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Abstract — In spite of impressive achievements in computing technology, the study of numerical-
analytical methods for solving boundary value problems in physical diffraction theory continues to be of
paramount importance. This is a consequence of the fact that using such methods, we obtain a significant
portion of information on solution properties at the stage of analytical investigation of the problem.
This information is introduced in the proeblem algorithm, thus ensuring its adequacy fo the problem
and, consequently, its effectiveness, stability, high-performance capability etc. Conversely, ignoring the
analytical solntion properties results, at best, in low speed of convergence and may involve the complete
loss of stability, i.e. “computation catastrophe”. In this study we examine some approaches to solving
boundary problems in electrodynamics and acoustics using a-priory information on analytical solution

properties.

1. Methods employing wave harmonics series
expansions

Numerical realizations of several widely practiced
methods, such as the method of separation of vari-
ables, zero-field approach [1], T-matrix approach
[2] etc., often involve the field representation in
the form of wave harmonics (multipole} series ex-
pansions.

Scalar single scatterer diffraction problems use
the expansions in the form

(=3 D anm O br) P cosb) explime) (1)

n=0m=—n

for representation of the field external to the scat-
terer {in the region D,), or in the form

W)= 3" 3 bumin(kr) P (cos 6) explime)  (2)

n=0m=-n
for the field in the internal region (D;), where
Jns h&z) are the spherical Bessel funciions; P* is

*This work is supported by the Russian Found of Funda-
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the adjoined Legendre function; k=2x/A; ) is the
wavelength; dependence on time is taken to be
exp(ickt), where ¢ is the light speed.

Vector problems with expansions in the form (1)
and (2) use the vector harmonics

. . . 1 .
Mpa =V X (Pmn)y Nenn = %—V X Mma, (3)

where
¢mn\= Z,(kr) P (cos 6) exp(imp), (4)

where Z, is the corresponding spherical Bessel
function. Besides, the vector problems, especially
those pertaining to the antenna theory, widely use
the Wilcox expansion [3, 4]:

R

where the coefficients E, are determined through
the use of recurrences from the function Es(6, p)
representing the wave field pattern [3].



The expansion (§) is a power series. The rep-
resentations (1), (2) (and their analogues in the
vector case) also, in essence (in principal parts) are
power series. Consequently, the exisience regions
for such representations are

T > Tey
for the external problems, and
< Ty

for internal problems, where r. is the distance
to the farthest from the origin of coordinate sin-
gularity of the external diffraction field analytical
continuation into the scatterer, and r; is the dis-
tance to the nearest singular point of the internal
field analytical continuation into the external re-
gion [4, 3}

In problems of wave scattering by periodic sur-
faces, the plane wave series expansions of the form

ut(z,y) = E

mE—00

&t exp(—iTWm F iyvm)  (6)

are widely used, where

27m/b+ ksin 8,
V2 — w2, Imv, <0,

b — the period of the scattering surface § :

= f(z), and # — the plane wave angle of
incidence. In (6), the upper sign corresponds
to the representation of the field u® over the
surface S, and the lower sign corresponds to the
representation of the field «' under the surface.
The series for u® converges when

Wm =

y>ycy

and for »* converges when

¥ < Ui

where y. is the ordinate of the farthest (along
y-axes) singularity of the analytical continuation
of the field u® under the surface 5, and y; is the
ordinate of the nearest singular point of the field
u; continued into the region over the surface S [6)].
Representations of the type of (6) are also valid
for three-dimensional problems. It is significant
that quantities »., 7, ¥., % can be determined
prior to solving a boundary problem [7].

As a rule, the numerical realization of the meth-
ods using the above-mentioned represemtations of-
fers a correct stable algorithm only when there

holds so-called Rayleigh hypothesis [8] postulat-
ing the continuity of corresponding representations
up to the boundary of the S-region wherein the
solution is sought, though in some methods (for
example, the Waterman method [1]) the Rayleigh
hypothesis obviously is not used. Recently, the
methods for solving the external problems in elec-
trodynamics and acoustics have been reported, in
which the representations of the form (1) are
used. These methods result in correct algorithms
achieved under considerably less rigorous restric-
tions on the S-boundary geometry than those sat-
isfying the Raylegh hypothesis [9-11].

