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ABSTRACT. This paper presents a coupling of two dif-
ferent methods for electromagnetic scatiering problems,
the 3D MMP (Multiple MultiPole) code, an implementa-
tion of the Generalized Multipole Technigue (GMT) and
the finite element (FE) method. The coupling is per-
formed using iterative methods. The procedure is illus-
trated with the solution of e benchmark problem for scat-
tering from ¢ three-dimensional lossy dielectric cylinder.

1. INTRODUCTION

There is an obvious interest in combining the advan-
tages of methods for open domains, which are mostly
based on analytic approaches and therefore restricted to
linear and largely homogeneous domains, with methods
that can handle inhomogeneous, anisotropic or nonlinear
domains, but are themselves only applicable to finite do-
mains. In the present work, such a combination is made
with the 3D MMP code and a FE code. The underlying
ideas are inspired by an iterative method used for solv-
ing complex problems consisting of several subproblems
with the 3D MMP code [1]. The approach also closely
resembles the one taken in the “field feedback formula-
tion” {2].

2. 3D MMP CODE

The 3D MMP code [3] is an implementation of the GMT
(Generalized Multipole Technique) [4]. It is a code
for two- and three-dimensional time harmonic scatter-
ing problems with piecewise linear, homogeneous and
isotropic domains.

An expansion for the unknown field f in each domain
is made with exact solutions of the homogeneous wave

equations.
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and the ¢; are complex coefficients. As the name of the
method suggests, the most useful expansions are mul-
tipole solutions in cylindrical or spherical coordinates,
which have a strong local behavior and allow “modeling”
of the field around complex domains. However, many
other expansion functions, such as plane waves, waveg-
uide modes, straight- and curved line multipoles, thin
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wire expansions, rooftop current-patch functions etc. are
available. As a result, MMP models have in general a
smaller number of unknowns than models for compara-
ble methods.

Equations are obtained by enforcing boundary condi-
tions or continunity conditions for the tangential and nor-
mal components of the electromagnetic field on matching
points on the borders between domains. This leads to
an overdetermined linear system of equations

Aci=b; (2)
This system is solved in the least squares sense, thus
minimizing total boundary error. The solution of (2) is
equivalent to the solution of the system of equations

Ac; =b; 3)
where 4 = A*Ais a square, dense, Hermitian matrix
and b; = A*b;. Throughout the rest of this paper the
MMP problem will be referred to as the system (3), al-
though in practice its solution will be directly obtained
from (2) with a QR-factorization, which is numerically
considerably better.

Because the fundamental quantity in MMP is the elec-
tromagnetic field (both E and H), the method is very
versatile. Apart from ordinary boundary conditions one
can also use surface impedance boundary conditions, pe-
riodic boundary conditions, or, in the context of this
work, boundary conditions involving predefined values.

The fact that singularities of the expansion functions
are far from the surface and that the error is distributed
smoothly over the surface leads to results that are quite
accurate in the nearfield. This is advantageous for the
purpose of successfully coupling it with other methods
over domain boundaries.

3. FINITE ELEMENT CODE

The basic equation is the vector wave equation for the
electric field £,

(4)

curl(—,“-hlf—ﬁ curl £) + iwe'E = 0



which is solved in a weak sense with a weighted residual
method

<curl(ﬁ curl ﬁ)é,—) + <iw5’ Eé,-)v =0. (5
v

The 5,— are the testing functions; the (-);, denotes an
integration over the domain V. After some transforma-
tions, one arrives at the system of equations
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{-}sv is an integration over the boundary of the domain
V. Thus, the eleciric field in a domain can be obtained
from the tangential components of the magnetic field on
the boundary of that domain. It should be noted that
one could use a dual version, in which the magnetic field
would be calculated from the tangential electric field; for
our purposes, however, the electric field is more interest-
ing.
For the 3D case a tetrahedral grid with Whitney edge-
elements W is used [5, 6]. The electric field within the
domain is expanded as

