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ABSTRACT. In this paper we examine theoretical
and computational aspects aof Discrete Sources
Method applied to the solution of time-harmonic
electromagnetic scattering problems

1 INTRODUCTION

Mathematical models in electromagnetic time-har-
monic scattering theory are formulated as
Boundary-Value Problems (BVPs). They consist of
the Maxwell equations (Helmhotz equation),
radiation conditions at the infinity and boundary
conditions imposed on the discontinuity surfaces
of permittivity and permeability of the medium.
Their practical significance is determined by a
wide field of applications in optics, radiophysics,
computer tomography and etc. especially in
conmection with the development and
implementation of new advanced technologies.
From the theoretical point of view these problems
are classical BVPs of mathematical physics. They
represent exterior BVPs for a system of differential
equations in partial derivatives, which in general

case may be formulated as

L{u)=0, MeD,=%R*\D,, (1.1.2)
radiation conditions at infinity, (1.1.b)
boundary condition: Qu=-Quy atd. (1.1¢)

Here L is an operator of the external BVP imposed
in outer region D,, Q is a boundary condition

operator; oD is a smooth closed surface; u, is an

exciting field — either plane wave or a field of the
local sources.

As a rule one considers both direct and inverse
scattering problems. Treating the direct problems
demands that physical characteristics of scattered
field outside the obstacle should be determined,
When investigating the inverse scattering prob-
lems such as the recognition problem or the syn-
thesis one it is necessary to reconstruct the scatter-
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ers properties using a scattered field value. Note
that most methods involved in the solution of
inverse problems are based on a variational
approach in which it is necessary to solve
repeatedly direct problems {1]. This circumstance
demands that the most effective tools for solving
these problems be developed.

In this paper we are concerned with some aspects
of constructing effective algorithms that may be
employed for a wide variety of the scattering prob-
lems. Such problems are characterized by remote-
ness of exciting sources and cbservation points
from an obstacle. The main feature of the problem
consists in the fact that we are not interested in a
detailed analysis of fields in the vicinity of the ob-
stacle but we intend to obtain detailed information
about scattered fields in a far zone from an obstac-
le. It enables one to avoid the time consumer algo-
rithms similar to the precise solution of boundary
integral equations but to use a Quasi-Solution (QS)
concept for a BVP examination.

The essence of QS concept consists in the use of
some semi-analytic construction #° corresponding
to examined BVP. We shall construct QS in such a
way that the following conditions hold

L#%)=0, MeD,, (1.2.3)
radiation conditions at infinity , (1.2.b)
and approximate boundary condition:

||Qu5 +Q u0|| <5 (1.2.0)

Thus QS satisfies analytically a differential equa-
tion, radiation conditions and within the fixed
accuracy the boundary condition in an appropriate
norm at the obstacle surface. The latter circum-
stance should be provided by some numerical
scheme that enables one determine all parameters
of QS obeying (1.2.c). The advantage of the QS
conception approach consists in the fact that we do
not intend to solve any equations which solvability
and equivalence to original BVP shall be proved.



It is based only on the assumption of solvability of
the BVP for any external excitation. The fact that
fitting (1.2.c) guarantees the closeness of QS to the
exact solution of the BVP anywhere outside the
obstacle plays the main role. In fact the existence
of Green function (tensor) for the BVP (1.1) leads
to the following estimation

"" - "ancw) B O(HQu6 * Quoan(d)) ’

where d is any compact in D, . This relation me-

ans that to provide a closeness of the QS to the
exact solution in a continuous metric outside the
obstacle it is sufficient to approximate the boun-
dary condition in L, (&D) norm [2]. Note that the
approximation of boundary conditions in a mean
square norm is not necessary for QS construction.
One may use a weaken metric created by some
kind of a smoothing operator.

QS conception may be realized in different forms.
To investigate the scattering problems on a closed
obstacle Discrete Sources Method (DSM) seems to
be the most appropriate. DSM essence consists in
the QS construction as a finite linear combination
of elementary sources — dipoles and multipoles.
Therefore the representation for the QS satisfies
the Maxwell equations and radiation conditions at
infinity. Discrete Sources (DS) amplitudes are to
be determined from the boundary conditions on
the local obstacle surface. Thus DSM is a semi-
analytical method in the frame of which some
conditions of the BVP are satisfied analytically but
others — numerically. In fact the QS construction
in this case is reduced to the approximation of the
exciting field boundary value by a linear combi-
nation of the DS.