2. Method of pattern equations

This method [9-11] may be outlined using the
scalar problem in the theory of diffraction by a
bounded scatterer as an example. Let us denote
the source (primary) field by «°, the diffraction
(secondary) field by u! and examine the umiform
Dirichlet boundary problem

(*+u')[g=0 {7)

for the Helmholtz equation. $ is the scatterer
surface. For the scattering pattern g(f,¢), there
is the following representation [J]:

2r x

g9(8,9) =ff‘v(9’, ¢’} exp{ikp(6’, ¢") x
(U]
x [sin §sin 8’ cos(y' — @) + cosé’ cos6]}d8’de’, (8)

it being known that

w000 = D 6,4) 40 ().

In the relation (8)

v(6, ¢) = ¥°(8, ) + v} (6, ¢), {9
and
k . . ouP . 0P
vP(8,p) = o [pz(G,go)smG—ar + pg sin ﬂw-l-
. P
Ly ,p=0,1, (10)
sind 3¢ |, p(6.0)

r = p(#,p) is the equation of the surface S for
spherical coordinate system.

Everywhere in R®\ €, where & ls the convex
envelope of singularities of the field u!, the diffrac-
tion field can be represented by the integral in
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the form [11]:

ul(r,0,¢) =
x/24ico
X f exp{—ikrcos )8, p; ¥)dyp, (11)

—xf2—icc

exp(—ix/4) N
Vizkr

where

6(8: 50;1/)) =exp [“/’(B + %)] g(ﬁ, ‘P)’

(6, 930) = g(8, »),

B is the operator determined from the expression
[12]

(12)

i 8,. ,98
s ae " 0) +

1 &
t@ee (13)

Using (8)-(12), we can obtain the following
integral-operator equation with respect to g¢(f,¢)

[11]
gle, B) = g%, B) + 5{1_&41:‘#_/4))(

2x = wmf24ico

Nk

0 —x/2—d00

[(ikz cos P + 5 (s ))9(9,% $)p* (6, ) sin 6+

—B(B+1)=D =

k ,P M
+ 55(0, 03 ¥)kry sinb + 220, 90,11')]

x exp{—ikp(f, ¢)[cos ¥ —sin 9 sin o cos{y — ) —
— cos B cos o) }dypdfdy (14)

where g%(e,3) is the function related to the trans-
formation (8), on the right of which the function
9°(6, ) should be in place of 9(8,¢). Eq. (14)
is obtained on the assumption that £ € D, where
D is the region inside S. The scatterers meeting
the above condition are termed weakly nonconvex.
In particular, all comvex bodies are of this sort.
Substituting in (14) series of the type of

96.0)=3 Y anmP(cos8)exp(imp) (15)

n=0m=-n

we obtair the following algebraic system for coef-
ficient anum

(16)

o v
o]
m = Gy T E E Gnm,vpa-vy

=0 p=0
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where

PP

Z2x T

x f f v°(6, )in (kp(8, #)) x
X 1(;,’,"0(cos 8) exp(—imyp)dbdy

(see (9) and (10)), and

-ﬂ—u(zn + 1)("‘ - m)'_"‘_ x
(n+ m)! 4

Gn-m, v

2x x

! '0/0/ {£26%(8, 9)R? (ko(8, 9)) x

xP:(cos 8)sin 6 — kpphl® (kp) x
-—P"‘ (cos )] sin@ —

k
_1#_.512_:”5}15’2)(13'9)?5‘(!;08 9)}jn(k.p) X
x P (cos 8) exp(i(s — m)p)dbdyp

A significant advantage of the system (16) lies
in the fact that its matrix elements are obtained
through a double integral instead of a four-fold ome
being typical for some methods of considerable
carrent use, such as the moment method, the
current integral equations etc. For a body of
rotation, i.e. when p{8, ©) = p(f), the system (16)
simplifies significantly; in particular, its matrix
elements are now obtained through single integrals
[11]. Substituting in (16) unknown coefficients in
the form

we obtain a new algebraic system related to the
unknown quantities @am

o v
)
Tnm = Tpm T+ E E GamuuZry (17)
r=0 p=—1
where
H 1
o _ . N pem
Tam = mInm: Jamrp =Gnm ¥ b ral