f=) eWw? (7)

where the c;; are complex unknowns associated with the
components of the field along the edges between nodes ¢
and j. Inserting the expansion (7) into (6} and using the
same functions W* as testing functions & (Galerkin’s
choice) leads to a linear system of equations with a
square, sparse, symmetric matrix. The derived FE sys-
tem of equations is equivalent to one derived with the
Rayleigh-Ritz variational method from a functional.
The 2-dimensional analogs to the tetrahedral edge ele-
ments are the triangular edge elements. The vector func-
tions related to each of the edges are shown in Figure 1.

Edge elements have several advantages over nodal ele-
ments. They are divergence-free and eliminate the prob-
lem of spurious solutions. They also avoid the problem of

Figure 1: Vector basis functions W!2, W23, and W3! for
a triangular element, which are associated with the tan-
gential value of the field along the corresponding edge.

Figure 2: Separation of a problem into an interior and
an exterior problem.

singularities in the field at edges and corners on the do-
main surface and allow easy freatment of boundary con-
ditions and inhomogeneous domains. Furthermore, the
degree of fulfillment of the continnity conditions for the
normal components between the elements can be used to
estimate the quality of the solution. The disadvantage
of edge elements is a larger number of unknowns, which
is to some extent compensated by higher sparsity of the
system matrix.

4. COUPLING

A FE domain is separated from “MMP-space” with a
boundary S {Figure 2). In each domain, the electromag-
netic field is uniquely determined by either the tangen-
tial electric field or the tangential magnetic field on S.
In our case the tangential magnetic field on S is used
for the interior domain and the tangential electric field
for the exterior domain. As the tangential components
of an electromagnetic field are continuous across domain
boundaries, a combined problem can be formulated, in
which the interior and exterior problems mutually pro-
vide boundary values. The solution to the total prob-
lem therefore fulfills the continuity conditions for both
the tangential electric and magnetic fields. A dual ver-
sion, where the roles of the surface tangential electric and
magnetic fields are reversed, is also possible. It should
also be noted that instead of a single surface, two dif-
ferent surfaces may be used for the separation between
MMP and FE and the reverse. In that case, the region
enclosed by the surfaces would be part of both models.

The sysiem of equations describing the total problem
can be represented as a block system of equations

[e2llal-=[k] o

The components of this system of equations are the fol-
lowing:



A is the MMP matrix 4*A.

¢, are the unknowns for the (exterior) MMP prob-
lem.

B translates a finite element “solution” ¢; into the
MMP context.

b, is the inhomogeneity for the (exterior) MMP
problem.

D is the sparse FE matrix.

¢; are the unknowns for the {interior) FE problem.

C translates a MMP “solution” e, into the FE con-
text. '

| ]

b; is the inhomogeneity for the (interior) FE prob-
lem.

A simple iterative approach, similar to the one used
for complex MMP-problems [1], is to alternately

1. Solve the MMP problem Ac?t! = b, — Be?
2. Solve the FE problem Def*+! = b; — Ce?

and hope for convergence of the parameters c?+! and
c?*! to the correct solution. This approach is in essence
a block Gauss-Seidel iteration in system (8); convergence
is therefore only obtained if the matrix in (8) is block-
diagonally dominant, i.e., the effects of the coupling are
comparatively small. As a consequence, this method is
limited to scatterers with high permittivity or conduc-
tivity.

It is therefore better to use an algorithm which does
not suffer from these convergence problems, e.g., an it-
erative algorithm from the family of Krylov subspace
methods. A partially “preconditioned” system of equa-
tions equivalent to (8) would be

e 57 ][E]

where I is an identity matrix. To further diminish the
number of unknowns for our simple case where only a
single MMP problem and a single FE subproblem are
present, the system (8) may be reduced to

I A'B
¢ D

AL,
by
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[D-—CcA™'B) s =b; — CA™ 1B, (10)

by eliminating ¢.. This has the form of a modified FE
problem in which the new components in the coupled
system of equations can be interpreted as follows:

o CA~1b, is the solution (scattered field only) of the
MMP problem for the incident wave, translated into
the FE context.
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e CA~1B represents an operation in which a FE state
vector is translated into the MMP context and
serves as an inhomogeneity for an MMP problem,
which is solved and translated back into the FE con-
text.