{1.3)

2  THEORETIC ASPECTS OF
DSM

Let us begin to consider the basic theoretic aspects
involved in the DSM realization. For simplicity we
shall consider scattering of 7E polarized plane
wave by the infinite impedance cylinder with a

smooth element &D e Ct1®) | In this case
u=E,, L=V?+k%

Q=4g/én+p mpz0, BeCO¥Dy),
here 8/0n is a normal derivative at the contour 8D.
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In some publications DSM is regarded as a finite-
dimension approximation of Auxiliary Current
Method (ACM) [3-4]. Let us consider in detail the
correlation between these two approaches. In the
frame of ACM one may use for QS the following
representation

u® (M) = [y (M, )i (p) i, @1
r

where  is a fundamental solution of Helmholtz
equation y (M, p) = —if4 H§? (k.Ryy), contour
y eC%9 s simated completely inside D; and
,us €L, (y) (tz1).Letus introduce an operator

Gu:=[Quuig.pu(p)dl,, geéD (2.2}
4

Then to create QS of the BVP (1.1) it is sufficient
to ensure that R(G) {closure of range of values of
the operator G) coincides with L,(&D) . The latter

fact means that for arbitrary f e L,(FD) and for
any &> 0 there exists 4° €L () sothat

[If - Gﬂa“}_z(an) €0

Let now asetof points { pp, L, n =1, 2, ... be
chosen on the contour y and moreover the closure
of { pn } = 7 Then QS in the frame of the DSM
takes the following form

@3

N N
u (M) = an y(M,p,).

n=1

If for arbitrary f € L,(FD) and any number 6> 0
there exist u, such that

24)

N
- £§6 5
"f Qu IILQ(aD) @.5)
holds, then by formula (1.3)
lim ¥ (M)=u(M), Medc D, (2.6)
N—ow

takes place. It is easy to prove that in case of a
specific choice of the set { p, } so, that
Max |ppyq — Pa| >0 for N >0 and from (2.3)

the expression (2.5) may be obtained. Therefore to
prove both the ACM and the DSM it is sufficient
to ensure that closure of R(G) = Ly{ZD). In turn

to prove the completeness of the G it is sufficient



to establish that kerG* =@ . Here G~ is the
conjugate to G operator having the following form

G'v := [Quv(g.p)V (@) doy,
2D @7

pey, gel(D).
Let vs determine the function

VM= [Quuwie. M)V (g)do,.
éD

2.8)

Theorem 2. I. If the DS support yis such that from
Vip) = 0, p € y one may receive VA = 0 in D,

then kerG* =@ (cf. [5]).

Integral operator G acting from L; (¥ (t 2 1} to
1,(&D) is a compact operator having an unclosed
range of values. Therefore inverse to G operator

G~! is unbounded even in the range of G. The
latter fact leads to unboundedness of the currents

sequence {f“"} under § — 0.

Theorem 2.2. Current sequence {7V} is limited in
L) (t>1) norm then and only then when

contour y encloses all singularities of analytic
continuation of a scattered field inside D; (cf. [2]).

The above analysis shows that to provide the
convergence of the QS «V in a frame of the DSM
to the exact solution it is sufficient to select a DS
support so that V{p) = 0, peyleadsto VAf) =0 in
D;. Since ¥V function (2.8) is an analytical
function in D; then selecting ¥ so that sufficient
conditions of vanishing ¥ in D, will be fulfilled
we will be able to construct a new complete
functional system appropriate for the DSM.

Example 2. 1. Let the support 7 be a part of analy-
tic closed nonresonance contour y (region bounded
by y is supposed to be nonresonance for the fixed
k.). Let {p,} have at lgast on¢ limit point on ¥

then the corresponding complete system takes the
form [2]
W}I(m = V’(M,Pn) 1)

Example 2.2. Let the support £ be the segment of
any 7eC®® curve inside the D; and the
closure of {p,}=¢ then corresponding complete
system takes the following form [5]

Pn €T 2.9

{wM,p), ay(M,p)jon,}, p=py el 2.10)

System {2.10) is the most suitable for the analysis
of the oblate obstacles or "thick" screens [2].