7

By analogy with [9], it can be shown that the
system (17) is solvable if we use the reduction
method with the proviso that

o2 > 01, (18)



where ¢y = kr./2, o3 = kri/2. The criterion (18)
is invariant to the kind of the boundary condition
on the scatterer surface S. Specifically, in lien
of the condition (7), the comjugation boundary
conditions can be met on S (continuity for u
and 8u/0n, or, in the electromagnetic case, the
tangent components of vectors & and H).

The condition (18) is considerably weaker than
that complying with the Rayleigh hypothesis. In
particular, all convex bodies satisfy the condition
(18). The described procedure shows excellent
convergence and can be generalized to the prob-
lems of wave scattering by several bodies and by
gratings too.

Similar approach can be suggested for solving
the problems of wave scattering with a periodical
surface [10]. Consider for definiteness sake the
case of Dirichlet boundary conditions. The diffrac-
tion field u®(z,y} in the region y > y. can be
represented by the expansion (6) characterized by
the expression RS, = 2¢0(wWm)/bvm, where

b/2

f Q(c) explive + ivf(z)lds
-b/2

go{w) = (19)

is the pattern for a single period [6],

v=+k?—w? Imv <0,

and

Q°(x) + Q' (z) =
i[a(uo + u®) _
4 Ay
0 e
@2y,

Qo)

u®(z,y) = exp(—ika sin @ + ikycos ) is the incident
plane wave.

Tzking advantage of the expressions (6) and
(19), we can obtain the following algebraic system
for coeflicients gm = go(wsm)

gn =g+ f: Fran gm, (20)
m=—co
where
3/2
P -
~b)2
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and

47i0m

fam = B TIPUR f F(E) explitn = myta +

1
‘+""5ma$

2

where p=2x/b. We see that the matrix elements
of the system (20) are expressed in terms of
a single integral, offering significant advantages
over the systems resulting when so-called current
method is used [13].

Elimirating from (20) the unknown quantity go
and passing on to new unknown coefficients with
the help of substitution

gn =[n[*? exp[(2X/b)Inlo1]za

where o1 =ky./2, we obtain a new algebraic sys
tem

o0
Tn =$2 + Z (1 - 6m0)an$ﬂ’ (21)
M=—0CC
n==+1,+2 ..., solvable through the utilization of
the reduction method when [10]

o3 > 0y, (22)
where o2 =ky; /2. In (21),

(95 + 298 fon)In]*/? x
x exp[—(2)/b)|n|oy],

Fon = (fmn + zfmofm)\/@x

x exp[(2X/b)(|m| — n[)e].

Fig. 1 exemplifies the realization of the above
procedure. The problem of surface wave prop-
agation along a sinusoidal corrmgation f{z) =
Icos(2nz/b) has been examined. The Figure shows
the variation of A/k — 1, where h is the cross
wavenumber, with the quantity of terms of the
field expansion. The graphs are constructed for
varions values of parameter [ characterizing the
depth of the corrugation. As can be seen in
Fig. 1, the computing algorithm becomes un-
stable when the condition (22} is violated (for
1/b> 0.105...): increasing the number of terms of
expansion causes the divergence of the result.

