of the sweep, the interpolation uses additional
sample points at -5 and 185 degrees. The solution to the
cubic spline interpolation is taken at 1 degree intervals.

Using the interpolated phase response, the phase
center location was again calculated and compared to the
results obtained using the computed phase. This
comparisen, again considering only the L parameter, is
presented in Figure 12. The comparison demonstrates a
significant improvement in the calculation of antenna
phase center location, however, the results are still
unsatisfactory in that they do not accurately predict the
phase center location as well as expected.

To examine the effects of the noise on the phase
center calculations, it is necessary to examine the
derivatives of the phase contour. The first, second and
third derivatives of the interpolated phase respanse were
calculated and compared to those of the computed phase
response. These derivatives are compared in Figures 13,
14 and 15. From these derivative comparisons, it is
apparent that the phase center calculations are inaccurate
because of the disagreement between the phase
derivatives. This is most noticeable in the second and
third derivative calculations. The third derivative of the
interpolated phase response has obvious discontinuities
every 10 degrees corresponding to the interpolation
sample points. This is expected since a cubic spline
interpolation gnarantees only continuous first and second
derivatives at the sample points. Also, the cubic spline
interpolation does not guarantee agreement between the
interpolated and original data's second derivatives.

In order to improve the prediction of antenna
phase center location with the noisy phase response data,
the filtering technique must make a better prediction of
the second and third derivatives of the interpolated phase
response. This can be accomplished by interpolating the
first derivative of the interpolated phase response using
the 10 degree sample points. Figure 16 presents a
comparison of the interpolated phase response's second
derivative where the first derivative of the interpolated
phase is itself interpolated at the sample points. A
significant improvement in the comparison is seen.

As an alternative to interpolating the first
derivative of the interpolated phase response, the values
of d; in equation (23) can be interpolated. To demonstrate



this technique, the phase center location of the noisy
phase response is calculated by first terpolating the
phase response and then interpolating the values of d;. In
the region of the main beam, the sample points for
interpolation of d; were taken at 30 degree intervals to
increase the filtering process. Figure 17 shows the
recalculated phase center location compared to that
calculated from the computed phase respomse. A
significant improvement in the accuracy of the phase
center location is obtained.

In order to predict the antenna phase center
location accurately from measured phase response data,
which is susceptible to noise or irregular phase variations,
it is necessary to filter the phase response. This filtering
technique requires that the measured phase data be
interpolated using a cubic spline interpolation routine at
appropriate sample points. Also, the filtering technique
requires that the values of d; in the phase center
calculations be interpolated for a higher level of accuracy.
The sample points should be chosen such that an accurate
interpolation of phase can be made with as much angular
separation between the sample points as possible.

A DISCUSSION OF THE USE OF AND
ACCURACY ASSOCIATED WITH THE
PHASE CENTER CALCULATIONS

6.

The technigue used in this work to calculate
antenna phase center Jocation is intended for computed
phase data or measured phase data recorded under
laboratory conditions. Computed phase data will
generally not exhibit rapid fluctuation over small A¢ and
will not require numerical filtering. Measured data may
exhibit some noise or fluctuations due to set up ar
equipment limitations, however, the numerical filtering
technique should allow accurate determination of the
antenna phase center properties.

The calculations of the phase center location are
a function of the antenna's phase response and the A¢
chosen for the angular sweep. In general, a greater
accuracy can be obtained by reducing A¢ to as small a
value as possible. For most antennas that exhibit a broad
pattern beamwidth, a A of 1 degree is sufficient. If the
antenna has a narrow pattern beamwidth or exhibits rapid
phase change over small angular regions, then it is
necessary to reduce the value of Ad.
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The value of A¢ chosen for a specific antenma
must be left to the judgement of the individual
performing the phase center calculations.

In the interpolation filtering process, a larger
increment in the angular sample points increases the level
of filtering. In general, a larger angular increment in the
sample points will provide the greatest accuracy. The
sample point increment should be selected such that the
data interpolation remains valid.

One limitation with the use of this technique and
measured data applies to measurements obtained outside
laboratory conditions. Measured antenna phase data
obtained under less than ideal conditions may include the
affects of scattering, multipath or other interfering signals
which the user may want to consider in the phase center
calculations. Application of the numerical filter may
remove some of these affects over small angular regions.

7. CONCLUSIONS

A formulation for calculation of antenna phase
center location, accurate for all observation angles in 2
given angular sweep, was presented. A fortran program
based upon these formulations was developed and used to
calculate antenna phase center location for several
examples. It was shown that antenna phase center
location is relatively fixed over the main pattern lobe,
however, large phase center variations can occur in
regions of amplitude nulls or rapid phase variations.

A simple numerical filtering technique was
presented that improves phase center calculations for
noisy or measured phase data.

8. PROGRAM AVAILABILITY

Copies of the fortran program for calculation of
antenna phase center location can be obtained by
contacting Dr. Steven R. Best at Parisi Antenna Systems.



9. REFERENCES

1. Carrel, R. L., "Analysis and Design of the Log-
Periodic Dipole Array", Technical Report No. 532,

Electrical Engineering Research Laboratory, University
of Illinois, Urbana, Ilinois, 1961.

2. Tranquilla, J. M. and S. R Best, "Phase Center
Considerations of the Monopole Antenna", IEEE

Transactions on Antennas and Propagation, Vol. AP-34,
No. 5, May 1986, pp 741-744.

