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ABSTRACT. A more general concepi for the treatment
of symmeiry in the 83D MMP codes allows considerable
gains in usability. Up to now, symmetry decomposition
of funciions has been made with functions that are con-
tinuous across the symmetry plane. Now discontinuous
symmetrizations are added. Possible continuily condi-
tions in the symmetry plane can be enforced explicitly
with maiching poinis. Not only are problem sizes re-
duced, but the creation of good models in the MMP sense
s considerably simplified in some common applicalions.
The improved approach alse illusirates some of the “clas-
sical” methods for calculating obstacles in waveguides.

1. INTRODUCTION

The MMP codes (Multiple Multi Pole) are an implemen-
tation of the Generalized Multipole Technique (GMT)
for computation of time harmonic fields in piecewise ho-
mogeneous, linear and isotropic regions. In each domain
the field is approximated by a linear combination of solu-
tions of the Helmholtz equation, mostly multipoles. The
field expansions are matched in points on the boundary
between the domains, leading the field problem back to
the solution of an overdetermined, linear system of equa-
tions. The incident field fi"° (excitation) as part of the
total field in the solution

ftot — finc+ f:c

iz included in the equation system with the only fixed pa-
rameter. All other parameters of the expansions mod-
eling the scattered field f*° will be determined in the
solution related to the excitation. For a more detailed
description see Reference [1].

2. BOUNDARY VALUE PROBLEMS AND
SYMMETRY

The geometry of boundary value problems is often sym-
melric, i.e. invariant to certain symmetry transforma-
tions in space. Exploiting these symmetries pays off in a
considerable reduction of computational time and mem-
ory requirements and, furthermore, brings numerical ad-
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vantages. Symmetries are also an easy way of introduc-
ing perfectly conducting infinite planes into a model.

‘The mathematical tool for treatment of symmetries is
group theory. A complete and understandable descrip-
tion of its application to boundary value and eigenvalue
problems is given in [2, 3, 4, 5, 6]; in this section only
the consequences are outlined.

A linear symmetry transformation in n-dimensional
space is represented by an n by n matrix D. The var-
ious symmetry transformations which are applicable to
a given geometry can be seen as representations of the
elements s of a group G. They are consequently written
as D(s). A matrix A has the symmeiry of the group G
if

D(s)A= AD(s) VsegG. (1)
For the matrix equation in a boundary value problem
Ac=1b

Equation (1) means that a symmetry transformation of
the boundary values b is equivalent to the same trans-
formation of the result c.

Group theory shows that a transformation T can be
found which transforms A into a block diagonal matrix
A according to -

A=T"1AT )]

The number and the size of the blocks is determined by
the group G. The transformations T' are tabulated for
the most common symimetry groups.

As a consequence, the boundary value problem splits
up into K smaller symmetry adapted ones, which can
be solved separately at a lower overall expense. Note
that it 1s not necessary for the boundary conditions to
be symmetric.

Ac=b — Agcp=b (k=1,...,K) (3)
The A; usually have a better condition number and are
in any case numerically better due to their lower dimen-
sion. An additional reduction of problem size takes place
if some symmetry components of the excitation by of b
are equal to zero. Therefore the corresponding part of

the problem has only the trivial solution ¢, = 0.
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Figure 1: The scalar function f(:t) is defined for positive
z as fi(x) and for negative = as fa(z).

In homogeneous boundary value problems (eigenvalue
problems) splitting the problem into symmetry adapted
ones helps to separate modes and, in particular, degen-
erate solutions. '

Instead of explicitly performing the transformation T’
on A, it is also possible to set up the matrices Ay directly
using symmetry adapted expansion functions.

3. REFLECTIVE SYMMETRIES IN THE
3D MMP CODE

In the 3D MMP code one or more reflective symmetries
about the coordinate planes X = 0, Y =0 and Z2 =0
of the global coordinate system are implemented. Due
to the orthogonality of these planes, the consideration of
symmetries can be made quite intuitively for one plane
of symmetry at a time.

With respect to one symmetry plane a scalar field f
can be split up into an even and an odd component f+
and f~ from which the complete function can be recon-

stituted as
f=r+r. 4)

For actually decomposing a function, the symmetriza-
tions

f*(2) = 3 [f(+2) + f(=2)] (52)
(@) = £ [f{+2) - f(-2)]. (5b)

are usually used, where + and — denocte the even and
odd components, +z and —z denote the coordinates per-
pendicular to the plane. The advantage of the relations
(5) is that they yield components f* and f~ which are
continwous at the symmetry plane at z = 0.