The condition (22) is significantly less rigorous
than that complying with the Rayleigh hypothesis.
For example, for a cycloid described by equations

2 =

z =a(t + Tcost); y=arsint,
a>0,0<r<]; 0t <2y,



the Rayleigh hypothesis is satisfied only when 7 <
0.2784613..., whereas the condition (22) holds
true for 0 <7 <1 [10].

h/k—1
10'2/

3 1/6=0.133
E 1/6=0.117
10 -3 _ /Wl/b=01
- 1/6=0.067
10 -4 R O DR SN MUV T T R B
0 3] M 10

Figure 1. Variation of A/k—1 with the parameter
M

3. Auxiliary current method

The auxiliary current method using the a-priory
information on analytical solution properties works
very well [14]. This method is applicable for solv-
ing a great variety of diffraction and wave'scatter-
ing problems [15-17]. Let us take up this method,
using as an example the problem of electromag-
netic wave diffraction by a perfectly conducting
body placed in a uniform isotropic medium. In
this case, the boundary-value problem can be re-
duced to the solving of the integral equations of
the form

%f J(7e) B (k|7 - l)do = —u0(7),
B

(23)
TeSs
for two-dimensional, and
M{;f; {Vx (Vxé/‘f("z)x
exp(=ikl — 72D , \| - go/s

for three-dimentional cases, where pg, £, are the
magnetic and dielectric constants of the medium;
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A, is the component of the wvector .(I, iangential
to §. It is not difficult to prove the statement as
follows [14,15]: Iet us assume that I is an arbitrary
closed nonresonant Liapunov surface inside D;. Then
the necessary and sufficient condition on solvability of
the equations of the form (23), (24) in L,(X), p > 1,
implies that the surface T should enclose the £¢ of
singularities of scattered field analytical continuation
i.nto D,'.

In one way or another Eqs. (23), (24) can
be tiransformed into algebraic equations solvable
with a computer. The method of algebraization
employed most ofter is the substitution of the
integrals in the left-hand sides of the equation
for sums with the rectangular formula, followed
by equating the left and right members at the
collocation points. As a result, we obtain highly
efficient and fast algorithms known as "discrete
source method”. At this point, it is worth not-
ing that the following theorem is valid [18]: the
sequence of discrete source amplitudes is limited in I,
(p > 1) if and only if the discrete source support (sur-
face T) contains the set £o of singularities of scattered
field analytical continuation inte I);.

10 °

10 -12

10 -16 I
0.0 0.5 kd 1.0

Figure 2. Variation of discrepancy é with the

parameter kd

We will now examine ar example to illustrate
the importance of meeting the conditions imposed
by the above theorems. Figs. 2 and 3 show
the resulis of solving the problem of plane wave



scattering by an elliptic cylinder with half-axes
measuring ka = 3, kb= 12, kf = 27495... (2f
— interfocal distance) using the discrete source
method. In this problem, the set £y is the inter-
focal distance [7]. Fig. 2 shows the dependence of
boundary condition discrepancy § on the parameter
kd characterizing the spacing between the auxiliary
contour ¥ and the cylinder cross-section contour S,
a co-focal ellipse with semiminor axis b =b—d be-
ing chosen for £. Numbers 1,2,3 designate graphs
plotted for 30, 80 and 120 souxces, respectively.
It can be seen that the auxiliary contour, when
properly chosen (so that it would encompass the
interfocal distance), makes it possible to carry out
computations with high precision with no algo-
rithm destruction, even when the algebraic system
is rather large. The wvalue of boundary condi-
tion discrepancy is the most accurate and highly
sensitive indicator of the validity of obtained solu-
tion, since integral characteristics (e.g. scattering
pattern) are predicted with considerably higher de-
gree of accuracy than that afforded by boundary
conditions. However, the norm of current on the
auxiliary contour also makes it possible to estimate
the algorithm stability.