In the same manner as above it is easy to construct
complete systems for an internal problem. For
instance in the case when support is the same as in
Example 2.1 the corresponding complete system is

Z(M:P)=J0(kiRMp): P=Pn, PnEr.

Note that in most other publication [3,4] DS ha-
ving the singularities at a some contour in D, are
usually used for the representation of an internal
field. So, completeness of a DS system in L, (£D)

formally provides a convergence of QS to the exact
solution outside D, . For a selected scheme of the

DSM realization it is necessary to coordinate the
choice of support y with the singularities of
analytic continuation of the scattered field.

Let us consider a numerical scheme for determina-
tion of the amplitudes. We introduce the vector of
amplitudes p = { p, }, n=1,....N and the value of p
is to be determined as

P :=argmin EQuN + Quolle(aD)'

Then vector p will be a solution of normal system
[6]. 1t is known the determinant of that system is
the Gramm’s kind determinant G,;. As the functi-

onal system {Q,w(g,M,)} is linear independent
then we have det Gy = gpy > 0 for the all V.

Theorem 2.4. Let all points of {M,} be different
and max |M,, — M,| =0 under N - «, then
the following estimate

vy
gy =0|&" TIh,|, N>>1, 2.11)
=]

holds (cf. [6]). Here £ is constant depending only
on mutual disposition of support ¥ and contour D
and h, =|Mp, ~M,|. It is easy to sce that
maximum of the estimate is achieved in case of an
uniform step.

Corollary, For any &> 0 and arbitrary contours

2D there exists a such number Ny{(y,&D) that
gy <& holds for all Nz Ny, Therefore the
determination of DS amplitudes as a solution of
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the normal system is unsiable under any
disposition of yinside D;.

Now let us consider a scheme of amplitudes deter-
mination obtained from a point-matching appro-
ach. Let {qj}, Jj=1,...,.J be a set of matching points
then the corresponding linear system for DS amp-
litudes determination is

N
T Pavalg;)=-uglg;); q; €D, 2.12)

n=]
j =1, ..., J. Then the product of singular numbers
Ay, of the matrix K, (2.12) may be estimated as

N
1_”1‘1'. ,,I =h0—Nl2 gNI/2, N,J >> 1,
H

n=

Matching points are assumed to be umiformly
spaced on 8D at a distance of k. It is evident that
estimate (2.13) at N = J is better than (2.11). This
estimate enables one as previously to prove
instability of the point-matching scheme for the
determination of DS amplitudes. Note that instabi-
lity occurs irrespective of the position of singulari-
ties of the analytic continuation. Since determinant
{2.13) tends to zero there appear difficulties we
have spoken above, in particular unboundedness of
the DS amplitudes sequence.

Lately overdetermined linear systems have been
preferably used for determination of DS amplitu-
des [6-7]. In this case the number of matching
points is not equal to DS mumber J > N. Here the
value of Ay depends only on J. Thus, the estimate

(2.13) is refined as J becomes larger. So, the over-
determined system of the matching-point method
seems to realize a more stable numerical scheme.
We shall use this approach for DS amplitudes
determination. It is important to note that using an
overdeterminated system it is not necessary to
increase the number of matching points with res-
pect to DS number. Conversely, using an overde-
terminated system allows us to reduce the DS
number [2].

Note that the DSM has some essential preferences:

e asimple structure of DS ficlds;

s the possibility of quickly passing from the
solution of one BVP to the another, more
complex;

e internal criterion for QS error estimation,

All these circumstances have allowed for a short

period of time to adjust the DSM for solving a

wide variety of BVPs in the scattering theory [2,8].

(2.13)
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3  ANALYSIS OF AXI-
SYMMETRICAL OBSTACLES

In this part we are going to consider problems of
scattering by bodies of revolution. Electromagnetic
scattering problems have some peculiarities for
axi-symmetrical obstacles. One is able to formulate
QS in such a manner that it takes into account
both rotation symmetry of an cobstacle and the
polarization of excitation. In this case the selection
of DS support plays a significant role. Before
constructing QS for the Maxwell equations Iet us
consider the main theoretical principles for
Helmholtz equation. It seems to be reasonable be-
cause the complete sets of dipoles and multipoles
are as a rule based upon a complete set of Helm-
holtz solutions [2]. In view of that approach com-
pleteness of the fields of dipoles and multipoles is
provided by the appropriate choice of their
orientation [2].