It is also possible 10 obtain the even or odd field in the
reflected domain by extending a function defined only in
the principal domain into the reflected domain by

iy ) 3f(=),
d ("’)"{ F-2),

forz>0

forz <0 (6a)
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Figure 2: a) and b) show the even and odd symmet-
ric functions decomposed from f(z) according to Equa-
tion 5.

() = { 1f(z), forz>0 (6b)

1f(—2), forz<0’

These components are not continuous at z = 0. This,
however, is of minor importance for domains which are
not intersected by the symmetry plane. The effect of the
decomposition according to 6 is shown in Figure 3.

In the 3D MMP code [1] no difference is made between
domains which are intersected or not, therefore (5) is
always used.

For electromagnetic vector fields, additional depen-
dencies between the components have to be taken into
account. Because Maxwell’s equations are invariant with
respect to reflections about a plane and due to the du-
alitz of the electric and magnetic field, the components
must transform in one of the two ways:

EJ_(+::) = —E_L(-:l:)

HJ_H'I) = Hl(-z) (7)
Ey(+2) = Ey(-2)

Hy(+z) = -Hy(-=)

or like

E_L(+I) = EJ_(—z)

Hi(+2) = —Hi(-2) ®)
E||(+I) = -—Eﬂ(-—:t)

Hy(+z) = Hy(-z

The index 1 stands for the component of a vector
perpendicular to the plane, || for the one parallel to the
plane. For the 3D MMP code, an electromagnetic field
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Figure 3: a) and b) are the even and odd symmetric func-
tions decomposed from f(z) according to Equation 6.
Only the part f; defined in domain 1 is shown here. For
f2 in domain 2, an equivalent construction is made.

is defined to be even about a plane if (7) is true and odd
if (8) holds. On the symmetry plane itself for an even
field

E =0 and H =0 9)
are valid, and for an odd field
Ey=0 and H =0 (10)

are valid.
As a result, the problem

Ac=1b
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Figure 4: MMP model of a symmetric boundary value
problem with one plane of symmetry. Note the different
discretization in A and B. With a decomposition accord-
ing to 5 it is never necessary to put matching points onto
the symmetry plane.
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with respect to one reflective plane splits up into an even
and an odd problem

Atet = bt

and A ¢ =b"

At and A~ can be set up directly and. each has oaly
approximately half the number of parameters and equa-
tions of A. The field is evaluated by summing the sym-

metry components

Ntp N +1
=3 dft+ Y G (11)
i1 f==1

The above considerations can be superposed for three
orthogonal planes of symmetry. Both the inhomogene-
ity of the problem and the solution split up into eight
symmetry adapted components

FofrHt 4 fr— g+ 4 - 4

sl i N T (12)
b =b+++ + b++- + b+-+ + b+—- +
LIRAE Y Mt Rt S (13)

and the whole problem divides into the eight parts

Attt = pt
Att—pHt= =  ptt+-
A¥—Fe+—+ = p++
Av—mc- = -
A-tte—t+ = p-++ (14)
A+t = b+
T A-tet = ¥
A=c = b

Each of these symmetry adapted matrices has only one
eighth of the number of rows and columns of the original
problem.

To discuss the impact of the symmetry on the problem
we assume a symmetric MMP model (Figure 4).

A nonsymmetric expansion cap be symmetrized with
(5a) and (5b). An expansion and its reflected counter-
part produce the same symmetrized functions, so only
one of them has to be considered. An expansion with
origin on the symmetry plane needs special treatment.
If it is properly oriented, it may already be even or odd
about the plane and consequently adapted to one of the
symmetries. In this case it is important that it enters
only either A* or A~ respectively. In the wrong ma-
trix it will produce a zero column, and the matrix wiil
become singular. Each plane of symmetry in which a
multipole or normal expansion lies leads to a reduction
of the number of its parameters by a factor of 2. But if
the expansion is not properly oriented, all functions are



symmetrized, and the expansion will enter both A* and

A~ with the full number of coefficients. Because normal

expansions must not be used multiply, their origin has

always to be on the intersection of all symmetry planes.