. IER)
10
10 *2 2 1

10°

10 *

1 YRR N N T T T A O T T 0 O B
0.0 0.5 kg 1.0

Figure 3. Dependence of norm of current ||J(Fg)||
on parameter kg

Fig. 3 shows the dependence of the norm of
current |[J(7%)|| on the parameter kg, determined

with the equation g =a—aj;, where a; is the semi-
major axis of the auxiliary elliptic contour, whose
semiminor axis is taken to be kb =0.7. The
curves 2 and 3 correspond to the algebraic system
dimensions 60 x 60 and 120 x 120. The curve 1
corresponds to the case when the number of collo-
cation points is five times greater than the number
of discrete auxiliary sources (the algebraic system
dimensions are 60x300). It can be seen that once
the amxiiary contour no longer encompasses the
interfocal distance (when kg > 0.23), there comes
the computing catastrophe: the norm of curremt
increases exponentially and the more so with the
increase of the system dimensions, i.e. when the
potential accuracy of the analysis becomes higher
(see Fig. 2). This effect is known in antenna
syntes theory as a superdirectivity phenomena (see
8]).

The equations of the form (23), (24) can be
solved by other means. For example, the auxil-
iary surface & can be divided into regions where
the sought-for current J(v3) is approximated with
splines and the equation kernel is integrated. Us-
ing such approaches, it is possible to obtain more
precise algorithms requiring less computing power.
Discussed in [19] is a version of the auxiliary cur-
rent method using strip currenis as auxiliary ones,
ie., in essence, the current J(ry) is approximated
with the piece-constant function.

From the above discussion it follows that appli-
cation of the amxiliary current method is based on
a) the separation of two sets: the set, for which
the boundary conditions are established (scatterer
surface), and the set representing the carrier of ra-
diating currents (auxiliary surface); b) meeting the
requirement for the auxiliary surface to encompass
the singularities of the scattered field analytical
continuation.

There is a variety of diffraction problems involv-
ing the study of wave scattering by bodies with
a plecewise amalytical boundary. In this case,
while the use of the auxiliary surface entirely con-
tained inside the scatterer is not strictly correct,
this approach is mnevertheless feasible to obtain the
quasi-solution. Let us determine the error respon-
sible for meeting the boundary condition, when
obtaining the gquasi-solution of the two-dimensional
problem on scattering of the plane monochromatic
wave

u®(z,y) = exp(—ik(z sin p — y cos¢))

by a perfectly conducted cylindrical body, whose
cross-section represents a closed contour composed
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of arcs and straight-line segments. Here, w/2—¢ is
the angle between the direction of the wave prop-
agation and z-axis. Let L, Ly be the rectangular
overall dimensions; py, p2, P3, Pa the upper right,
upper left, lower left and lower right rounding
radii, respectively. The electric field vector is sup-
posed to be perpendicular to the incidence plane
and parallel to the axis of the cylinder.

The auxiliary contour ¥ is chosen as lying
equidistantly with main contour, entirely inside the
scatterer at a distance of € < min(p;, p2, 93, p4). In
other words, the auxiliary contour encompasses the
"main” singularities (center of the rounding arcs)
of the scattered field.

Breaking the auxiliary and main contours up
into eight characteristic regions and algebraizing
Eq. (23) in the simplest manner described above,
we reduce the integral eguation to a linear alge-
braic equation system with the square matrix.

Without the loss in generality, we will now
consider the case when ¢ =x/2, kL. =14, kL, =4,
kpy =kpa=kps=Fkpg = 1.5

0.010

0.005 r

0.000 ) | 1 | f
0.00 0.10 0.20 £

Figure 4. Dependence of the optimal discrepancy
6 on ¢

Fig. 4 shows the dependence of the optimal
residual § on €. It can be seen that with £=10.2
and the algebraic equation system 155x1535, the
value of 6§~ 1073

Making use of the geometry of scatterer, we now
examine the case when the insident wave is given
in the form