So we are going to consider the BVP in #3 space.
Let 0D be a surface and 8D e C{1®), then there

exists a unique solution of (1.1}. In this case the
fundamental solution of Helmholtz equation is

k
W(M, p) = TP {keRagp),

where h§D is Hankel spherical function. When
constructing QS of the BVP (1.1) there are diffe-
rent possibilities to select the support of DS. The
simplest one seems to be the choice of DS support
deposited on the auxiliary surface disposed inside
the obstacle. Nevertheless this approach realizes a
rather time consuming numerical schemes. It is
correct both in the case for approximation of the
fields at the obstacle surface 2D and for the case
when QS is represemted as Fourier series with
respect to azimuthal variable 4.

The approach developed in the previous part
allows a set of arbitrary dimension as DS support,
in particular a segment of symmetry axis situated
inside of obstacle .D; to be chosen. Let region D;
be simply connected. Let us choose as a DS set

{w,,}:=l =y,, where y, is a segment of axis Oz.

Then the complete system corresponding to the
geometry of this support is



sinmg

V(M) =Ya(q) cosmg G.D

Here g € &, & is a semiplane ¢ = const, m =0, 1,
2, ..., and functions ¥, have a form

Yi(g,w)= h,(,,z)(k,_.wa) B (cos 8,,) =
k™ (2m— 1)1
where Pr(.) is adjoint Legendre polynomial,

Ri,=p* +(z-w)?, g=(p.2), and (p,4,2) are
cylindrical coordinates. It is easy to ensure that
functions V2 (M) satisfy Helmholtz equation

(2 +#2)ve(m)=0 m D,

and radiation condition, and for a fixed m they are
lowest-order muitipoles {2]. As

then (3.2) can be rewritten in the form

Py(cos6,)/(2m-1)11 =

Yi(g.w) = AP (koRpy) x (kg p/ R 6.2

)"
For consideration of the similar internal BVP in
D; the complete system of the DS fields corre-

sponding to the chosen support structure should
have the form similar t¢ (3.1)

sinmg

Vo M) = Ya(9) cos m¢ (3.3

where functions Y’ (¢) have the following form

Here j,(.) is the Bessel spherical function. In this

case ¥/ (q) fields are regular functions having the
singularities at infinity.

(3.4)

Theorem 3.1. Let closure {w,,}:ll: ¥., where

¥, i a segment of axis Oz. Then systems (3.1),
(3.3) are complete in L,(3D) (cf. [6]).

Note that systems (3.1) and (3.3) are suitable for
the analysis of scattering by axi-symmtrical
obstacles for two reasons, First, these functions are
orthogonal at the surface 8D with respect to ¢
variable, and second, for any bounded m they may
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be represented as a finite linear combination of
elementary functions.

As it was shown above the convergence of QS to
the exact solution of BVP (1.1) is ensured not only
by the completeness of the DS system but also by
the behavior of DS amplitudes at N — oo as well.
The boundedness of the sequence of DS amplitu-
des may be achieved if the support is disposed in
agreement with the location of singularities of the
scattered field analytic continuation. Therefore the
choice of the DS support ¥, at the symmetry axis
essentially restricts the DSM applicability. In order
to remove the mentioned restriction the procedure
of analytic continuation of fields of the DS (3.1),
(3.3) onto the complex plane W with respect to
coordinate w [6] may be considered. Thus we will
receive the following result.

Theorem 3.2. Let the DS set {w ey <D, c#
and there exists a limit point w'e D, then the
QS for an external (internal) BVP (1.1) can be
constructed on the basis of functional system (3.1)
((3.3) (cf. [6)).

Thus by selecting the DS support in the region
D,, of the complex plane W we can coordinate the
location of this support with the singularities of
the analytical continuation of the scattered fields
into region D;. This approach proved to be especi-
ally efficient in investigating oblate obstacles [5].
We shall refer to the support used in Theorem 3.2
as y,,.

4 EM SCATTERING BY
PENETRABLE OBSTACLES

Let us consider scattering of an electromagnetic
plane wave {E°,B°} by the uniform magneto-
dielectric body of revolution D;. The mathemati-

cal formulation of BVP is
C'i.ll‘] H’ = iker'; Cl.lﬂ Et - _ikprI
inD,, t=ie “4.1)
0
n, % (B2 -E() =0, xE°(2). o,

n, x(B;(p)-H.(p) =n, x H(p).