This system is now solved using an iterative, conjugate-
gradient-like algorithm minimizing the residuals of an es-
timate for a solution in Krylov subspaces. The combined
system matrix is neither Hermitian nor symmetric and
its transpose is not readily available. A GMRES (Gen-
eralized Minimum Residual) algorithm [7] is therefore a
possible choice. In GMRES, the residual of the system
of equations (10) is minimized in a Krylov subspace of
dimension &

Ki = span {rg,Aro, A’rg, .. .,Ak"lro} ; (11)
For details on the algorithm References [7] and [8] are
recommended. It is important to note that in this type
of algorithm the system matrix of the combined problem
(10) is not used directly, but only as an operator in ma-
trix vector products. Therefore it need not be directly
available.

The evaluation of the matrix vector product

(D-CA™'B)z
involves the following steps:

1. Evaluate Dz as a sparse matrix vector product.

2. Translate = into the MMP context (Bz).

3. Solve the MMP problem Az = Bz and obtain

A~1Bz.

. Transiate the MMP solution into the FE context,
get CA™1Bz.

Add contributions from steps 1 and 4 to get the
comnplete matrix vector product.

There is a potential for parallel execution of Step 1
and Steps 2-4.

Note that neither A—!, B nor ( are present in matrix
form. There are not only implementational, but also
numerical advantages to the case where the whole mixed
matrix would actually be present: Whereas the matrix A
or CA™1B, respectively, would be very ill-conditioned,
in the above presented algorithms they merely stand for
an MMP problem and its solution {Step 3), which can be
obtained from the original overdetermined system with
numerically superior algorithms.

The convergence speed of the iterative solver can be
improved by preconditioning the system (10}. It is dif-
ficult to properly include the contributions of the MMP



terms in (10) into the preconditioning matrix. There-
fore the preconditioner is in our case simply based on
the sparse matrix D. An ILU(0) preconditioner is used

[8).

5. IMPLEMENTATION

A great advantage of the presented methods are the min-
imal requirements for the implementation, which leaves
both stand-alone versions of the involved codes practi-
cally untouched. The simple iterative algorithm does not
actually require a coupled code, but can be implemented
by preparing the input files containing the modifications
of the right-hand sides for the subsequent problems.

The algorithm for the solution of (10) can be imple-
mented in a FE code with an iterative solver by adding
a routine for obtaining the MMP contribution to right-
hand side of the FE system of equations and by modi-
fying the matrix-vector product. Both require a call to
the MMP code.

On the MMP side, matching points with an addi-
tional predefined boundary value have been added. The
combined algorithm is implemented in a routine which
accepts a FE state vector, converts it to a right hand
side for an MMP problem, calculates the new parame-
ters and evaluates the field values in the FE boundary
points. Furthermore, a matrix-solver with Householder
transformations instead of the more memory efficient,
original version with Givens plane rotation [9] is used.
This makes the repeated solution of MMP problems with
unchanged matrix, but different right hand sides much
more efficient.

The communication between the two codes is currently
done with PVM [10], a message passing library for par-
allel processing. This allows the parallel evaluation of
the two contributions in the matrix vector product on
different processors. On a single machine, however, the
approach has an unnecessary message-passing and syn-
chronization overhead.