1
w(z,y) = B (kI - 7o),

i.e. the case of the diffraction of the linear elec-

tric field by a body with the piecewise analytical
surface; in this context in the form closely approx-
imating the semicircle with its center at (—zo,0):
Le=Ly/2=yy; p1=ps=0.0lyo; p2 = ps =0.98y0;
kyo = —kzo = 5.027. In addition to encompassing
the main singnlarities, the auxiliary contour must
encompass the image of the source whose location
is determined by [7, 8]. Then, the optimal value
of § ~ 1072, and the scattering pattern is the
same as that reported im [20]. In the examples
considered, the surface-carrier of auxiliary currents
encompasses not the whole of the diffraction field
singularities but omly the “sirongest” omes, and,
therefore, the condition for the above theorems is
not compiled with. Af the same time, the con-
sequences of such a failure at first glance appear
not to be catastrophic. However, this is not the
case. For one thing, in the analysis above, the
discrepancy of the boundary condition is rather
perceptible (10~2 ~ 10~3). For another, even such
a discrepancy is achieved at the cost of signifi-
cant expenditure of "energy” (here, the quantity
[I7(#z)|| is of the order 10° ~ 10°%). However,
taking into consideration the fact that the integral
characteristics such as the scattering pattern are
estimated at least one order more precisely than
the accuracy of the boundary condition, the above
analysis provides reason enough to draw a con-
clusion that the auxiliary current method is also
applicable (with not-too-exacting requirements for
the accuracy of the analysis) to the problems of
wave scattering by bodies with a piecewise smooth
surface on the condition that the auxiliary surface
encompasses the main field singularities.

4. Adaptive collocation method. Diffraction
by a periodic surface

Widespread use of various types of periodic
structures is responsible for the demands for devel-
opment of simple and effective methods to analyze
their diffraction characteristics. The most simple
and physically adequate is the method based om
the scattered field expansion in terms of outgoing
plane waves (metaharmonic functions), i.e. In se-
ries of the form (6). An expansion of this kind as
well as a method for coefficient computing have
been reported by Rayleigh in his classical work
[21]. Later, the Barantsev-MMM method bas been
suggested [22, 23], and it is worth nothing that, as
it is known in [13], both Rayleigh and Barantsev-
MMM methods lead to the same systems of linear
equations for expansion coefficients in the case of
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the normal plane wave incidence on a symmetrical
structure. It should be noted, however, that the
Rayleigh method involves quadratures to determine
the matrix elements with a consequent substantial
(excepting some special cases) computational bur-
den.

The collocation approach is a comsiderably less
complex method for determining the scatiering co-
efficients. With no stringent requirements upon
computing aids, this method can be effectively
used for development of routine software packages.
However, as it is in the case of the Rayleigh
method, this approach is compazatively simple on-
ly for stractures whose depth is small when com-
pared with the period. To obtain the convergenmt
algorithm for analysis of deeper structures, it has
been suggested [24] to increase significantly (by
several fold) the number of collocation points as
compared with the number of methaharmonic func-
tions, as well as to minimize the rms discrepancy
of the boundary condition. An alternative, more
efficient approach, the adaptive collocation method
[25), is discussed later. This method is based
on the more judicious allocation of the collocation
points rather than on their reproduction. Besides,
as it is demonstrated later, the best choice of the
collocation points is dictated by the singular points
of a scattered field, whose location determines the
feasibility of the Raleigh hypothesis.

We will now examine the problem on the plane
wave diffraction by a surface including the z =
const plane cross-section contour C given by the
equation y = h(z), where h(z) is the smooth one-
valued function. We will approximate the solution
with the sum of metaharmonic functions

M-1
E, = Ego) + Z RLM)‘LL“(:B, y)r (25)
a=—M+1
un(2,y) = exp[~i{waz +vay)l, (26)
where
E® = exp[—ik(zsing —ycosg)). (27

The boundary condition E, =0 for y = h(z), es
tablished at the discrete points (z;, y; = h(z;)),
results in the linear equation system for coefficients