Silver-Muller radiation conditions at the infinity
holds as well [9]. Here axb is a vector product,
n, is a unit normal to D, k=w/¢, g, 4, >0,



Ims;,p; 20, 8D eC®), then there exists a

unique solution of BVP (4.1). Let us introduce into
consideration the systems of fields of the electric
and magnetic multipoles

(E;:J =(i/k£:l‘z c:urlcurl) A€ -
H;, -l/u, cutl ue

(Eﬁ,)_( Ve,
Hﬁ, - i/k“"rﬂr

where Hertz vectors are A%” =V7 (g)e; and v
is multindex: v=(n,m, D), 1Sns N, 0<m< M,
=123 {e;} is Cartesian basis. The following
result holds

Theorem 4.1. let 8D be an arbitrary (mot
necessarily  axi-symmetricy surface, and DS
support be y.. Then QS of the BVP (4.1) can be
constructed in the following form [2]

=)

So, cne may construct the QS representation based
on the electric multipoles. The same result holds
for the magnetic ones as well.

4.2)

curlcurJ o>

(4.3)

The representation (4.3) for axi-symmetric
obstacles due to the choice of support y, has a
form of the finite Fourier sum with respect to
azimuthal variable ¢. In future we shall consider
the linearly polarized TM/TE plane wave as
external excitation. So let us examine the
convergence of the Fourier series for the plane
wave at the obstacle surface. For the case of 7Af
plane wave propagating at angle 6, to Oz axis the
electromagnetic fields are

E® = (e, cosfy +e; sindy) e”

(e 0 +es3 0) @
): S -e, e”
where e"= exp{ik,(pcos8y sindy +zc0sby)} . Let
us represent plane wave in the form of Fourier
series
exp {ik, psinfy cosg} =

= 4.5
¥ @- 4.5
i=0

Son) it Jy(k,psin 6,) cos Ig
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where &y, is the Kroneker delta, J;(.) is the cyl-
lindrical Bessel function. One easily sees that con-
vergence of series (4.5) is determined by the value
of k.asinfy, where a is the radius of the body
D;. Thus for the prolate bodies having small valu-

s of parameter a one may use only several number
of Fourier harmonics for representation (4.3).

We shall determine the coefficients pf, in a fol-
lowing manner

pu, =argmin

frxEmo-EO-POY,  @o

+ [, x (B (p)-Bi(p) - HO(P))L@)

where L5(&D) is the space of vectors situated in
the tangential plane, and having components
belonging to Ly (#D) . Then using formula (4.5)
and taking into account that representation (4.3} is
the sum of Fourier series on 8D we shali determine
the DS amplitudes from a sequence of
optimization problems for Fourier harmonics. So

we are able to determine the coefficients p|

subsequently from m = 0 to m = M, Below we
shall determine the DS amplitudes as a solution of
the point-matching overdetermined system.

If we use the representation (4.3) even for the case
of an equal number both for matching points J and
for the DS pumber N we will obtain an
underdetermined linear system. This result follows
from the fact that at each matching point we
should satisfy four conditions (two tangential
components for E ficld and two for H) but at any
point w, there are six sources: three (I = 1,2,3)
for the external field representation and three for
the internal ome. This circumstance enables the
number of DS to be reduced. It can be done if one
takes into account a polarization of the external
excitation. Let us consider the case of TM
polarization.

Theorem 4.2. Let DS set be the same as in the
Theorem 4.1, 8D is the surface of revolution and
{E°, HO}: (4.4). Then QS of the BVP (4.1) may be
constructed in the form (cf. [6])



r

5 S e h
E E E ™
[H‘SJ =2 {p ; (HfJ s [Hi'j} +Zdp
{ I: =1 8 (4'7)
Ee
3¢ - (5%
n=l Hm‘

(see also (4.2)) where Hertz vectors are

:‘ = Ylft (q’ wﬂ )(GOSM¢ el — Sinm¢ ez ),
A?r = Yr:l (qs Wn )(COSm¢ ey + sinm¢ el),
A;f = YO‘ (q, W")eg.