The matching points can be treated by analogy. In a
point and its reflected counterpart, the values of a sym-
metric field are identical except for a possible change of
sign. This results in the same equations for both points
and consequently only one has to be considered. In a
point on a symmetry plane several of the componeunts
are zero because of (9) and (10}, and the symmetriza-
tion of the remaining components is simplified. Note
that it is usually not necessary to put a matching point
on a symmetry plane (cf. Figure 4); the exception will
be discussed below. Although zero rows in an overdeter-
mined system of equations do not cause much harm, they
waste computing time during updating. 3D MMP there-
fore correctly eliminates these trivial equations from the
system of equations.

Field points are in contrast to the matching points of-
ten lying on symmetry planes. The reason is that the
field is easier to interpret there due to the reduced num-
ber of non-zero components. However, the consideration
" of these symmetries does not save much computational

time, as evaluation of the field is not very costly.

. The choice of the principal domain, i.e., the side on
which the expansions and rmatching peoints are consid-
ered, is not unique. In the MMP programs it is generally
assumed to be the intersection of the positive half-spaces
(i.e., the side on which the coordinates are positive) of
the symmetry planes involved. Having expansions on the
other side of a symmetry plane can result in a change of
sign of the corresponding matrix columns and, as a con-
sequence, of the parameters. Having matching points on

“the other side of the symmetry plane can affect only the
sign of the corresponding rows and therefore does not
influence the solution.

4. LIMITATIONS

The treatment of symmetries with the decomposition
(5), however, fails to work in some important cases. Ex-
amples are the cases of waveguides with discontinuities
or openings in infinite walls. This does not only lead to
an increased problem size, i.e. increased number of rows
and equations in the system matrix, but also to impor-
tant restrictions in modeling due to the rules for pole
setting. The models for the two examples are shown in
Figures 5 and 8, respectively.

The main probiem is that if a symmetry plane is in-
troduced then applying Equation (5) causes the sym-
metrized functions of the excitation A and of a scattered
wave T on the other side of the symmetry plane to be-
come the same. Therefore, the scattering problem is
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Figure 5: This waveguide with a symmetric obstacle in
the center is divided into four regions: the two waveguide
ends with their modes (Excitation A, Reflection R and
Transmission T} and the center region with expansions
for the scattered field in and around the scatterer.
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Figure 6: Simplified model of an opening in an infinite
plane without consideration of symmetries. The scat-
tered field T contains only scattered components. The
relevant multipole expansions around the edges have to
be positioned within the infinite wall (indicated with x).
Using symmetries, the incident and reflected waves A
and R are mirrored to the positive z side below the open-
ing, but must vanish when superposed. Details of the
modeling of apertures to get good results are presented
in Reference 7).

immediately solved for both symmetry parts by exactly
cancelling the excitation with the decomposed scattered
wave, resulting in the trivial solution with zero overall

field.

5. IMPROVED SYMMETRIES

This problem can be solved, however, by symmetrizing
the field functions according to Equation {6}. This is
never a problem within domains which are not inter-
sected by the symmetry plane; the question arises, how-
ever, as how to proceed if this should be the case. The so-
lution is to introduce matching points on the symmetry
plane in order to maich the discontinuous components of
both sides and thus render them continuous, i.e., enforce



(9) and (10). There is no restriction on the remaining
components of the field; A continuous field will result,
although the derivative will not be continuocus for sin-
gle components across the symmetry plane. As these
new matching points are treated in the same way as the
other matching points, a residual error on the symmetry
plane is allowed. In essence, the procedure is equivalent
to introducing a fictitious boundary on the symmetry
plane and — strictly speaking — cutting the symmetry
plane out of the considered domain, thus removing the
problem. The residual error of matching points on the
symmetry plane can be reduced with respect to the error
on ordinary matching points by weighting the respective
equations accordingly.

Not only is the problem reduced to two smaller, sym-
metric problems, but in addition the modeling becomes
considerably easier for a number of problems, e.g., open-
ings in screens or obstacles in waveguides. However, the
symmetric probiem parts are now in principle larger than
half of the unsymmetric problem, since matching points
(and therefore equations) are necessary in the symmetry
plane. The problem therefore becomes a truly one-sided
problem, the result of which is “mirrored” on the other
side. Multipoles, for example, can now be placed with-
out the restriction that the mirror image of the expansion
also has to be kept out of the domain. They can be put
into the mirrored domain.