6. EXAMPLE

To illustrate the procedure, a benchmark example from
a collection of canonical problems is used [11]. It is a
3-dimensional, lossy dielectric cylinder, which is termi-
nated by spherical caps at both ends. Its radius is 0.05m,
the total length 0.5m. The excitation is a plane wave
with a wavelength of 1m. The electric field is parallel
to the cylinder axis (see Figure 3). The material has a
relative permittivity of 50 and a conductivity of 1Sm™?,
close to the properties of biological tissue. The internal
wavelength is about 0.14m.

Three planes of symmetry are used; the total result is
obtained as a superposition of results of two symmetry
conforming subproblems. The FE domain in the first

Figure 3: Geometry of the cylinder with spherical ends.

octant was discretized with a tetrahedral mesh with an
average spacing of 0.01m, leading to 824 nodes, 3199
elements and 4450 edges (Figure 4).
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Figure 4: Surface discretization with matching points
and location of the multipole expansions (left) and cut
through the tetrahedral FE mesh in the z-z plane (right).
Thanks to the symmetry of the problem the scatterer
needs to be discretized only in the first octant.

For the MMP model, matching points that enforce the
boundary conditions with the FE inhomogeneity were
generated in the center of each surface triangle of the
mesh on the boundary between the MMP and the FE
model. The scattered field around the cylinder is ex-
panded with 4 multipoles on the axis of the cylinder at
z =20, 0.06, 0.13 and 0.2; the even and odd models each
have about 100 unknowns. For the feedback to the FE
problem the electromagnetic field of the solution is eval-
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Figure 5: FE/MMP solution of the field in the cylinder
(left) and the pure MMP solution (right), sampled on
a regular 20 by 50 grid. The specific absorption rate is
shown in the z-z plane with the same scaling for both
solutions; the higher the absorption, the lighter the color.
A plane wave is incident from the left.

uated in the surface nodes of the FE mesh.

This benchmark problem can also be solved with high
accuracy using the 3D MMP code alone [11], which gives
a reference for the solutions obtained with the coupled

method. In that case, the interior field is approximated.

by a high-order spherical expansion with Bessel functions
in the center of the cylinder. Both results are shown
in Figure 5. The wiggly nature of the lines in the FE
solution is due to the discontinuity of the solution across
element boundaries.

To indicate how much the presence of the MMP terms
in the FE system of equations affects the convergence
behavior, the relative residual as a function of the num-
ber of iteration steps during the solution of the even part
of the problem is shown in Figure 6, once for the pure
FE problem with the correct boundary conditions from
the pure MMP problem, once for the mixed FE/MMP
algorithm.

In the same figure the effect of restarting the GM-
RES algorithm can be seen. A disadvantage of GMRES
is that the minimization of the residual error requires
keeping all the vectors that build up the Krylov sub-
space. Therefore both the cost in memory and com-
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Residual / Norm of R.H.8

Figure 6: Residual as a function of iteration step for the
pure FE problem (lines) and for the mixed FE/MMP
algorithm (dotted line). Versions without restart, with
a restart every 100 steps and with a restart every 50
steps are shown.

puter time increase as the algorithm proceeds. Breaking
off the algorithm after a certain number of iterations
and restarting it with the improved solution offers a way
out, however, at the cost of slower convergence, or, if
the number of iterations between restarts is too small,
no convergence at all. Other transpose-free algorithms
such as CGS (conjugate gradient squared), Bi-CGSTAB
(biconjugate gradient stabilized) or algorithms based on
the QMR (quasi-minimum residual) method [8], which
all have a constant cost per iteration, could provide an
alternative, but this has not yet been tried.

7. CONCLUSION

The MMP code has been successfully coupled with a FE
code. The coupling has been made in a way which has
minimal impact on either of the codes, so that the full
modeling power of each code is preserved. This provides
a useful extension to both of the involved methods and
holds promise for a variety of problems which are difficult
or impossible to treat with either method by itself. The
iterative approach, especially when applied to systems
of the form (9), can also be extended to hybrid combi-
nations involving other or more than two participating
methods or models.
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