In contrast to (4.3) the representation (4.7) is
constructed by multipoles and dipoles oriented
according to TM polarization of the plane wave
(4.4). For the case of TE polarization the exciting
field is

H® = g +&; sinfy) e”
(e, cos@g +e3 sinfg) e @.8)
E’= ey e”

In this case the same result as in Theorem 4.2 oc-
curs and QS representation has the form (4.7) but

)
i,

A% =Yl (g, w,)(sinmge; +cosmpe;),

N
T =Xn (4.9)

n=1

A?: = Yul(q, W, )(cosm¢ e~ sinm¢e2),
Azf = Yor(q:wn)eS:

One can see that instead of three electrical mul-
tipoles at each point w, used in representation
(4.3), in formulas (4.7), (4.9) only two (electrical
multipole situated at the E-plane and magnetic at
the H-plane) are used. The latter circumstance
aflows us when the number of sources is equal to
the number of matching points to obtain the square
matrix for the determination of DS amplitudes.

Let us proceed to the numerical scheme for DS
amplitude determination based on representations
4.7), (4.9). We introduce into consideration the
amplitude vectors

P = PG Dn},

N, ' i i N
P:l = {P:msqzm}n-_fls p:n = {p::m,Q:rm}n-—x-l
r=g%rY, =i, Pl

n=l

The values of vectors p,, and r are calculated as a
pseudosolution of the overdetermined linear sys-

52

tems obtained from a point-matching approach for
the tangential components of Fourier harmonics of

electromagnetic fields. Let {7,}/=1 be the set of

matching points. Then we will obtain the point-
matching system for the determination of DS
amplitudes in the form

BpPn =05{Qpn(1+80m) + Ry + T2} (410)

m=0,M . Here B, is 4 x 2(N; + N_,) matrix,
whose rows contain the tangential components of
multipoles fields at the matching points {7, }f=1 .

J=1..J, p, are 2(N;+N,) vectors, Q,,. R,,.
T,, are 4 vectors. For TAf case these vectors have
the forms
Q,, = {&/ cosby; —cosby; &, 1} 5,

T,, = {&/ cosfy; —cosfy; &5 13 52,
R,, = {R1:0:0.0}, RJ =2¢/sind, S5,
S) =i™(2 = 8om) T (kep’ sindg) expiik,z’ cosby},

~ Far Field Pattern

o1:

o6 .0

] 20 40 80 B0 W0 @0 WO W W

Scattering Angle (Degree)

Figure 1. Comparison of scattering diagrams Fy
with the method of integral equations.

where (£/,¢7)=+/ is a vector tangential to the
surface element 3 at the i point. To find the r
vector the following linear system should be used

B_jr=05¢, (4.11)

here B_ is 27 x (N;+N,) matrix and ¢ is 2J
vector having the form

¢ ={&' cosby S{ +R{; S{3.



BS Cross Section

Inqune Angle (Degree)

Figure 2, Back scattering cross-section as function
of the incline angle. The curves 1,2,3.4 correspond
to 2=0.2;0.4;0.6; 0.8.

Representations (4.7), (4.9) allow us not only to
construct the QS taking into account the exciting
field polarization but also to calculate simultane-
ously the DS amplitudes for TAf and TF polariza-
tions as a solution of the linear system (4.10) with
the same matrix but different right hand parts.

The basis for computing of the energy scattering
characteristics in a far zone appears to be 2
scattering diagram F [9]

Eezwl'.pa(l], r —>co,

r r

where F = {0; Fy F }. After DS amplitudes have
been determined it is easy to calculate the value of
the scattering diagram. Its components for TAf
polarization are

M
Fo(0.8) =i 3 {(~ik, Y™} sin™ & cos(m + 1)¢ x

m=0

N' N‘
3 (Pon €050 +q5m)Gn} — k, SR8 31, G,

n=1 n=1
A
Fy(6,8) = i T{(-ik,)™*! sin” & sin(m + 1)¢ x
m=0
NI'
Y. (Pam + qnm c088) G} 4.12)
n=1

here G, =exp{-ik,z,cosf}, @ is a scattering
angle.

The comparison of scattering diagrams Fy; ob-
tained by two different methods is demonstrated in
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Figure 1. The obstacle is the prolate dielectric rod
£ = 2.5, frequency k,a=132 (24 is the rod
diameter), rod length/diameter ratio is equal to 5;
an exciting plane wave propagates along the rod
symmetry axis. The curve 1 is obtained as DSM
result, and markers (curve 2) show the result of an
integral equation method [2]. We used for our
calculations PC 486DX-50. The integral equation
method spent 4.5 min. and DSM spent 10 sec (48
dipoles were used).