3. Carter, D., "Phase Centers of Microwave Antennas",

IRE Transactions on Antennas and Propagation, Vol. AP-
4, October 1956, pp. 597-600.

4. Rusch, W. V. T. and P. D. Potter, Analysis of
Reflector Antennas, New York, New York: Academic
Press, 1970.

5. Muehldorf, E. 1., "The Phase Center of Horn
Antennas”, IEEE Transactions on Antennas and

Propagation, Vol. AP-18, No. 6, November 1970, pp.
753-760.

6. Waidelich, D. 1., "The Phase Center of Aperture

Antennas”, JEEE Transactions on Antennas and
Propagation. Vol. AP-28, No. 2, March 1980, pp. 263-

264.

7. Nagelburg, E. R., "Fresnel Region Phase Centers of
Circular Aperture Antennas”, IEEE Transactions on

Antennas and Propagation, Vol. AP-13, No. 3, May 1965,
Pp. 479-481.

8. Ujiie, H, T. Yoneyama, and S. Nishida, "A

Consideration of the Phase Center of Aperture
Antennas”, IEEE Transactions on Antenpas and

Propagation, Vol. AP-15, No. 3, May 1967, pp. 478-480.

9. Beekman, P. A., "Analysis of Phase Errors in Antenna
Measurements Applications to Phase Pattern Corrections
and Phase Center Determination", IEE Proceedings, Vol.
132, Pt. H, No. 6, October 1985, pp. 391-394.

10. Kidal, P-S., "Combined E- and H-plane Phase
Centers of Antenna Feeds", IEEE Transactions on

Antennas and Propagation, Vol. AP-31, No. 1, January
1983, pp. 199-202.

53

11. Roa, K. S. and L. Shafai, "Phase Center Calculations
of Reflector Antenna Feeds”, IEEE Transactions on

Antennas and Propagation, Vol. AP-32, No. 7, July 1984,
pp. 740-742,

12. Shafai, L. and A. A. Kishk, "Phase Centre of small
Primary Feeds and its Effects on the Feed Performance”,
IEE Proceedings. Vol. 132, Pt. H, No. 3, June 1985, pp.
207-214.

13. Dyson, J. D, "Determination of the Phase Center and
Phase Patterns of Antennas", AGARD Conference

Proceedings. CP-15, 1967, pp. 97-117.

14. Morita, T., "Determination of Phase Centers and
Amplitude Characteristics of Radiating Structures”,

Technical Report No. 1. SRI Project 898 Stanford
Research Institute, Stanford, California, March 1955,

I5. Best, 5. R., "Amplitude, Phase and Phase Center
Model Performance for Antennas Used in Land and
Satellite Based Positioning Systems", Ph.D, Thesis, The
University of New Brunswick, Fredericton, New
Brunswick, April, 1988.

16. Tranquilia, J. M. and S. R. Best, "Approach to a
Suitable Directional Antenna for use in UHF Radio
Positioning Systems", eedin f the a
Applications Symposium, University of Illinois, Urbana,
Ilinois, September, 1984.

17. Tranquilla, J. M. and S. R. Best, "Antenna Phase
Centre Movement in UHF Radio Positioning Systems",

Canadian Electrical Engineering Journal, Vol. 12, No. 1,
1987, pp. 11-18.

18. Tranguilla, J. M. and S. R. Best, "On the use of
Multiple Anterna Amays and Comer Reflector
Assemblies in Radio Positioning Applications”, IEEE

Joumnal of Oceanic Engineering, Vol. OE-11, No. 3, July
1986, pp. 422-427.

19. Tranquilla, J. M. and S. R. Best, "A Study of the
Quadrifilar Helix Antenna for Global Positioning System
Applications”, JEEE Transactions on Antennas and
Propagation, Vol. AP-38, No. 10, October 1990, pp.
1545-1550.

20. Dahlguist, G. and A. Bjork, translated by N.

Anderson, Numerical Methods. Englewood Cliffs, New
Jersey: Prentice Hall, 1974.



Far field observation point
' Plire.@

o

%

Figure 1. Geometry of the Reference Coordinate System.

+X

s 350
y N Pix,y)
/
D% %)
5 - X
_d ;
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Figure 3. Geometry of the Coordinate System Used to Calculate the Phase Center Location.
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Figure 4. Computed Phase Response of a Point Source Located 1.65A from the Coordinate Origin.
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Figure 10. Phase Center Location, ¥, of the Log-Periodic Antenna.
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Figure 13. Comparison of the Calculated First Derivative of the Log-Periodic Antenna's
Computed Phase Response ( ) and Interpolated Noisy Phase Response —--.
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Figure 14. Comparison of the Calculated Second Derivative of the Log-Periodic Antenna's
Computed Phase Response (: ) and Interpolated Noisy Phase Response (—-=).
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Figure 15. Comparison of the Calculated Third Derivative of the Log-Periodic Antenna's
Computed Phase Response —— and Interpolated Noisy Phase Response (—-—).
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Figure 16. Comparison of the Calculated Second Derivative of the Log-Periodic Antenna's
Computed Phase Response (—) and Interpolated Noisy Phase Response (—-—)
where the First Derivative of the Noisy Phase Response was Interpolated.
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Figure 17. Comparison of the Log-Periodic Antenna's Phase Center Location, L, Calculated
Using the Computed Phase Response (—) and Interpolated Noisy Phase Response
(— ~—) where the values of d; have been Interpolated.
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