In the case of ordinary symmetries with continuous
functions across the symmetry plane an expansion out-
side the symmetry planes is complemented by another
expansion in the mirrored position. For a multipole close
to the symmetry plane the heuristic rules for dependence
between the multipole and its mirrored image have to be
obeyed, 1.e. the multipole must not be placed too close to
the symmetry plane. Alternatively, it may be placed on
the symmetry plane itself, where the pole and its image
become equivalent and only the symmetry conforming
components may be used.

On the other hand, symmetrized functions defined ac-
cording to Equation (6) are evaluated in the principal
domain and just reflected to the other side; there is no
further interaction between the two sides (Figure 7).

The physical interpretation of the boundary condi-
tions which have to be met on the symmetry plane is
quite interesting: In the case of even symmetry, they are
equivalent to a perfectly conduciting magnetic wall, in the
case of odd symmetry to a perfectly conducting electric
wall. This provides a connection with “classical” meth-
ods for computing cbstacles in waveguides.

6. TMPLEMENTATION

The basis for the following discussion is the program [1].
To accommodate the additional treatment of symme-
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Figure 7: Dependence between multipole and its mirror
image, and non-dependence for multipoles symmetrized
according to Equation 6. The “forbidden” regions are
indicated by the spheres. The positions of the poles are
no longer limited to the inside of the conducting plane.

tries, the implementation of the symmetry decomposi-
tion within the 3D MMP main prograrn has to be slightly
changed.

It is necessary to add symmetry data to domains or
expansions (or both), in order to decide which of the
symmetry decompositions (5) or (6} shall be used across
each symmetry plane.

The symmetry decomposition (5) was originally ob-
tained by adding up the field components of a fixed ex-
pansion in all mirror images of the field point, unless the
expansion was known to be symmetry conforming. This
is in principle equivalent to adding up the contributions
of all the mirror images of the expansion in a fixed point
(Figure 10). Also, as has been mentioned above, it has
up to now not been important whether an expansion
or field point in the model were actually located in the
principal domain or at one of the mirror images, as all
the mirror images were used in the symmetrization. In
the symmetry decomposition (6) the distinction between
the field in the principal domain and its mirror images
is more explicit. Because of this one-sidedness, the first
way in which the field points are mirrored is better suited
for the implementation.

An expansion for the principal domain can be inside or
outside the principal domain. Other than in (5}, its mir-
ror image will not be used for the principal domain any-
more. For evaluation of the field on the negative side of
a symmetry plane, i.e., outside the principal domain, the
field is always evaluated in the corresponding point on
the positive side, 1.e., in the principal domain, and subse-
quently “mirrored” back to the negative side, according
to equations (8) and (7). For the field in a symmeiry
plane, the definition range of the symmetrized functions
(6a} and (6b) on one side of the symmetry plane can be
extended to include the symmetry plane itself, e.g., from
z>0toz > 0.

The elimination of superfluous (due to symmetry con-
siderations) components of the boundary conditions in
the matching points is already present in the code [1].
Therefore, simple matching points with the full bound-
ary conditions, i.e., for all components, may be used to
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Figure 8: Model of an obstacle in a two-dimensional waveguide without and with symmetries. In r;eéion a), an
additional wall is introduced. Boundary b) is only needed in certain cases.
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Figure 9: Model of an opening in an infinite plane without and with symmetries. For better visualization, the

horizontal symmetry is not exploited.
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Figure 10: Two alternative but equivalent ways of per-
forming the symmetry decomposition (5). In a), the mir-
rot images of the points are used, in b) the mirror images
of the expansions.

enforce the symmetry conditions in the symmetry plane;
the necessary components are automatically selected.
This eliminates the need for separate models with dif-
ferent boundary conditions for different symmetry com-
ponents of the problem.

This internal change in the 3D MMP code still gives
correct behavior for models with “conventional” symme-
tries even if expansions or matching points are not in the
principal domain; it 1s therefore completely compatible
with older versions.

7. CONCLUSION

An additional kind of symmetry decomposition for the
field functions in the MMP code has been introduced.
This complements the existing symmetries in the MMP
codes and allows the use of symmetries for problems
which could not be treated with the existing implemen-
tation. The functions resulting from the new symme-
try decomposition are in principle discontinuous across
symmetry planes. Therefore, additional matching points
have to be introduced on the symmetry planes in order
to satisfy the continuity of the odd components of the
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field function. This is equivalent to introducing a wall
on the symmetry plane which represents an ideal electri-
cal conductor in the odd case and a magnetic one in the
even case. Not only is the total amount of computation
reduced, but due to the one-sided nature of the model
the user is much freer in the placing of expansions.
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