BS Cross Section

o

Incline Angle (Degree)

Figure 3. Back scattering cross-section as func-
tion of the incline angle. The curves 1, 2, 3, 4
correspond to the value @ = 1 and distance
between obstacles as &R, = 0.05; 0.5; I; 2.

We will illustrate the described technique for the

obstacle having the following surface element
1

(1) = Rofl— a +7/5a* -9/35a%} 3 (1+acos2e)

here Ry =const and parameter ¢ determines the
obstacle shape. So the obstacle can vary in shape
from spherical (a = 0) to the prolate one (o £0.2),
then to the dumb-bell (0.2 < a < 1) and doubled
(a =1 shape. Such models are of interest in the
scattering problems when one investigates the
propagation of radio wave through the active
melting layer of atmosphere [10].

We Iet the wave lengthtobe A =32cem, Ry=1
cm, refractive index of particle m= 1,78 + 0,0024i.
The dependencies ¥ =101log (o‘/ A2y are given in
Figures 2,3 as a function of angle &, The curves
1,2,3,4 in Figure 2 correspond to the values of a=



0.2; 0.4; 0.6; 0.8; in Figure 3 the same curves
correspond to & = 1, and the distances between
obstacles are &R, = 0.05; 0.5; 1; 2. The expended
time for each curve was 1.5 min.

5 PENETRABLE PARTICLE ON
SUBSTRATE

The control of a contamination of a silicon wafer
surface is very important in semiconductor
industry. To detect contamination or to recognize a
particle from other defects one needs to solve a
problem of light scattering by structures on a wafer
surface. The inherent difficulty in the modeling of
such scattering problem consists in that an
obstacle now is not a local scatterer. So one should
take into account the presence of a wafer surface.
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Figure 4. Scattered intensity (curve 1) compared
with Wojcik [11] results (curve 2).

Let an axi-symmetric penetrable particle be placed
at the plane = so that the axis of symmetry is nor-
mal to Z. Let us choose the Cartesian coordinate
system so that the origin of coordinates is located
at the contact point between particte and the plane
E. The external excitation is assumed to be a P/S
polarized plane wave propagating at angle £, with
respect to Oz axis. Then the mathematical state-
ment of the light scattering problem has a form

Curl Hr = ijle’; CUI" E, = —ikﬂtHf in Di’

n, < (E;(2)—Eo(p) =n, xE%(p),
n, x (H;(p)-H.(p)) =n, xH'(p),
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e, x(Eq(p)-E.(p)) =0, _
= 5.1
e, x(Ho(p)-B,(p) =0, 7€ G-

with the radiation/attenuation conditions at the
infinity (z # 0). Here ¢ = ;,0,1; Im&;,z; 20. The

1
index i corresponds to the particle, 0 to the ambi-
ent space, and / to the substrate half-space. Let

D e C+) then there exists a unique solution of
the BVP (5.1).
For the BVP (5.1) the Green tensor is
g 0 0
G(M,P)=} © g o,
-8fléx -8f]3y o

where the tensor elements are the following func-
tions

(5.2)

25" (M, Py = exp {~ikyR}/ R~ exp{~ikoR'} / R’

+ [ Jo(Ary %" exp{~no(z +2p)} AdA,
1]

F(M,Py=[Jy(ar) g exp{~no(z+2p)} AdA,
0

o®* (M, Py = ghe(a, P) (5.3)

here r = {(x - xp )2 + (¥ - yp J2H72 is the distance
on the plane and R = {12 + (z - zp J2}4/2 is distance
in R3 space; R'means R’ = {¥2 + (z + zp J2}12. The

spectral fanctions x** and ¢ are given by

€ =20, [Gamg + Hom),
x” =26, /ey + £0m),
¢ =2y + Hon)/{(pmo + #en)iamo + Hom)}
= (A2 ~1H2, G.4)
For the clectrical dipole directed along e, in the

presence of half-space the Hertz vector has the
form

Af=e g% +e,(e;,V) f, (5.5)
and for the case of magnetic dipole along oY
Al=e,g" +ve(e),.V) /. (56)