R{O:
M-1
> BMun(zjyys) = —BO(zj,y5).  (28)
n=—M4+1

Evidently, the field computed from Eq. (25) with
coefficients R determined from Eq. (28) satisfies

the wave equation and the boundary Dirichlet
condition at the collocation points (as opposed to
the precise solution going to zero on the entire
contour C). The completeness of the system of
functions {up} [26] implies that for any positive
e in Eq. (25) there are such number M and such
coefficients R(Y) that the approximate solution
differs from the exact one by less than e. Let
us demonstrate (with no claim on mathematical
strictness) that choosing the collocation points for
Eq. (28) in a prescribed manner, we will obtain
the sequence of solutions in the form of Eq. {25),
convergent to the exact solution when M — oo.
Let us introduce the complex variable

7 = exp{2n(iz — y)/b], (29)

then the contour C goes into the contour I' defined
by the expression 7 = exp[2n(iz — h(z))/b]. It can
be shown for with |n| > 1 un(z,y) = #*, when
7>0; and for n <0 wa(z,y) = (’q*)'”l. Since the
behaviour of the sum (25) under condition M —
oo is governed by its members having |n| > 1,
it would appear reasonable that the convergence
of this sum to the exact solution is attributable
to the convergence of the field interpolation by’
generalized polynomials

M1

Qu(n) =D (A — Aa(n")")  (30)

n=0
We represent the powers 7 and #n* involved in
Eq. (29) in the form

M-1

Qu(n) = > [Ba®a(n) + B_a®h ()], (31)

n=0

where ®,(7) are the Faber polynomials in the
region bounded by the contour I', and them re-
place the polynomials &,(n) with their asymptotic
expression corresponding to n > 1; then

M-1

Qu(m) & Y (Ba™™ + B_a(r*)"),

n=0

(32)

where 7=¥(p), ¥ is the function mapping con-
formably the exterior of the contour T' onto the
exterior of the unity circle |r|=1. We can see
that the convergence of the generalized interpo-
lation polynomial Qar(n) is defined by the con-
vergence of the trigonometric imterpolation on the
segment [—7,7]. As it is known, this process
converges with equidistant nodes, then the inter-
polation by the polynomials (30) for the inverse
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mapping 7 = ¥~1(r) will provide the convergence
at all intermediate points. Thus, the interpolation
by the functions u,(z,y) converges if the colloca-
tion nodes (z;,y;) are located so that the points
75 = U(n(z;,y;)) are uniformly distributed (when
M — o) along the circle |r|=1. The adaptive
node distribution takes place with the inverse map-
ping of the points uniformly distributed along the
unity circle onto the plane 7; for determining the
collocation points, we use (see [27]) the asymptoti-
cal properties of the polynomials Py{7) orthogonal
on ' (Segd polynomials [28]). For N > 1

Pr(n) = VE@)E@)Y.

As it is evident from Eq. (33), at the points n}"
representing the images of the points

) = expli(x(2p — 1)/2N)}, p==1,..., N, (34)

with inverse mapping 1 = ¥~!(7), the real part
of the function Py(n) goes to zero for N >
1. In a similat manner, it can be established
that the images of zeros in the imaginary part
of the function Py(n) are uniformly distributed
along the circle |r|=1 for N » 1, consequently,
the zeros of the RePy(n) and Im Py(n) can be
regarded as the adaptive collocation nodes. The
Segd polynomials can be comstructed using the
Gram-Schmidt procedure.

It should be emphasized that the convergence of
the interpolation process is closely linked to the
location of the singular points of the scattered field
analytical continuation with respect to the aunxil-
iary contour discussed above [29]. Referring to
the above mentioned similarity to the polynomial
interpolation, it is an easy matter to describe the
convergence of the interpolation process. Consider
a cylinder with cross-section I'. It is suggested
that the electric charge with the surface density
proportional to the distribution density of the col-
Jocation nodes is placed on this cylinder. In order
for the interpolation process to converge, there
has to be an equipotential for a given charge sys-
tem containing the contour I' but not including
the singular point of the scattered field analyti-
cal continuation. The speed of the interpolation
convergence is determined by the distance between
the singular point and the equipotential. It should
be noted that the equipotential system correspond-
ing to the collocation node adaptive distribution
coincides with the equipotentials of the charged
metallic cylinder.