Expanding the components of the Green tensor in
the Fourier series with respect to azimuthal
variable ¢ we receive



sinmg

Gy(@. P)=% Iyj(9.p) cosmg’

where I} are the Fourier harmonics of functions
Gy and points pg € @ Let us introduce into
consideration the following functions

GJ(¢:2p) = lim {I7(p.7; pp.2p) P}, (37)
pr)O

then the functions forming the tensor (5.7) accept
the following form

g:l,h = m(Q:wn) - Ym (Q,—wn) +
[ Jm(Ap) K" exp{-mo(z +wp)} AP7dA,

S = [In(30) S expi-nolz +wa)} A 7dA (58)
Let us denote

Afn’f =€ gfn'h +e;(ex, V) fns

Al =e, 25" +e,(e,.V) [,

angd form the following combinations
A%, = A cosmg—~ Ay, sinmg 5.9
Af',, = Af’,,x sinmg+ A',:,y cosmg

Then the QS of BVP (5.1} accepts the form
E;) ifkeu curl curIJ .
(H,J - ; {p’[ Yy curl As

¢ curl
q,[. i A
ifkep curl

ifkep curlcurl] R
+3 ( A

n " _1/# curl "

Here s = {m, n} is multindex, 0 sm <M, 1 <n £
N,. Assuming that the external excitation is P-

polarized plane wave we can represent the sum of
incident and reflected fields as

(5.10)

EO =g cosﬂo(x} “RP 2’2)4'83 sinﬁo(;h +RP ;[2),

H® = —e, cos 8z, + Rp ¥2), (5.12)

where Rp, is the Fresnel coefficient

- 6‘100360 -{(& —sin2 90)1/2

Rp 7z

€1 00590 + (31 - Sinz 90)

x1 = exp {—ikg(x sinfy — z cosy)},
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X2 =exp {~iky(x sinfy +z cosfy)}.

To obtain the scattering diagram one may use an
asymptotic technique for approximation of the
Sommerfeld integrals. So we have for the P case

Fp = iky ¥ cos(m + 1) (iko sind)™ x
m
3 { P c0SO [G, + (&° — 5in’ 6 £)G,] +
n
Gnm(Gly +E"G,)} = ikg 0058 Ty (G} +K"Gy)
n
Fy = =ik 3. sin(m + D (iko SIN6)™ T4 Py 0058 x
m n

(G}, +°)G,] +qumlG, + & —sin® 6OG, 1},

where w, = exp{—ikr}/r, G, = exp{-ik,w, cos},
and G', = exp{ik, wp cos &},

xf= 1}51 —sin?@ - cosB/Jal — sin? 8 +cos@,
¥ = \fel —sin?8 - £ cosa/\/sl ~sin?8 + £ cosd,

£ =2(5 ~ &) x

-1
(( & - sin? @ + cosB) £ - sin? @ + & ousG))
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Figure 5. Scattered intensity compared with [12]
results. Curves 1,2 correspond to DSM for P,S

polarization; curves 3,4 correspond to [12] for P,S
cases.

We intend to illustrate the DSM for the model of a
spherical particle on a silicon wafer surface.
Figure 4 shows the intensities of scattered E field
by polysterin latex (PSL) particle as compared
with the Wojcik [11] results for the following



parameters: mpg; = 1.59, mg; = 3.8, 1 = 632.8 nm,
D =0.54 mkm, § case, normal incidence {(where D
is a particle diameter, A is a wavelength). Time
consumed is 1.5 min. The same characteristics for
the D = 0.3 mkm, 8, =—650 are shown in Figure 5
as compared with the [12] results for & and P
polarizations. Here mg = 3.88 ~ 0.02i, results of
[12] are shown by markers.

. Scattering Cross Section
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Figure 6. Scattering cross section Ry, as function
of the particle diameter. Curve 1 corresponds to
PSL particle (calculated values), curve 2 means the
experimental data [11].

The calculation of the scattering cross-section R,
is shown in Figure 6. This characteristic means an
amount of the total scattered light and is very
useful for some engineering applications. Thus the
response of the wafer surface scanner can be
described as
28y
Ry, = | § {Igsin® g+1Ipcos’ 4} sind dé dg.
08

In Figure 6 R,,, is shown as a function of diameter
of the PSL sphere (curve 1, mpg, = 1.59). Markers
(curve 2) shows the data obtained from the
experiment with the wafer surface scanner [11].
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