The expansion of the scattered field gives signif-
icant computing advantages: the expansion coeffi-

(33)

cients R$Y) make it possible to compute the field
at any point of space over the structure. These
coefficients can be effectively computed with the
help of the adaptive collocation method. The
resultant approximate solution can, in principle,
be arbitrarily near to the precise ome. Actual
accuracy is limited only by the computing aids
performance. With the use of the adaption collo-
cation method, increasing the relative depth of the
petiodical structure calls for computing operations
involving large word sizes if we wish to maintain
the desired accuracy.

Compared to other computational approaches,
the adaptive collocation method effects a consid-
erable saving in the computer time. The dis-
tribution of the adaptive nodes does not depend
on the frequency, so the computing of frequency
dependencies takes comparatively little time.

The adaptive collocation method is closely allied
to the methods used for the problems on the inter-
polation of functions of complex variable, so many
ideas of interpolation theory can be adaptable to
problems examined herein. Also, it is worth noting
that the relation between collocation points and
zeroes of orthogonal polynomials may be msed for
solving the three-dimensional problems.

5. Conclusion

Using the a-priory information on the analytical
properties of the solution is a well-established (and
necessary) technique for solving inverse problem of
the scattering theory [8, 30). In this case, if
the solution is sought for an appropriate (corre-
sponding to the problem) class of functions, the
construction algorithms for this solution are highly
effective [8]. The extension of the methodology for
solving the inverse scattering problems to the di-
rect problems has been rewarding. The algorithms
for numerical solving the boundary problems in
electrodynamics and acoustics, whose development
involves the a-priory information on the location of
the analytical continuation singularities of the sec-
ondary (diffraction) field, are mathematically sub-
stantiated, very fast and make it possible to carry
out the computations with a high degree of accu-
racy but no compromise in the algorithm stability.
It is worth noting that the methods discussed
therein distinguish in versatility. Thus, for exam-
ple, the diagram equations method involves the
limitations on the form of the boundary S, which
are stated by the inequality expressions (18) and
(22), whereas the auxiliary current method is, in
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fact, free of these limitations. Furthermore, as
it is shown in [16], the aunxiliary current method
can be generalized practically to any problem in
diffraction and wave scattering.

Solving the problems with the help of the adap-
tive collocation method, we employed the Hexible
expansions [31]; thus, the limitations on apph-
cability of this methodology become, in general,
weaker. Of course, from the aforesaid it does not
follow that there is no relation between the col-
location algorithms and the Rayleigh hypothesis,
but this relation is not so direct as was assumed
earlier [32, 33]. It is known, for example, that
the Rayleigh hypothesis is valid, when the singular
points of the field are well off the scatterer bound-
ary. Evidently, when the Rayleigh hypothesis is
obeyed, the convergence of the collocation meth-
ods takes place not only at the adaptive nodes,
but also applies to a wider set of the node dis-
tribution. A similar sitnation, as it known, exisis
also in the context of the problems om polynomial
interpolation of analytical functions [27].

The results provided illustrate, in essence, the
fact that the completeness of the basis employed
is not sufficient for the convergence of the solu-
tion. Performing actual computations, due atien-
tion should be given to the techniques for de-
termining the expansion coeficients. With the
collocation method used for characterization of the
expansion coefficients, the problem is reduced to
the interpolation of the solution on the scatierer
contour; the convergence of the computing process
depends on the selection of the collocation points.
The results related to the polynomial interpolation
in the complex plane were nsed for selecting the
interpolation nodes. This allowed us to suggest the
techniques for selecting the collocation points pro-
viding, as mumerical experiments had shown, the
convergence of the solution both on the boundary
and in the far region. It needs to be stressed that
the methods under consideration imply that the
information on the singular points of the analyt-
ical continuation of scattered field is "embedded”
in the distribution of the collocation nodes.
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